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Abstract

We consider zero-divisor graphs of idealizations of commutative rings. Specifically, we look at
the preservation, or lack thereof, of the diameter and girth of the zero-divisor graph of a ring when
extending to idealizations of the ring.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of the graph of the zero-divisors of a ring was first introduced by Beck [5]
when discussing the coloring of a commutative ring. In his work all elements of the ring
were vertices of the graph. Anderson and Naseer used this same concept in [3]. We adopt the
approach used by Anderson and Livingston [2] and consider only nonzero zero-divisors as
vertices of the graph. Anderson and Livingston, Mulay [10], and DeMeyer and Schneider
[6] examined, among other things, the diameter and girth of the zero-divisor graph of a
commutative ring. For instance, Anderson and Livingston showed the zero-divisor graph
of a commutative ring is connected with diameter less than or equal to three. In addition,
they showed that the girth is either infinite or less than or equal to four when R is Ar-
tinian and conjectured that this would hold if R was not Artinian. DeMeyer and Schneider,
and Mulay proved this conjecture independently, and a short proof of this can be found in [4].
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The authors (with Coykendall) examined the preservation, or lack thereof, of the diameter
and girth of the graph of a commutative ring under extensions to polynomial and power
series rings in [4]. In this paper we look at the preservation of the diameter and girth under
idealizations of commutative rings. Specifically, in Section 2 we completely characterize the
girth of the zero-divisor graph of an idealization. In Section 3 we completely characterize
when the zero-divisor graph of an idealization will be complete and provide some conditions
when the zero-divisor graph of the idealization will have diameter 2. We also present some
questions that remain.

For the sake of completeness, we state some definitions and notations used throughout.
We will use R to denote a commutative ring with identity, D to denote an integral domain,
and M to denote a unitary R- or D-module. We use Z(R) to denote the set of zero-divisors of
R; we use Z(R)∗ to denote the set of nonzero zero-divisors of R.Additionally, we use reg(R)

to denote the regular elements of R, i.e. reg(R)=R −Z(R). By the zero-divisor graph of R,
denoted �(R), we mean the graph whose vertices are the nonzero zero-divisors of R, and
for distinct r, s ∈ Z(R)∗, there is an edge connecting r and s if and only if rs = 0. For two
distinct vertices a and b in a graph �, the distance between a and b, denoted d(a, b), is the
length of a shortest path connecting a and b, if such a path exists; otherwise, d(a, b) = ∞.
The diameter of a graph � is diam(�) = sup{d(a, b) | a and b are distinct vertices of �}.
We will use the notation diam(�(R)) to denote the diameter of the graph of Z(R)∗. The
girth of a graph �, denoted g(�), is the length of a shortest cycle in �, provided � contains
a cycle; otherwise, g(�) = ∞. We will use the notation g(�(R)) to denote the girth of the
graph of Z(R)∗. A graph is said to be connected if there exists a path between any two
distinct vertices, and a graph is complete if it is connected with diameter less than or equal
to one. A singleton graph is connected and of diameter zero. A graph is said to be a star
graph if the graph is connected with all edges sharing a common vertex. We use the notation
A∗ to refer to the nonzero elements of A.

The idealization of M in R, denoted by R(+)M, is a ring with the following operations:

(i) (r1, m1) + (r2, m2) = (r1 + r2, m1 + m2);
(ii) (r1, m1)(r2, m2) = (r1r2, r1m2 + r2m1).

We will assume that neither the ring nor the module is trivial. Observe that if a ∈ Z(R)∗,
then (a, m) ∈ Z(R(+)M)∗ for all m ∈ M . To see this, consider b ∈ Z(R)∗ with ab = 0.
If bM = 0, then (a, m)(b, 0) = 0. If bM �= 0, then there exists some n ∈ M such that
bn �= 0. Hence, (a, m)(0, bn) = 0. Thus we get the following result which is a special case
of Theorem 25.3 of [8]:

Proposition 1.1. Let R be a commutative ring and let M be an R-module. Then
Z(R(+)M)∗ = {(0, m) | m ∈ M∗} ∪ {(a, n) | a ∈ R∗, n ∈ M and for some m ∈ M∗,
am = 0} ∪ {(a, n) | a ∈ Z(R)∗, n ∈ M}.

