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ABSTRACT This paper shows how Brownian motion theory can be used to analyze features of individual ion trajectories
in channels as calculated by molecular dynamics, and that its use permits more precise determinations of diffusion
coefficients than would otherwise be possible. We also show how a consideration of trajectories of single particles can

distinguish between effects due to the magnitude of the diffusion coefficient and effects due to barriers and wells in the
potential profile, effects which can not be distinguished by consideration of average fluxes.

INTRODUCTION

Several groups have done molecular dynamics studies on
the movement of ions in gramicidin A channels including
water. Two studies (Mackay et al., 1984; Kim et al., 1985)
did relatively short and localized runs including the com-
plete atomic structure of the gramicidin molecule. Another
study (Lee and Jordan, 1984) reduced the degrees of
freedom and explored more ion positions. A comprehensive
review of theoretical descriptions on the atomic scale of
resolution of gramicidine permeation is given in Jordan
(1987). Recently, Skerra and Brickmann (1987, a and b)
utilized a rigid-helix approximation of the gramicidin
backbone to achieve molecular dynamics simulations of ion
movement lasting over 100 ps. Such runs are long enough
to permit the statistical evaluation of quantities used as
parameters in less detailed descriptions of ion movement,
such as electrodiffusion and Brownian dynamics. The
equivalence of Brownian motion and diffusion was estab-
lished by Einstein (1926), Brownian dynamics was first
used to describe biomolecular motion by Simon and Zimm
(1969), and has recently been introduced to describe the
translocation of ions across membrane channels (Cooper et
al., 1985; Jakobsson and Chiu, 1987). The theory of doing
statistical evaluation of atomic motion in liquids by use of
Brownian motion theory is well enough established to be
treated in standard texts. (McQuarrie, 1976) One impor-
tant quantity that can be determined is the diffusion
coefficient. The results of Skerra and Brickmann raise the
question of whether and how the theory used in liquids to
evaluate the diffusion coefficient may be extended to the
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case of ions moving through a membrane channel. This is
the question dealt with here.

APPLICATION OF BROWNIAN MOTION
THEORY TO AN ION MOVING IN A
BARRIER-FREE POTENTIAL PROFILE:
SODIUM MOVEMENT IN GRAMICIDIN

The first point to establish is whether Brownian motion
theory is even applicable. The criterion for this is whether
the time scales of interest are long compared with the
velocity correlation time for the diffusing species. (For a
clear exposition of this and other aspects of Brownian
motion theory, See McQuarrie [1976], Ch. 20) The equa-
tion for this characteristic time is:

T = mD/(kT), (1)
where m is mass of diffusing species (grams), D is diffusion
coefficient of diffusing species (cm2/s), k is Boltzmann's
constant (1.381 x 10-6 erg/OK), T is temperature, 300 'K
in the Skerra-Brickmann simulations.
The mass and diffusion coefficient of the diffusing

species are to be inferred from the Skerra-Brickmann data
for sodium permeation of the channel since, judging from
the trajectory presented, there are no deep potential wells
or high potential barriers in the free energy function for
sodium translocation across the channel. (In the special
case of periodic boundary conditions and absence of lipid
or aqueous phases represented in the Skerra-Brickmann
computations. In real life, of course, there are wells and
barriers. [Jakobsson and Chiu, 1987, and others before
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us.]) In this case, the diffusing species consists of a sodium
ion plus eight associated waters, so the mass is (23 + [8 x
18])/(6.023 x 1023), or 2.773 x 10-22 g. The diffusion
coefficient can be calculated approximately (just how
approximately will be seen below) from the overall velocity
in an electric field by the equation:

