

An International Journal Computers & mathematics with applications

PERGAMON Computers and Mathematics with Applications 43 (2002) 1027-1033

www.elsevier.com/locate/camwa

Conjugacy in the Discretized Fold Bifurcation

G. FARKAS*

Department of Mathematics, István Széchenyi University of Applied Sciences Hédervári u. 3, H-9026 Győr, Hungary gyfarkas@taltos.math.szif.hu

(Received October 2000; revised and accepted May 2001)

Abstract—In this paper, we construct a conjugacy between the time-1-map of the solution flow generated by an ordinary differential equation and its numerical approximation in a neighborhood of a fold bifurcation point. Our main result is that the conjugacy is $O(h^p)$ -close to the identity on the center manifold where h is the step size and p is the order of the numerical method. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords-Generalized Hartman-Grobman theorem, Fold bifurcation, Discretization.

1. INTRODUCTION

It is well known that conjugacies play a fundamental role in the qualitative theory of ordinary differential equations. Indeed, when a conjugacy exists between two dynamical systems, then the dynamical systems have the same orbit structure; they are qualitatively the same.

The discretization of a dynamical system is a family of maps (depending on the step size h) which is close to the time-h-map of the dynamical system. We want to claim that under certain conditions, the dynamics of the discretization considered as a discrete dynamical system and of the original system are the same. Thus, it is natural to seek for conjugacies between a dynamical system and its numerical approximation.

In the vicinity of a hyperbolic equilibrium point, this was done in [1] by putting the problem in the general framework of the Hartman-Grobman theorem. A similar approach was carried out in [2] in the case of delay differential equations. Structural stability results were obtained in [3] (for Morse-Smale systems without periodic orbits) and in [4] (for systems satisfying Axiom A and the strong transversality condition). The construction of the conjugacies uses the various type of hyperbolicity conditions of the dynamical system.

However, hyperbolicity is usually lost in a bifurcation point. So these results cannot be applied to a bifurcation problem. We note that, in general, we cannot expect that a conjugacy exists in

^{*}Current address for correspondence: Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.

Supported by DAAD Project 323-PPP, Qualitative Theory of Numerical Methods for Evolution Equations in Infinite Dimensions and by the Hungarian National Research Fund under number T 031807.

This work was done while the author was a visitor at the University of Bielefeld. The author would like to thank SFB 343 for the hospitality and Prof. W.-J. Beyn for the stimulating discussions.

^{0898-1221/02/\$ -} see front matter © 2002 Elsevier Science Ltd. All rights reserved. Typeset by A_{MS} -T_{EX} PII: S0898-1221(01)00343-1

G. FARKAS

a neighborhood of a nonhyperbolic equilibrium point, as the simple example of the planar linear center and the Euler method shows. (Indeed, consider the planar linear center $\dot{x} = y$, $\dot{y} = -x$, and its Euler discretization X = x + hy, Y = y - hx. A simple calculation shows that the origin becomes unstable under Euler discretization for all step size h.) On the other hand, under certain conditions, the existence of a conjugacy can be saved. Namely, we show in this paper that in the neighborhood of a fold bifurcation point, the desired conjugacy exists. Moreover, the conjugacy is $O(h^p)$ -close to the identity on the center manifold where p is the order of the method.

The proof of our main result works via the generalized Hartman-Grobman theorem (see [5,6]), the center manifold reduction (see [7,8]), and the method of fundamental domains. The use of fundamental domains was inspired by a lecture by Y.A. Kuznetsov, where the topological normal form of the fold bifurcation was constructed in a similar way. The center manifold reduction played a fundamental role in [9] where a numerical Hopf bifurcation theorem was proved for partial differential equations.

The paper is organized as follows. Preliminaries are placed into Section 2. Section 3 contains our main result. We end this note with some final remarks.