Proof. Clearly (0, m) ∈ Z(R(+)M)∗ for all m ∈ M∗, while from above we have {(a, n) |
a ∈ Z(R)∗, n ∈ M} ⊂ Z(R(+)M)∗. If (a, n) ∈ Z(R(+)M)∗ and a ∈ reg(R), then we
must have (a, n)(0, m) = (0, 0). Hence am = 0, where m �= 0. �
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2. Girth of �(R(+)M)

When looking at the girth of �(R(+)M), things are very simple if the module is large
enough. For if |M|�4, then g(�(R(+)M)) = 3, since (0, m1) — (0, m2) — (0, m3) –
(0, m1) is a cycle of length 3 (where m1, m2, and m3 are distinct nonzero elements of M).
So, we only need to consider when the module has two or three elements. First we look at
when M�Z3 and consider R(+)Z3. In most cases, the girth of �(R(+)Z3) is three. One
item worthy of note is that if R has more than three elements, there always exists a nonzero
r ∈ R such that r · Z3 = 0. To see this, assume r · Z3 �= 0 for all r ∈ R∗. Then there exist
distinct r1, r2 ∈ R∗ such that r1 · 1 = r2 · 1 and hence (r1 − r2)1 = 0 where r1 − r2 is
nonzero, a contradiction. Also, since the module is unitary, the ring cannot have fewer than
three elements. This is useful in our next result.

Theorem 2.1. Let R a commutative ring with identity and M�Z3 an R-module. Then

(i) g(�(R(+)Z3)) = 3 if and only if ann(Z3) �= {0}.
(ii) g(�(R(+)Z3)) = ∞ if and only if ann(Z3) = {0}. This occurs precisely when R�Z3.

Proof. (i) Assume there exists a nonzero element r ∈ R such that rZ3 = 0. Since (r, 0) −
(0, 1) − (0, 2) − (r, 0) is a cycle of length 3, the result is obvious. The other direction is
proven by using the contrapositive of the implication proven below.

(ii) Assume that rZ3 �= 0 for every nonzero element r ∈ R. Then r · 1 �= 0 for all
r ∈ R∗. Thus ann((0, 1)) = ann((0, 2)) = {(0, 0), (0, 1), (0, 2)}. Since �(R(+)Z3) is con-
nected, we see that R has no nonzero zero divisors; hence, R is an integral domain. In light
of the remark preceeding the theorem, R�Z3. Since Z(R(+)Z3)

∗ = {(0, 1), (0, 2)}, we
have g(�(R(+)Z3)) = ∞. The other direction is proven by using the contrapositive of the
implication proven in (i). Note that Z3(+)Z3�Z3[x]/(x2). �

The above result classifies the girth of R(+)Z3, and it is somewhat surprising that the
girth will never be 4. We now consider the situation when M�Z2. We will classify when
the girth of �(R(+)Z2) is 3 and when it is infinite. We begin with the girth 3 case.

Theorem 2.2. The girth of �(R(+)Z2) is three if and only if one of the following hold:

(i) The girth of �(R) is three.
(ii) There exists an r ∈ R∗ such that r2 = 0.

(iii) There exist distinct a, b ∈ Z(R)∗ such that ab = 0 = aZ2 = bZ2.

Proof. (⇐) If (i) holds, the result is clear. If (ii) holds, note that r · 1 = 0, lest r · (r · 1) �=
r2 · 1. Then, (r, 0) − (r, 1) − (0, 1) − (r, 0) is a cycle of length three. If (iii) holds, then
(a, 0) − (b, 0) − (0, 1) − (a, 0) is a cycle of length 3.

(⇒) Case 1: The element (0, 1) is part of a minimal length cycle. Then the cycle has the
form (0, 1)− (a, i)− (b, j)− (0, 1). If a �= b, we have distinct a, b ∈ Z(R)∗, ab = 0, and
aZ2 = bZ2 = 0; if a = b, we have a ∈ R∗ such that a2 = 0.
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Case 2: The element (0, 1) is not part of a minimal length cycle. Then, the cycle has the
form (a, i) − (b, j) − (c, k) − (a, i). If a, b, and c are all distinct, then a − b − c − a is a
cycle in �(R), and g(�(R)) = 3. If not, then either a2 = 0 or b2 = 0. �

We will now provide necessary and sufficient conditions for ensuring the girth of R(+)Z2
is infinite. We begin with some results to be used later.

Lemma 2.3. Let R�Z2 × F , where F is a field. Then, any module operation from R to Z2
is a canonical extension of a module operation either from Z2 to Z2, or from F to Z2 in the
case where F is Z2.