D = - v x kT/ [q(dV/dx)], (2)

where v is the drift velocity for sodium as measured by
Skerra-Brickmann, which is 11 A/120 ps, q is the charge
on a sodium ion (1.6 x IO-`9 C), and dV/dx is the electric
field applied across the channel in the Skerra-Brickmann
simulations (1 V/26 A or 3.9 x 108 V/m). Putting the
nubmers into Eq. (2) yields a diffusion coefficient of 6.1 x
10-6 cm2/s. Finally, puting this diffusion coefficent and
the appropriate mass into Eq. (1) yields a velocity correla-
tion time of 4.1 x 10-14 s or 41 fs. The meaning of this is
that as long as we look at the translocation phenomenon on
a time scale longer than this, for example 0.1 ps or longer,
then the Brownian motion theory should be applicable. (It
is worth noting that Skerra and Brickmann implicity
assumed the validity of Brownian motion theory in their
analysis by assuming a linear relation between applied
field and velocity, since the condition for such a linear
relationship to hold is the same as that for Brownian
motion theory to be valid; that is, that the time scales of
interest are long compared with the velocity correlation
time. On the face of it, the Skerra-Brickmann assumption
appears valid; after taking the fluctuations into account,
the drift of the sodium ion really looks linear with time.)
One relatively easy calculation is to estimate the uncer-

tainty in the value of the diffusion coefficient calculated by
the net drift of the sodium-water complex in the electric
field. The distance traveled along one spatial coordinate in
a time t by a Brownian particle will have a standard
deviation of V2iit. For our estimated diffusion coefficient
above and for the duration of 120 ps in the Skerra-
Brickmann simulations, the standard deviation of the
distance traveled in that time is thus 3.8 A, or 35% of the
II A observed by Skerra and Brickmann. Thus the stan-
dard deviation of the diffusion coefficient determined in
this way is 35% of its apparent value, or 2.1 x 10-6 cm2/s.
Since the distribution of distances randomly walked by a
Brownian particle is a Gaussian function, there is an easy
translation between standard deviation and confidence
level. That is, there is a 68% probability that the actual
value differs from the apparent value by no more than the
standard deviation. In other words, there is a 68% probabil-
ity that the true diffusion coefficient predicted by the
assumptions embodied in the Skerra and Brickmann com-
putations is between 4.0 x 10-6 and 8.2 x 10-6 cm2/s.

There is a way to determine the diffusion coefficient
with greater precision from data of the type presented by
Skerra and Brickmann, and that is to utilize the informa-
tion contained in the many small fluctuations in the
trajectory, rather than simply the net drift over a relatively

long period of time. The general body of theory for doing
this is time-correlation analysis. A particularly straight-
forward application of the general theory is to look at many
small time intervals At in a trajectory and use the relation-
ship that:

D = ( AX2 ) /(2At), (3)

where Ax is the displacement in an interval At and ( ) is
the average over many time intervals At. The power of eq.
(3) is that one trajectory can in effect yield many indepen-
dent estimates of D, with a good precision resulting from
taking the average of all those estimates. The limitation in
precision is that At must be large compared with the
velocity correlation time. A 200 fs value for At would be
about five times our estimated correlation time for sodium
in gramicidin and provide 600 independent estimates ofD
during the 120 ps duration of the trajectory computer by
Skerra and Brickmann. To illustrate the point, we did
simulations with a Brownian dynamics program we had
previously used to simulate sodium permeation of grami-
cidin. (Jakobsson and Chiu, 1987) To create a situation
similar to the Skerra and Brickmann computations we set
up a channel II-A long, set the diffusion coefficient at
6.1 x 10-6 cm2/s, kept a flat free energy profile within the
channel (no potential wells or barriers), and imposed an
electric field of 3.9 x 108 V/m across the channel. We also
put a very high bath concentration on the high voltage side,
so that the channel was essentially continually occupied by
an ion that had entered from the high voltage side. For
each passage across the channel we calculated D three
ways. One was by the passage time across the channel,
which corresponds to the methods of Skerra and Brick-
mann. Because of the absorbing boundary conditions at the
ends of the channel, the expression relating the electric
field, the passage time, the channel length, and the mobil-
ity is not Eq. (2). The correct equation can be obtained by
integrating Eq. (6) in Jakobsson and Chiu, 1987, using the
condition that the potential in the channel is a linear
function of the distance. The expression resulting from this
process is:

D = (L2/tp)[(e* + 1) - (2/0)(ef- 1)]/[#(ef- 1)], (4)

where L = channel length (1 1 A in these calculations), tp =
passage time, and ,6 = (qV)/(kT), where V is the trans-
channel potential difference. (0.4231 V in these calcula-
tions).