2. PRELIMINARIES

Let $f : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$ be a globally Lipschitzian C^j function with $j \ge 4$. Consider the following ordinary differential equation depending on a single parameter α :

$$\dot{z} = f(z; \alpha). \tag{1}$$

Denote the solution flow of (1) with parameter value α by $\Phi(\cdot, \cdot; \alpha) : \mathbf{R} \times \mathbf{R}^n \to \mathbf{R}^n$.

By the h-discretized equation of (1), we mean equation

$$Z = \phi(h, z; \alpha), \qquad z, Z \in \mathbf{R}^n, \quad h > 0, \tag{2}$$

where ϕ is a fixed one-step method with step size h. Assume that ϕ is smooth and is of order $p \geq 1$; i.e., there exist a constant h_0 and a constant K_1 (depending only on f) such that

$$\left|\Phi(h,z;\alpha) - \phi(h,z;\alpha)\right|_{i} \le K_{1}h^{p+1}, \quad \text{for all } h \in (0,h_{0}], \quad z \in \mathbf{R}^{n},$$
(3)

where $\Phi(h, \cdot; \alpha) : \mathbf{R}^n \to \mathbf{R}^n$ is the time-*h*-map of the induced solution flow of (1) with parameter value α and $|\cdot|_j$ denotes the usual C^j -norm of the space $C^j(\mathbf{R}^n \times \mathbf{R}, \mathbf{R}^n)$.

In the usual definition of the order of the method, the $|\cdot|_0$ norm is used instead of the $|\cdot|_j$ norm. Since property (3) is a consequence of the C^0 -closeness, for sufficiently smooth systems we use (3) as a definition of the order of the method. A more detailed treatment of this property can be found in [1].

With $[\cdot]$ denoting the integer part, for fixed t > 0 the approximation of the time-t-map of the induced solution flow, i.e., $\Phi(t)$, is

$$\phi^{[t/h]}(h,\cdot;\alpha),$$

and if $t/h \in \mathbb{N}$, then

$$\left|\Phi(t,z;\alpha) - \phi^{[t/h]}(h,z;\alpha)\right|_{j} \le K_{2}h^{p}$$

$$\tag{4}$$

holds with some constant $K_2 > 0$ (depending only on f and t). For a detailed treatment of inequality (4), we refer to [10].

Assume that $\Phi(t,0;0) = 0$ and $\phi(h,0;0) = 0$ for all $t \in \mathbf{R}$ and all $h \in (0, h_0]$, respectively. Assume further that $\alpha = 0$ is a fold bifurcation point for both (1) and (2). To be concrete, assume that there are no equilibria for $\alpha > 0$ and there are two equilibria for $\alpha < 0$. We note that a simple analysis of (4) shows that ϕ must have a nearby fold bifurcation point whenever $\alpha = 0$ is a fold bifurcation point for Φ . We only assume for simplicity that this point is shifted into 0.

By enlarging the dimension by 1, i.e., by adding $\dot{\alpha} = 0$ and $A = \alpha$ to (1) and to (2), respectively, we have local center manifolds around 0 in the enlarged phase space denoted by

$$W_{\text{loc}}^{C}(0) = \{(x, \xi(x, \alpha), \alpha) : x \in \mathbf{R}, |x|, |\alpha| \text{ are sufficiently small}\}$$

and

$$W^{C_h}_{\mathrm{loc}}(0) = \{(x,\xi_h(x,lpha),lpha): x\in \mathbf{R}, \ |x|, |lpha| \ \mathrm{are \ sufficiently \ small}\},$$

where $\xi, \xi_h : \mathbf{R} \times \mathbf{R} \to \mathbf{R}^{n-1}$ are C^j functions.