Proof. The annihilator of Z2 as an R-module is an ideal of R; thus ann(Z2) = I1 × I2 = I,

where I1 is an ideal of Z2, and I2 is an ideal of F. If I1×I2 ={0} then (1, 0)·1=1=(0, 1)·1,

but this would then result in (1, 1) · 1 = ((1, 0) + (0, 1)) · 1 = (1, 0) · 1 + (0, 1) · 1 = 0,

a contradiction. More easily, I1 × I2 �= R since the module is unitary. Thus, I = {0} × F

or I = Z2 × {0}. If I = {0} × F, then the operation is a canonical extension of the module
operation from Z2 to Z2. Similarly, if I=Z2×{0}, then the operation is a canonical extension
of the module operation from F to Z2. However, if |F |�3, then there is no module operation
from F to Z2since there are nonzero sums of units (which in turn are units), but in the module
u · 1 = 1. �

Example 2.4. Using Lemma 2.3, let R�Z2 × Z2 and consider R(+)Z2. Without loss of
generality, the module operation is defined by (0, 0) · 1 = (0, 1) · 1 = 0 and (1, 0) · 1 =
(1, 1) · 1 = 1. Note that R(+)Z2�Z2 × Z2[x]/(x2). Then, g(�(R(+)Z2)) = ∞, as the
zero-divisor graph below shows:

((1,0),0) ((1,0),1)

((0,1),0) ((0,0),1) ((0,1),1)

Proposition 2.5. Let R�Z2 ×F, where F is a field and |F |�3. Then, g(�(R(+)Z2))=4.

Proof. Since F is a field and |F |�3, by Lemma 2.3 the module operation from R to Z2 is
an extension of the module operation from Z2 to Z2. We have ((0, 0), 1) − ((0, 1), 0) −
((1, 0), 1) − ((0, a), 0) − ((0, 0), 1) is a cycle of length 4 (where a ∈ F is nonzero and not
equal to 1). By Theorem 2.2, �(R(+)Z2) cannot contain any cycles of length 3, since �(R)

is a star graph centered at (1, 0). Hence g(�(R(+)Z2)) = 4. �

Lemma 2.6. If diam(�(R)) = 3, then the girth of �(R(+)Z2) is finite.

Proof. Let a − b − c − d be a path in �(R) with a, b, c, d distinct. If bZ2 �= 0 and
cZ2 �= 0, then b · 1 = 1 and c · 1 = 1, but (bc) · 1 = 0, a contradiction. Thus, we must
have either bZ2 = 0 or cZ2 = 0, or both. Assume bZ2 = 0. If cZ2 = 0, then we get



M. Axtell, J. Stickles / Journal of Pure and Applied Algebra 204 (2006) 235–243 239

the cycle (b, 0) − (c, 0) − (b, 1) − (c, 1) − (b, 0). If cZ2 �= 0, then dZ2 = 0; hence
(b, 0) − (c, 0) − (d, 0) − (c, 1) − (b, 0) is a cycle. �

Given the idealization R(+)Z2, it is easy to see that |R/ann(Z2)| = 2. Otherwise, let
r1+ann(Z2) and r2+ann(Z2) be two cosets distinct from 0+ann(Z2).Thus r1, r2 /∈ ann(Z2)

and so r1 ·1= r2 ·1=1. Therefore (r1 − r2) ∈ ann(Z2) and so r1 +ann(Z2)= r2 +ann(Z2).

This result will be useful in the proof of the following.

Theorem 2.7. The girth of �(R(+)Z2) is infinite if and only if R�Z2 × Z2 or R is an
integral domain.

Proof. (⇐) If R�Z2 × Z2, Example 2.4 shows �(R(+)Z2) has no cycles. If R is an
integral domain, then �(R(+)Z2) is a star graph with center (0, 1).

(⇒) Lemma 2.6 shows diam(�(R))�2 or Z(R)∗ = ∅. If Z(R)∗ = ∅, we are done. If
diam(�(R)) = 0, then by Theorem 3.2 [1], we have R�Z4 or R�Z2[x]/(x2). In either
case, there exists a nonzero nilpotent element, and by Theorem 2.2, g(�(R(+)Z2)) = 3. If
diam(�(R)) = 1, then �(R) is complete. Thus, if R�Z2 × Z2, then R contains a nilpotent
element by Theorem 2.8 of [2], and by Theorem 2.2, g(�(R(+)Z2)) = 3, a contradiction.