In the limit of verly large electric fields, Eq. (4)
converges to Eq. (2), where L/tp corresponds to the drift
velocity. For the magnitude of the electric field we are
putting into these calculations, the expressions differ by
115%.
The second method for calculating D was by time

correlation according to Eq. (3), with a At of 200 fs.
Because Brownian dynamics is less computer intensive
than molecular dynamics, we were able to calculate many
trajectories, and simply look at the standard deviations of
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the two sets of calculated diffusion coefficients as a
measure of which method gave higher precision.

Finally, the third method of calculating D was by time
correlation corrected for the drift in the electric field
according to the relationship:

D = ([Ax + (At) D,"q(dV/dx)/(kT)] 2 /(2At), (5)

where D. is the value ofD put into the Brownian dynamics
program, 6.1 x 10-6 cm2/s.

There are two reasons for doing the corrected time
correlation according to Eq. (5). First, it provides a check
on the functioning of our Brownian dynamics program. If
the program is operating perfectly, there should be no
nonrandom difference between D and D.;. Secondly, the
difference between the values of D calculated by Eqs. (3)
and (5) provides an indication of the degree of inaccuracy
introduced into the determination ofD by time correlation
when the drift velocity due to a potential gradient is
ignored.
To provide data for the above analyses, we ran our

Brownian dynamics program for 100 simulated ns, during
which time 859 simulated ions crossed the simulated
channel. The results are shown in Table I. It is seen that the
first method for evaluating D, that of passage times, had
about the same precision as the drift velocity method of
Skerra and Brickmann, as expected. (It should be noted
that our value for D was not the arithmetic mean of the
individual D's, but was the reciprocal of the arithmetic
mean of the reciprocals of the individual D's. This is the
appropriate averaging technique because Eq. (4) comes
from the original expression for the mean passage time,
and the passage time is reciprocally rather than directly
proportional to D.) Time correlation on the 200 fs time
scale, on the other hand, proved for these runs to be almost
six times more precise than the drift method for evaluating

TABLE I
DIFFUSION COEFFICIENTS, STANDARD DEVIATIONS,
AND STANDARD OF THE MEAN FROM ANALYSIS OF

859 BROWNIAN DYNAMICS TRAJECTORIES

Method D SD SEM

cm2/s
Passage times, Eq. (4) 6.126 x 10-6 2.003 x 10-6 0.068 x 10-6
Uncorrected time cor-

relation, 200 fs time
intervals, Eq. (3) 6.185 x 10-6 0.373 x 10-6 0.013 x 10-6

Corrected time corre-
lation, 200 fs time
intervals, Eq. (5) 6.066 x 10-6 0.366 x 10-6 0.012 x 10-6

The input diffusion coefficient was 6.100 x 10-6 cm2/s. The results show
that in the event only one or a few trajectories are available for analysis, as
in the output of molecular dynamics computations, time correlation can
provide much more precise values for the diffusion coefficient than can
passage times times or drift velocities. Also, only a small systematic error
is introduced into the time correlation analysis owing to potential
gradients not accounted for in the correlation analysis according to Eq.
(3).