Applying the result of [11] (or of [1]), we have that these manifolds are C^{j} -close; i.e., the functions ξ and ξ_{h} are C^{j} -close, and moreover, their C^{j} -distance is bounded by $O(h^{p})$. For the sake of simplicity, we denote the solution flow of the enlarged system and its discretization simply by Φ and ϕ , respectively. Finally, denote the reduced maps on their center manifolds by Φ_{C} and $\phi_{C_{h}}$, respectively; i.e.,

$$\Phi_C(t, x; \alpha) = y,$$
 where $(y, \xi(y, \alpha), \alpha) = \Phi(t, (x, \xi(x, \alpha)); \alpha)$

and

$$\phi_{C_h}(h, x; \alpha) = y, \qquad \text{where } (y, \xi_h(y, \alpha), \alpha) = \phi(h, (x, \xi_h(x, \alpha)); \alpha).$$

From the C^{j} -closeness of the center manifolds and from (4), it follows that

$$\left|\Phi_C(t,x;\alpha) - \phi_{C_h}^{[t/h]}(h,x;\alpha)\right|_j = O\left(h^p\right),\tag{5}$$

where $t/h \in \mathbf{N}$. From now on, we restrict ourselves to the case $1/h \in \mathbf{N}$.

Following [7], we see that the construction of the normal form of the fold bifurcation works via Taylor expansion, implicit function theorem (to eliminate the parameter dependent first-order term), and inverse function theorem (to introduce a new parameter). Thus, our closeness property (5) yields the following lemma.

LEMMA 1. There are positive numbers ε , α_0 , and smooth invertible coordinate transforms τ and τ_h , such that τ transforms $\Phi_C(1)$ into

$$X = x + \alpha + ax^2 + x^3\psi(x,\alpha) =: f^1(x;\alpha), \tag{6}$$

while τ_h transforms $\phi_{C_h}^{[1/h]}(h)$ into

$$X = x + \alpha + a_h x^2 + x^3 \psi_h(x, \alpha) =: f_h^2(x; \alpha), \tag{7}$$

where a > 0, ψ , and ψ_h are smooth functions of x and α provided $|x| < \varepsilon$ and $|\alpha| < \alpha_0$ holds. Moreover, we have that

$$|a-a_h| \le K_3 h^p, \qquad |\psi(x,\alpha) - \psi_h(x,\alpha)| \le K_3 h^p, \qquad |\tau(x,\alpha) - \tau_h(x,\alpha)| \le K_3 h^p,$$

for all $|x| < \varepsilon$, $|\alpha| < \alpha_0$.

3. MAIN RESULT

Assume all the conditions listed in Section 2 hold true. We prove the following theorem.

THEOREM 1. There are positive numbers h_1 , ε_1 , α_1 , and a real function J defined on $(0, h_1] \times (-\varepsilon_1, \varepsilon_1) \times (-\alpha_1, \alpha_1)$ such that $J(h, \cdot, \alpha)$ is a homeomorphism,

$$f^{1}(J(h,x,\alpha);\alpha) = J\left(h, f_{h}^{2}(x;\alpha),\alpha\right), \qquad (8)$$

and

$$|J(h,\cdot,\alpha) - \mathrm{id}|_0 \le Kh^p \tag{9}$$

holds with some constant K > 0 independent of h and α . PROOF. Set

$$X = x + \alpha + ax^2 =: g(x; \alpha).$$

Our method is to construct homeomorphisms $H(\cdot, \alpha)$ and $G(h, \cdot, \alpha)$ such that

$$f^{1}(H(x,\alpha);\alpha) = H(g(x;\alpha),\alpha),$$
(10)

$$f_h^2(G(h, x, \alpha); \alpha) = G(h, g(x; \alpha), \alpha), \tag{11}$$

and

$$|H(\cdot,\alpha) - G(h,\cdot,\alpha)|_0 \le Kh^p \tag{12}$$

hold. Then it remains to set $J = H \circ G^{-1}$.