If diam(�(R))=2 and �(R) is not a star graph, then g(�(R)) < ∞, a contradiction. Thus,
by Theorem 2.5 of [2], the only possibilities for R are Z2×D, where D is an integral domain,
or Z(R) is an annihilator ideal. If Z(R) is an annihilator ideal, then R contains a nilpotent
element, and we appeal to Theorem 2.2. Hence, R�Z2 × D. If |D| = 2, we are done. If D
is a finite integral domain, then D is a field and by Proposition 2.5, g(�(R(+)Z2)) = 4, a
contradiction. The remaining case to investigate is when D is an infinite integral domain.
In R, ann(Z2) is an ideal and hence of one of the following three forms: Z2 × {0}, {0} × I,

or Z2 × I, where I is an nonzero ideal of D. If ann(Z2) = Z2 × {0}, then |R/ann(Z2)| > 2
which contradicts the remarks preceeding this result. Again using the coset argument, if
ann(Z2) = {0} × I or ann(Z2) = Z2 × I, then there exist distinct, nonzero a, b ∈ I such
that (0, a), (0, b) ∈ ann(Z2). Thus we form a cycle ((1, 0), 0) − ((0, a), 0) − ((1, 0), 1) −
((0, b), 0) − ((1, 0), 0). This contradicts g(�(R(+)Z2)) = ∞. �

The following theorem summarizes the results of this section.

Theorem 2.8. Let R be a ring and M an R-module.

(i) g(�(R(+)M)) = 3 if and only if exactly one of the following hold:

(a) |M|�4,

(b) M�Z3 and ann(M) �= 0, or
(c) M�Z2 and one of the following hold:

(1) g(�(R)) = 3,

(2) there exists a nonzero r ∈ R such that r2 = 0, or
(3) there exists distinct a, b ∈ Z(R)∗ such that ab = 0 = aM = bM.

(ii) g(�(R(+)M)) = ∞ if and only if exactly one of the following hold:

(a) M�Z3 and ann(M) = 0 (and R�Z3), or
(b) M�Z2 and either R�Z2 × Z2 or R is an integral domain.
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We observe that the only case in which g(�(R(+)M)) can be four is when M�Z2 and R
does not meet any of the above conditions. For example, by Proposition 2.5 g(�(R(+)Z2))=
4 when R�Z2 × Z3.

3. Diameter of �(R(+)M)

In studying the zero-divisor graph of an idealization, it quickly becomes clear that the
diameter of the ring’s graph need not be preserved. It is also clear that if diam(�(R)) > 1,

then diam(�(R(+)M)) > 1. However, it is possible to have a ring R such that �(R) is
complete and diam(�(R(+)M)) > 1, as well as all other possible combinations between
the diameter of R and that of R(+)M. In this section, we provide necessary and sufficient
conditions to ensure �(R(+)M) is complete and provide partial results concerning when
diam(�(R(+)M)) = 2.

We begin with some examples illustrating ways in which the diameter of �(R) is not
preserved upon moving to R(+)M.

Example 3.1. Consider Z9(+)Z9 under the usual module operation. Clearly diam(�(Z9))=
1. Observe that if r ∈ reg(Z9), then rm = 0 if and only if m = 0. Thus for r ∈ reg(Z9),

we have (r, m) /∈ Z(Z9(+)Z9)
∗. Now, (0, 3)(r, m) = 0 for any (r, m) ∈ Z(Z9(+)Z9)

∗ and
(3, 1)(3, 3) �= 0; hence, diam(�(Z9(+)Z9)) = 2.

Example 3.2. Let R = Z[x]/(x2). Then diam(�(R)) = 1 since Z(R)∗ = {ax | a ∈
Z∗}. Let M = Z6, and define (a + bx)m = am. Consider (2, 1), (3, 1) ∈ Z(R(+)M)∗.
Clearly, ann((2, 1)) = {(0, 3), (0, 0)}, while ann((3, 1)) = {(0, 2), (0, 0), (0, 4)}. Hence,
d((2, 1), (3, 1)) = 3, so diam(�(R(+)M)) = 3. We can also consider Z4 as an R-module
under the same operation, in which case diam(�(R(+)Z4)) = 2.

We now determine necessary and sufficient conditions on R and M to ensure �(R(+)M) is
complete. In [2]Anderson and Livingston show if R �= Z2×Z2, then �(R) is complete if and
only if (Z(R))2=0. Notice in the previous two examples (Z(R))2=0, yet (Z(R(+)M))2 �=
0. So, simply requiring �(R) to be complete will not guarantee �(R(+)M) will be complete.

We will state three properties that will be considered numerous times:

(a) (Z(R))2 = 0.