D. Comparison of the corrected and uncorrected time
correlation results shows that the uncorrected electric field
introduces a small (-2%) systematic error in the determi-
nation ofD by the method of Eq. (3). The small size of this
systematic error reflects the fact that on the 200 fs time
scale, the thermal jumps are a much larger component of
the motion than is the drift with the electric field, even for
such an intense field as we are dealing with here.
The above results suggest strongly that for molecular

dynamics results of the type presented by Skerra and
Brickmann for sodium movement in gramicidin, time
correlation analysis can give much more precise values of
the diffusion coefficient than can the value of the overall
drift in the electric field. Of course we are applying the
method to a Brownian dynamics simulation rather than
molecular dynamics output, but in fact time correlation of
this sort has been applied successfully to molecular
dynamics output for about as long as molecular dynamics
has been done. (For an early and very clearly presented
example, see Rahman, 1964).
The actual value of D is of interest, as well as methods

for determining it. In a previous paper (Jakobsson and
Chiu, 1987), fitting of published data (Barrett Russell et
al., 1986) using constitutive theory led us to an estimate of
D for sodium in gramicidin of -0.5 x 10-6 cm2/s, which
might range up to 1.2 x 10-6 cm2/s based on some
higher measured values for single-channel conductance.
(Dani and Levitt, 1981) Our analysis was based on
neglecting access resistance for diffusion of ions up to the
channel mouth. We have more recently done a more
complete analysis including access resistance, (S.W. Chiu
and E. Jakobsson, manuscript submitted for publication)
which has resulted in an increase in our estimate of the
most plausible value of D for sodium to a range of values
that is in essential agreement with the results of Skerra and
Brickmann.

APPLICATION OF BROWNIAN MOTION
THEORY TO AN ION MOVING IN A
POTENTIAL PROFILE WITH BARRIERS:
LITHIUM OR POTASSIUM IN GRAMICIDIN

In contrast to the situation for sodium, the molecular
dynamics trajectories computed by Skerra and Brickmann
(1987b) for potassium and lithium movement in grami-
cidin show evidence of potential wells and barriers spaced
-2 A apart. For many authors, the existence of such
features in the potential profile for ion permeation has
made a description of this process in terms of transition
state theory (Eyring rate theory) seem natural. However
the criteria for transition state theory to provide a physical
description of kinetic processes in general are not satisfied
in either electrolyte solutions (Wolynes, 1980) or in biomo-
lecular motions. (Frauenfelder and Wolynes, 1985) (See
also Laidler, 1987, chapter 4 for an extended discussion of
conditions for validity of application of transition state
theory.) Therefore transition state theory seems unpromis-
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ing as a truly physical description of motion in the electro-
lytic lumen of a membrane channel protein, despite its
widespread use as a phenomenological description. Wood-
bury (1971) showed that in a channel with a large number
of wells and barriers, transition state theory produces
exactly the same current-voltage curves as electrodiffusion
theory with no wells and barriers, with an effective diffu-
sion coefficient that is a function of the number of barriers
and the rate coefficient (probability per unit time) for
jumping over each barrier. In the section below, we
consider the question of how an electrodiffusion calculation
of channel permeation is affected by the inclusion of wells
and barriers. We have considered this question from the
point of view of the mean passage time and maximum net
flux in a single-occupancy channel as a function of the
number and depth of potential wells in the channel poten-
tial profile.
By rearrangement of Eqs. (6) and (10) in Jakobsson and

Chiu (1987) we can write the maximum flux and the
inverse of the mean passage time in units of (D/L2),
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multiplied by integrals involving the channel potential
profile. We evaluated these integrals for the case where we
superimposed on a linear potential profile varying numbers
of sinusoidal potential wells of varying depth.