Let N be a neighborhood of x = 0 and $0 < h \le h_2$ such that f^1 , f_h^2 , and g have the same number of fixed points with the same stability, provided $|\alpha|$ is sufficiently small. Fix $0 > y_0 \in N$ such that $g(y_0; \alpha) < f^1(g(y_0; \alpha); \alpha), g(y_0; \alpha) < f_h^2(g(y_0; \alpha); \alpha), \text{ and if } \alpha \le 0$, then $g(-y_0; \alpha) \in N$, $g(-y_0; \alpha) > (f^1)^{-1}(g(-y_0; \alpha); \alpha), g(-y_0; \alpha) > (f_h^2)^{-1}(g(-y_0; \alpha); \alpha)$. We divide the construction of H and G into three parts according to $\alpha < 0$, $\alpha = 0$, or $\alpha > 0$.

CASE $\alpha < 0$. Fix $x_0 = 0$ and set $x_k = g^k(x_0; \alpha), k \in \mathbb{Z}$. Note that $x_1 = \alpha$. Set $H(x_0, \alpha) = G(h, x_0, \alpha) = g(x_0; \alpha)$ and $H(x_k, \alpha) = (f_1^1)^k(x_1; \alpha), G(h, x_k, \alpha) = (f_h^2)^k(x_1; \alpha), k \in \mathbb{Z}$. On $[x_1, x_0]$, extend both H and G linearly. For $y \in [x_2, x_1]$, set $H(y, \alpha) = f^1(H(g^{-1}(y; \alpha), \alpha); \alpha)$ and $G(h, y, \alpha) = f_h^2(G(h, g^{-1}(y; \alpha), \alpha); \alpha)$. Recursively, in both directions, we see that H and G extend continuously to the interval (x^-, x^+) , where x^-, x^+ are the negative and positive fixed points of g, respectively. Finally, set $H(x^-, \alpha) = x_1^-$, $G(h, x^-, \alpha) = x_2^-$, $H(x^+, \alpha) = x_1^+$, and $G(h, x^+, \alpha) = x_2^+$, where x_1^-, x_1^+ are the negative and positive fixed points of $f^1; x_2^-, x_2^+$ are the negative and positive fixed points of f_h^2 , respectively.

From initial points y_0 and $-y_0$, the same construction can be carried out (by taking the inverse when necessary). Note that here the assumptions on y_0 enter. As a result, we obtain functions Hand G defined on some neighborhood of x = 0 for all $\alpha < 0$, $|\alpha|$ sufficiently small, and all $0 < h \le h_2$.

From the construction, it is easy to see that H and G are homeomorphisms (since they are continuous, strictly monotone functions) and are indeed the desired conjugacies; i.e., equations (10) and (11) hold.

It remains to prove the closeness of H and G, i.e., inequality (9). We restrict ourselves to estimate the distance between H and G on $[y_0, 0]$; the complementary part can be treated similarly.

First, we estimate |H - G| on $[x^-, 0]$. It is clear that $|H(x, \alpha) - G(h, x, \alpha)| \le K_4 h^p$ holds for $x \in [x_1, x_0]$. Note that

$$\left| f^{1}(x;\alpha) - f^{2}_{h}(x;\alpha) \right| \le |a - a_{h}| \cdot |x|^{2} + |\psi(x,\alpha) - \psi_{h}(x,\alpha)| \cdot |x|^{3} \le K_{5}h^{p}|x|^{2}, \tag{13}$$

provided N and α_1 are sufficiently small. Consequently,

$$\left|f^{1}(x;\alpha) - f_{h}^{2}(x;\alpha)\right| \leq K_{5}h^{p}\left|x^{-}\right|^{2} = K_{5}h^{p}\left(-\frac{\alpha}{a}\right),\tag{14}$$

for all $x \in [x^-, x_0]$. On the other hand, the derivative of f^1 (and f_h^2) is strictly monotone increasing, and thus,

$$\left| \left(f^{1} \right)_{x}^{\prime} \left(y; \alpha \right) \right| \leq \left| \left(f^{1} \right)_{x}^{\prime} \left(x_{1}; \alpha \right) \right| \leq \left(1 + 2\tilde{a}\alpha \right) < 1, \tag{15}$$

with some nonzero constant \tilde{a} , for all $y \leq x_1$ (provided $|\alpha|$ small enough).