(b) For every r ∈ reg(R), rm �= 0 for all m ∈ M∗.
(c) If r ∈ Z(R)∗, then rM = 0.

We remark that in Example 3.1, the ring Z9 does not satisfy condition (c), and in Example
3.2, the ring Z[x]/(x2) does not satisfy condition (b).

Theorem 3.3. Let �(R) �= ∅. Then, �(R(+)M) is complete if and only if R(+)M satisfies
properties (a), (b), and (c).

Proof. (⇒)Assume�(R(+)M) is complete. Let r, s ∈ Z(R)∗ andm ∈ M∗. By Proposition
1.1, (r, m), (s, 0) ∈ Z(R(+)M)∗;hence, (r, m)(s, 0)=(0, 0). So, rs=0 for all r, s ∈ Z(R)∗,
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and (Z(R))2 =0. If for some r ∈ reg(R) we had that rm=0 for some m ∈ M∗, then (r, 0) ∈
Z(R(+)M)∗ since (r, 0)(0, m) = (0, 0). So, let a ∈ Z(R)∗. Since �(R(+)M) is complete,
we have (r, 0)(a, 0)=(0, 0), a contradiction. If for some a ∈ Z(R)∗ there exists an m ∈ M∗
so that am �= 0, then (a, 0), (0, m) ∈ Z(R(+)M)∗, but (a, 0)(0, m) = (0, am) �= (0, 0),

another contradiction.
(⇐)Assume that properties (a), (b), and (c) hold. Therefore Z(R(+)M)∗={(0, m) | m ∈

M∗} ∪ {(a, n) | a ∈ Z(R)∗, n ∈ M} by Proposition 1.1. Let (r, m), (s, n) ∈ Z(R(+)M)∗.
If r = s = 0, then clearly (r, m)(s, n) = 0. If s = 0 and r ∈ Z(R)∗, then by (c) we have that
rM = 0. So, (r, m)(0, n) = (0, 0). If r, s ∈ Z(R)∗, then rs = 0 by (a) and rM = sM = 0
by (c), so (r, m)(s, n) = (0, 0). Thus �(R(+)M) is complete. �

Corollary 3.4. �(R(+)M) is complete if and only if (Z(R(+)M))2 = 0.

Proof. One direction is trivial while the other follows from the proof of Theorem 3.3. �

Theorem 2.8 of [2] along with this corollary shows R(+)M�Z2 × Z2 for any ring R and
any M an R-module. (Though this result is easily proven without appealing to zero-divisor
graphs, we believe this is an interesting sidenote.) We also remark that any domain satisfies
condition (a) and vacuously satisfies condition (c). So, �(D(+)M) is complete if and only
if D satisfies condition (b).

We now focus on when �(R) has diameter greater than one. In this case it is clear
that diam(�(R(+)M)) > 1. However, it is possible to form idealizations with zero-divisor
graphs having diameters of 2 and 3 from rings whose zero-divisor graphs have diameter
2 as well as rings whose zero-divisor graphs have diameter 3, as the following examples
illustrate.

Example 3.5. Consider Z8(+)Z2. It is easy to verify that the diameter of �(Z8) is 2, and
the diameter of �(Z8(+)Z2) is also 2.

Example 3.6. Let R=Z6 and M =Z6 and consider R(+)M under the usual module opera-
tion. It is easy to see that diam(�(R))=2 and Z(R(+)M)∗ ={(0, m) | m ∈ M∗}∪{(a, n) |
a ∈ Z(R)∗, n ∈ M}. However, diam(�(R(+)M)) = 3 since ann((2, 1)) = {(0, 3), (0, 0)},
but (3, 1)(0, 3) = (0, 3) �= (0, 0).

Example 3.7. Let K be a field, S = K[Y, {Xi}∞i=0]/({X0Y } ∪ {Xi − Xi+1Y }∞i=0), and R =
S[[W ]]. Then, diam(�(R))=3 (see [7,4, Example 3.3].) Let f (W)=f0+f1W+f2W

2+. . . ,

where fi ∈ S. Make K an R-module with the operation f · k = f0(0) · k, where f0(0) is
f0 evaluated when all indeterminates appearing in f0 are 0. Note (f, k) ∈ Z(R(+)K)∗
if and only if f0(0) = 0. So, (f, k)(0, l) = (0, 0) for all (f, k) ∈ Z(R(+)K)∗. Hence,
diam(�(R(+)K)) = 2.