Representative results are shown in Fig. 1, for zero and
500 M transmembrane voltage. One clear and expected
result is that for a high voltage, the maximum flux and the
inverse of the mean passage time are essentially identical.
Every ion that comes in the high potential side and spends
any significant time in the channel winds up going through.
This phenomenon is independent of the number and depth
of the potential wells, as shown in Fig. 1, a and b. At zero
applied potential and no potential wells, on the other hand,
the ratio between the inverse of the mean passage time and
the maximum flux is exactly three. (Fig. 1 c) Further, this
ratio of three for zero applied potential also pertains for
many potential wells-but not for just one or a few wells.
(Fig. 1 c) In addition, the ratio of three for the many-well
case is essentially correct independent of the depth of the
wells. (Fig. 1 d) Finally, by comparing 1, b and d, one sees
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FIGURE 1. Effect of periodic potential wells and barriers on maximum flux and reciprocal of mean passage time in a one-ion channel. Well
and barrier shapes are purely sinusoidal and the phase is such that the potential is a relative maximum at each channel mouth. Thus the
number of wells in each case is one greater than the number of barriers. Maximum flux and reciprocal of mean passage time are presented as

multiples of the quantity (D/L2). Symbols are: o, maximum flux; A, (mean passage time)-'. (a) Retarding effect on permeation as a function
of the number of 3 kT potential wells at a high applied voltage (500 mv). (b) Retarding effect on permeation as a function of the depth of five
wells at an applied voltage of 500 mv. (c) Retarding effect on permeation as a function of the number of 3 kT wells in the channel at zero

applied voltage. (d) Retarding effect on permeation as a function of the depth of five wells at zero applied voltage.
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that in the many-well (in this case, five-well) case, the
voltage dependences of both the mean passage time and the
maximum flux remain unchanged when the depth of the
potential wells is changed. For more than -5 wells in the
channel, changing the number or depth of the wells in the
channel does not change the voltage dependence of, or the
ratio between, the inverse of the mean passage time and the
maximum flux. Further, these voltage dependences and
ratios are the same as if there were no wells in the channel
potential profile. The magnitudes of both quantities are
changed, however. In other words, for five or more wells in
the channel, the effects on ion permeation statistics of
changing the number or depth of the wells are indistin-
guishable from the effects of changing the diffusion coeffi-
cient. Zwanzig (1988) has presented an analytical expres-
sion, valid for the many-barrier limiting case, of the
reduction of the effective diffusion coefficient due to the
superimposition of sinusoidal barriers and wells on a
smooth potential function. Zwanzig's calculations were
specific to a mean first passage time problem with slightly
different boundary conditions from ours, but are readily
extendable to our situation.

If one considers a finer level of resolution than the
statistics and looks at trajectories of individual ions, effects
of changing the potential profile are distinguishable from
the effects of changing the diffusion coefficient. To show
this, we show in Fig. 2 trajectories calculated from a
Brownian dynamics computer program, for a situation in
which an ion is moving in a channel across which a large
voltage has been applied. Trajectory A is for a situation in
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FIGURE 2. Effect on individual ion trajectories of changes in diffusion
coefficient and of superposition of wells and barriers in the potential
profile. Brownian dynamics simulations were used to generate trajectories
for a channel 26 A long with a potential difference of 1 V applied across it.
Trajectory A is for a diffusion coefficient of 6.1 x 10-6/S and a linear
potential profile. Trajectory B is for a diffusion coefficient of 2.44 x 10-6
cm /s and a linear potential profile. Trajectory C is for a diffusion
coefficient of 6.1 x 10-6/s and 3 kT sinusoidal potential wells with a

periodicity of 2 A such that the potential minima fall at 1, 3, 5, etc. A. The
trajectories are not chosen to be typical, but rather the first trajectory
generated under each set of conditions is displayed.