Now estimate |H - G| on $[x_2, x_1]$ as

$$\begin{split} \sup_{y \in [x_2, x_1]} |H(y, \alpha) - G(h, y, \alpha)| &\leq \sup_{y \in [x_2, x_1]} \left| f^1 \left(H \left(g^{-1}(y; \alpha), \alpha \right); \alpha \right) - f^1 \left(G \left(h, g^{-1}(y; \alpha), \alpha \right); \alpha \right) \right| \\ &+ \sup_{y \in [x_1, x_0]} \left| f^1(y; \alpha) - f_h^2(y; \alpha) \right| \\ &\leq \left(1 + 2\tilde{a}\alpha \right) \sup_{y \in [x_1, x_0]} \left| H(y, \alpha) - G(h, y, \alpha) \right| + K_5 h^p \left(-\frac{\alpha}{a} \right). \end{split}$$

Repeating inductively, we see that

$$|H(y,\alpha) - G(h,y,\alpha)| \le K_4 h^p + \frac{K_5(-\alpha/a)}{-2\tilde{a}\alpha} h^p = K_6 h^p$$

for all $y \in (x^-, x_0]$. Finally, at x^- this inequality holds as well.

Finally, we estimate |H - G| on $[y_0, x^-]$. By setting $y_k = g^k(y_0; \alpha), k \in \mathbb{N}$, we have that $\sup_{y \in [y_0, y_1]} |H(y, \alpha) - G(h, y, \alpha)| \leq K_6 h^p$; on the other hand,

$$\begin{split} \sup_{\boldsymbol{y}\in[\boldsymbol{y}_1,\boldsymbol{y}_2]} |H(\boldsymbol{y},\boldsymbol{\alpha}) - G(\boldsymbol{h},\boldsymbol{y},\boldsymbol{\alpha})| &\leq \sup_{\boldsymbol{y}\in[\boldsymbol{y}_1,\boldsymbol{y}_2]} \left| f^1\left(H\left(g^{-1}(\boldsymbol{y};\boldsymbol{\alpha}),\boldsymbol{\alpha}\right);\boldsymbol{\alpha}\right) - f^1\left(G\left(\boldsymbol{h},g^{-1}(\boldsymbol{y};\boldsymbol{\alpha}),\boldsymbol{\alpha}\right);\boldsymbol{\alpha}\right)\right| \\ &+ \sup_{\boldsymbol{y}\in[\boldsymbol{y}_0,\boldsymbol{y}_1]} \left| f^1(\boldsymbol{y};\boldsymbol{\alpha}) - f^2_{\boldsymbol{h}}(\boldsymbol{y};\boldsymbol{\alpha})\right|. \end{split}$$

Define $a_k = |y_k|^2$. Since

$$\left| \left(f^{1} \right)'_{x} (y; \alpha) \right| \leq \left| \left(f^{1} \right)'_{x} (x^{-}; \alpha) \right| \leq q < 1 \qquad (by (15))$$

and

$$\sup_{y \in [y_k, y_{k+1}]} \left| f^1(y; \alpha) - f_h^2(y; \alpha) \right| \le K_5 h^p |y_k|^2 = a_k K_5 h^p \qquad (by (13))$$

inductive application of the above estimate yields

$$\sup_{y \in [y_0, y_{k+1}]} |H(y, \alpha) - G(h, y, \alpha)| \le q^k K_6 h^p + (q^{k-1}a_0 + q^{k-2}a_1 + \dots + a_{k-1}) K_5 h^p.$$

Set $c_k = q^k a_0 + \cdots + a_k$ and $b_k = a_k - |x^-|^2$. Then $b_k \to 0$ as $k \to \infty$ and $c_k \le |x^-|^2/(1-q) + \sum_{i=0}^{\infty} b_i$ (for all k). We show that $\sum_{k=0}^{\infty} b_k \le K_7$ with some constant $K_7 > 0$ independent of α and h. This will finish the proof of case $\alpha < 0$ since $|x^-|^2/(1-q) \le K_8$ with some constant K_8 independent of α (and h). We note here that the trivial estimate $c_k \le a_0/(1-q)$ does not work since $1/(1-q) \to \infty$ as $\alpha \to 0$.