Example 3.8. Let R = Z6 × Z6. Then, diam(�(R)) = 3. Make Z6 an R-module with the
operation (a, b) · m = am. Observe that ann(((2, 3), 1)) = {((0, a), b) | a = 0, 2, 4 and
b = 0, 3} and ((3, 1), 1)((0, a), b) �= ((0, 0), 0) for a = 0, 2, 4 and b = 0, 3 unless a = 0
and b = 0. Hence, diam(�(R(+)M)) = 3.
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If necessary and sufficient conditions for ensuring diam(�(R(+)M))=2 could be found,
then the classification of the diameter of an idealization would be complete. This charac-
terization is still however an open question. It may prove easier to classify the diameter 3
case instead. Below, we provide two results that ensure diam(�(R(+)M)) = 2 based on
properties (a), (b), and (c) from earlier.

Theorem 3.9. If R(+)M satisfies properties (b) and (c) but not property (a), then diam
(�(R(+)M)) = 2.

Proof. First note that no Z2 × Z2-module M can satisfy property (c), lest ((1, 0)+ (0, 1)) ·
m = (1, 1) · m = m for some m ∈ M∗, but (1, 0) · m = 0M = (0, 1) · m. Since R �= Z2 × Z2
and (Z(R))2 �= 0, we must have diam(R) > 1, and hence diam(�(R(+)M)) > 1.

If r ∈ Z(R)∗, then (r, m)(0, n) = 0 for any m, n ∈ M . Thus, d((r, m), (s, n))�2 for all
(r, m), (s, n) ∈ Z(R(+)M)∗. Thus, diam(�(R(+)M)) = 2. �

Theorem 3.10. If R(+)M satisfies properties (a) and (b) but not property (c), then diam
(�(R(+)M)) = 2.

Proof. Assume R(+)M satisfies properties (a) and (b) and, for some a ∈ Z(R)∗ and m ∈
M∗, we have am �= 0. For any (r1, n1), (r2, n2) ∈ Z(R(+)M)∗, we have (r1, n1)(0, am)=
(0, 0) = (r2, n2)(0, am). Hence, diam(�(R(+)M))�2. Since (a, 0)(0, m) �= (0, 0), we
get that diam(�(R(+)M)) = 2. �

It is also worth briefly mentioning the diameter behavior of the idealization of non-
domains R with diam(�(R)) = 0, namely R�Z4 and R�Z2[x]/(x2) [1]. If R�Z4, then
any R-module M has the property that 2M = 0 or 4M = 0. It is easy to show using Theorem
3.3 that diam(�(Z4(+)M)) = 1 if and only if 2M = 0. Thus, using Theorem 3.10, it is also
clear that diam(�(Z4(+)M)) = 2 if and only if 2M �= 0.

Now, consider R�Z2[x]/(x2). The diameter of an idealization of R is less clear, though
1 and 2 are again the only possibilities. Clearly R satisfies property (a). Also note that any
R-module M has the property that 2M = 0, and so m = −m for all m ∈ M. Observe that
the only regular elements of R are 1 and x + 1. Clearly for all m ∈ M∗ we have 1m �= 0 .

If for some m ∈ M∗ it is the case that (x + 1)m = 0, then xm = m. Hence x(xm) = xm,
and since x2m = 0m = 0 we obtain xm = m = 0, a contradiction. Thus, R(+)M satisfies
property (b) also. Then by Theorems 3.3 and 3.10, we have that diam(�(R(+)M)) = 1
or 2 for R�Z2[x]/(x2). For example, if M = Z2[x]/(x2) using ring multiplication as the
module operation, then R(+)M does not satisfy property (c), and hence the diameter is 2.
If M = Z2 with module operation defined by (ax + b)m = bm, then R(+)M does satisfy
property (c), and hence the diameter is 1.

The question of when an idealization can have diameter zero is also easily taken care
of. By examining Proposition 1.1, it is clear that diam(�(R(+)M)) = 0 if and only if
R(+)M = Z2(+)Z2. (Note that Z2(+)Z2�Z2[x]/(x2).)
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Example 3.1 serves as both an example of Theorem 3.10 and a counterexample to the
converse of Theorem 3.9. Likewise, Example 3.5 serves as both an example of Theorem
3.9 and a counterexample to the converse of Theorem 3.10. In addition, Example 3.2 shows
that if properties (a) and (c) hold, but not (b), then diameters of 2 and 3 are possible.

The authors are grateful for the detailed comments of the referee that led to a far better
paper.
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