which the potential profile is linear; there are no potential
wells or barriers. Trajectories B and C are for situations for
which the statistics of ion permeation would be indistin-
guishable from each other, since in each case the net
average drift velocity would be reduced by a factor of 2.5.
However, the ionic trajectories are clearly significantly
different from each other, and this is because of the way in
which the average drift velocity was reduced. For trajec-
tory B, the diffusion coefficient was set at just 40% of the
value of trajectory B. For trajectory C, the diffusion
coefficient was set at the same value as for trajectory A but
a sinusoidally shaped potential of 2 A periodicity and 3 kT
depth was superposed on the channel potential profile,
because we had determined from the analytical electrodif-
fusion theory that sinusoidally shaped wells of this depth
should slow the drift rate down to just a little over 40% of
its value with a linear potential profile. The trajectories
shown are not selected to be typical. Rather each trajectory
is the first one that was calculated at each set of conditions,
in order to avoid any bias on our part in possibly selecting
trajectories that looked good to us. By the overall drift it
appears that the diffusion coefficients for trajectories B
and C are about the same as each other and distinctly less
than for A. In fact, however, the diffusion coefficient as
defined in the equations of Brownian motion and realized
in our Brownian dynamics simulation program is the same
for trajectories A and C, and both of these are 2.5 times
greater than the diffusion coefficient for trajectory B. We
did a time-correlation analysis at a 200 fs resolution on the
small fluctuations in the three trajectories according to Eq.
(3), and found by this method the three diffusion coeffi-
cients in the ratio of 1.0/0.412/1.062 for A, B, and C
respectively. By this analysis we conclude that for potential
profiles with substantial barriers, it is the time-correlation
method rather than the drift method that yields the
diffusion coefficient as that coefficient is normally defined
in Brownian motion theory. The drift method, on the other
hand, gives the diffusion coefficient as would be deduced
from the statistics of many ions crossing the channel
assuming a linear potential profile. (the constant field
assumption common in electrophysiology [Goldman,
1943]) Alternatively, the drift method may be said to yield
the effective diffusion coefficient, (Zwanzig, 1988) which
actually describes barrier crossing rates rather than pure
diffusion in a smooth potential.

Interestingly, the characteristic time scales for different
types of ion-water motion in an ion channel as reported by
Skerra and Brickmann (1987b) and analyzed above are
the same as those for a wide variety of protein and nucleic
acid simulations as summarized by McCammon and Har-
vey (1987, page 115). Characteristically the short time
(subpicosecond) motions in macromolecules are diffusive,
since the many collisions make these motions chaotic. On a
longer time scale (tens of picoseconds), there is time for
significant movement away from equilibrium positions and
thus significant restoring forces are brought into play.
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These restoring forces render motions on these longer time
scales oscillatory in macromolecules and, according to the
results of Skerra and Brickmann, can superimpose an
oscillatory component on the ion-water complex moving in
a membrane channel.

CONCLUSION
The use of time correlation analysis, derived from
Brownian motion theory, was examined for possible appli-
cation in deriving diffusion coefficients from molecular
dynamics simulation of ion permeation of membrane chan-
nels. Time correlation analysis was compared specifically
with the method of deducing the diffusion coefficient from
the average drift in an applied electric field. The analysis
was done on trajectories simulated by a Brownian
dynamics computer program. For linear potential profiles,
it was found that the two methods give essentially the same
answer but that the time correlation analysis is much more
precise. For potential profiles containing multiple barriers
and wells, the two methods give different answers. The
answer given by the drift method corresponds to the
apparent diffusion coefficient that would be deduced from
the average behavior of many ions crossing the channel, in
the absence of detailed knowledge of ion-channel interac-
tions and assuming a linear potential profile. The answer
given by the time correlation analysis corresponds to the
diffusion coefficient as it is normally used in Brownian
motion theory, exemplified specifically in the original
Einstein descripton of Brownian motion (Einstein, 1926)
and subsequently incorporated into Brownian dynamics
simulations of thermally driven processes. Time correlation
analysis would seem also relevant to determine the diffu-
sion coefficient of water in membrane channels from
trajectories of the sort presented by Mackay and Wilson
(1986).
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John Morgan while doing these calculations and preparing this note. We
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paper.

This work was supported by grant PHS 1 ROS GM32356 from the
National Institutes of Health.

Receivedfor publication 6 August 1987 and infinalform 17 May 1988.