We construct a sequence z_k of negative numbers such that $z_0 = y_0$, $z_k > -1/(2a)$ for all $k \in \mathbb{N}$ and

$$z_{k+1} \le z_k + \alpha + a z_k^2, \qquad k = 0, 1, \dots,$$
 (16)

hold. With such a sequence in hand (by using that $g(x; \alpha)$ is strictly monotone increasing for x > -1/(2a)) we get that $y_k \ge z_k$, and thus $a_k = |y_k|^2 \le |z_k|^2$. To this end, let $z_0 = y_0$, $z_k = -\sqrt{-\alpha/a} + \delta y_0/k^{1-\gamma}$, where $0 < \gamma < 1/2$ and $\delta \ge 1$ will be chosen later. It is easy to

see (note that $\delta \ge 1$) that the desired inequality (16) holds for k = 0 provided $|\alpha|$ is sufficiently small. It remains to check that

$$-\sqrt{-\frac{\alpha}{a}} + \frac{\delta y_0}{(k+1)^{1-\gamma}} \le -\sqrt{-\frac{\alpha}{a}} + \frac{\delta y_0}{k^{1-\gamma}} + \alpha + a\left(-\sqrt{-\frac{\alpha}{a}} + \frac{\delta y_0}{k^{1-\gamma}}\right)^2,$$

or equivalently,

$$\frac{k^{2(1-\gamma)}}{(k+1)^{1-\gamma}} \ge \left(1 - 2a\sqrt{-\frac{\alpha}{a}}\right)k^{1-\gamma} + a\delta y_0 \tag{17}$$

holds. We show a slightly stronger inequality, namely,

$$\frac{k^{2(1-\gamma)}}{(k+1)^{1-\gamma}} \ge k^{1-\gamma} + a\delta y_0.$$

It is easy to see that (since a > 0)

$$d_k(\gamma) := rac{k^{1-\gamma} \left(k^{1-\gamma} - (k+1)^{1-\gamma}\right)}{a(k+1)^{1-\gamma}} \to 0, \quad \text{as } k \to \infty.$$

On the other hand, if γ is sufficiently close to 1/2, then $d_k(\gamma)$ is strictly monotone increasing with respect to k ($\gamma = 0.4$ works). Note that $d_1(\gamma) > -1/(2a)$. With such a fixed γ , now choose $\delta \geq 1$ such that $d_1(\gamma) \geq \delta y_0$ holds. Note that δ is independent of α . Thus,

$$d_k(\gamma) \ge d_1(\gamma) \ge \delta y_0$$

and the desired inequality (16) follows. We remark that similarly, the exact asymptotic behavior can be studied about nonhyperbolic equilibria; see [12].

Now we are in a position to prove the convergence of $\sum b_k$. Since $a_k \leq |z_k|^2 \leq |x^-|^2 + |\delta y_0|^2/k^{2(1-\gamma)}$, we have that $b_k \leq |\delta y_0|^2/k^{2(1-\gamma)}$, and the convergence of $\sum b_k$ follows from $2(1-\gamma) > 1$. Finally, note that δ and γ were chosen independently of α , which completes the proof of case $\alpha < 0$.