REFERENCES

Barrett Russell, E. W., L. B. Weiss, F. I. Navetta, R. E. Koeppe II, and
0. S. Andersen. 1986. Single-channel studies on linear gramicidins

with altered amino acid side chains. Effects of altering the polarity of
the side chain at position No. 1 in gramicidin A. Biophys. J. 49:673-
686.

Cooper, K., E. Jakobsson, and P. Wolynes. 1985. The theory of ion
transport through membrane channels. Prog. Biophys. Mol. Biol.
46:51-96.

Dani, J. A., and D. G. Levitt. 1981. Water transport and ion-water
interaction in the gramicidin channel. Biophys. J. 35:501-508.

Einstein, A. 1926. Investigations on the Theory of Brownian Movement.
Translation by A. D. Cowper of papers published 1905-1908. Dover
Publications Inc., New York.

Frauenfelder, H., and P. G. Wolynes. 1985. Rate theories and puzzles of
hemeprotein kinetics. Science (Wash. DC).229:337-345.

Goldman, D. E. 1943. Potential, impedance, and rectification in mem-
branes. J. Gen. Physil. 27:37-60.

Jakobsson, E., and S. W. Chiu. 1987. Stochastic theory of ion movement
in channels with single-ion occupancy. Application to sodium perme-
ation of gramicidin channels. Biophys. J. 52:33-46.

Jordan, P. C. 1987. Microscopic approaches to ion transport through
transmembrane channels. The model system gramicidin. J. Phys.
Chem. 91:6582-6591.

Kim, K. S., H. L. Nguyen, P. K. Swaminathan, and E. Clementi. 1985.
Na+ and K' ion transport through a solvated gramicidin A transmem-
brane channel: molecular dynamics studies using parallel processors. J.
Phys. Chem. 89:2870-2876.

Laidler, K. J. 1987. Chemical Kinetics. 3rd ed. Harper and Row,
Publishers Inc., New York.

Lee, W. K., and P. C. Jordan. 1984. Molecular dynamics simulation of
cation motion in water-filled gramicidinlike pores. Biophys. J. 46:805-
819.

Mackay, D. H. J., P. H. Berens, K. R. Wilson, and A. T. Hagler. 1984.
Structure and dynamics of ion transport through gramicidin A.
Biophys. J. 46:229-248.

Mackay, D. H. J., and K. R. Wilson. 1986. Possible allosteric significance
of water structures in proteins. J. Biomol. Struct. Dyn. 4:491-500.

McCammon, J. A., and S. C. Harvey. 1987. Dynamics of Proteins and
Nucleic Acids. Cambridge University Press, Cambridge, England.

McQuarrie, D. A. 1976. Statistical Mechanics. Harper and Row, Pub-
lishers Inc. New York.

Rahman, A. 1964. Correlations in the motion of atoms in liquid argon.
Phys. Rev. A 136:405-411.

Simon, E. M., and B. H. Zimm. 1969. A computer simulation of the
unwinding of a DNA-like helix. J. Stat. Phys. 1:41-55.

Skerra, A., and J. Brickmann. 1987a. Structure and dynamics of
one-dimensional ionic solutions in biological transmembrane channels.
Biophys. J. 51:969-976.

Skerra, A., and J. Brickmann. 1987b. Simulation of voltage-driven
hydrated cation transport through narrow transmembrane channels
Biophys. J. 51:977-984.

Wolynes, P. G. 1980. Dynamics of electrolyte solutions. Annu. Rev. Phys.
Chem. 31:345-376.

Woodbury, J. W. 1971. Eyring rate theory model of the current-voltage
relationships of ion channels in excitable membranes. In Chemical
Dynamics: Papers in Honor of Henry Eyring. J. 0. Hirschfelder editor.
John Wiley & Sons, Inc., New York.

Zwanzig, R. 1988. Diffusion in a rough potential. Proc. Nat!. Acad. Sci.
USA. 85:2029-2030.

756 BIOPHYSICAL JOURNAL VOLUME 54 1988