CASE $\alpha = 0$. The construction of H and G is the same as in the case $\alpha < 0$. The only difference is that $[x^-, x^+] = \{0\}$. Since $|(f^1)'_x(y; 0)| \leq 1$ for all $y \in [y_0, 0]$, we arrive at the following estimate:

$$\sup_{y \in [y_0, y_{k+1}]} |H(y, 0) - G(h, y, 0)| \le K_8 h^p + (a_{k-1} + \dots + a_0) K_5 h^p,$$

where as before $a_k = |y_k|^2 = |g^k(y_0; 0)|^2$. By using the $\alpha = 0$ variant of the estimate of b_k from Case $\alpha < 0$, we obtain $a_k \le |\delta y_0|^2 / k^{2(1-\gamma)}$ with suitably chosen $0 < \gamma < 1/2$ and $\delta \ge 1$, and thus

$$\sup_{y \in [y_0,0]} |H(y,0) - G(h,y,0)| \le K_9 h^p.$$

CASE $\alpha > 0$. The construction of H and G is the same as in the case $\alpha < 0$. The only difference is that we do not make use of $-y_0$; i.e., only one initial point is necessary. Although we reach x = 0 in a finite number of steps for all $\alpha > 0$, the number of these steps tends to infinity as $\alpha > 0$ tends to zero.

Since $|(f^1)'_x(y;\alpha)| \leq 1$ for all $y \in [y_0,0]$, we arrive at the following estimate:

$$\sup_{y \in [y_0, y_{k+1}]} |H(y, \alpha) - G(h, y, \alpha)| \le K_8 h^p + (a_{k-1} + \dots + a_0) K_5 h^p,$$

where $a_k = |y_k|^2 = |g^k(y_0; \alpha)|^2$. For $y_k \leq 0$, we show that $a_k \leq |g^k(y_0; 0)|^2$. But this holds because $g^k(y_0; \alpha) > g^k(y_0; 0)$. (Case k = 0 is clear $(\alpha > 0)$. By induction, using that $g(x; \alpha)$ is monotone increasing, we have that $g^{k+1}(y_0; \alpha) = g^k(y_0; \alpha) + \alpha + a(g^k(y_0, \alpha))^2 > g^k(y_0; 0) + \alpha + a(g^k(y_0, 0))^2 > g^k(y_0; 0) + \alpha(g^k(y_0, 0))^2 = g^{k+1}(y_0, 0)$.) Thus, $a_{k-1} + \cdots + a_0 \leq \sum_{k=0}^{\infty} |g^k(y_0; 0)|^2$, and as a result

$$\sup_{y\in[y_0,0]}|H(y,\alpha)-G(h,y,\alpha)|\leq K_{10}h^p,$$

which completes the proof of the theorem.

COROLLARY 1. $\Phi(1)$ and $\phi^{[1/h]}$ conjugate in a neighborhood of the 0 equilibrium in $\mathbb{R}^n \times \mathbb{R}$. PROOF. By using the generalized Hartman-Grobman theorem for maps, see, e.g., [5,6], we get that $\Phi(1)$ conjugates with $\Phi_C(1)$ times a standard linear saddle and $\phi^{[1/h]}$ conjugates with $\phi_{C_h}^{[1/h]}$ times a standard linear saddle. Moreover, using the C^j -closeness the linear saddles are the same. From Theorem 1, it follows that $\Phi_C(1)$ and $\phi_{C_h}^{[1/h]}$ conjugate since their normal forms conjugate. Thus, we obtain the desired result.

4. FINAL REMARKS

We conjecture that the conjugacy appearing in Corollary 1 is $O(h^p)$ -close to the identity. However, we admit that we cannot prove this closeness result by using the techniques of [6] or [5]. On the other hand, it is proved that partial linearization, see [13], can be carried out within the order of $O(h^p)$. Moreover, certain invariant foliations (which are the main tool in proving the generalized Hartman-Grobman theorem) are preserved by the numerical method in the C^j -norm to the order of $O(h^p)$; see [14].

REFERENCES

- B.M. Garay, Discretization and some qualitative properties of ordinary differential equations about equilibria, Acta Math. Univ. Comenianae LXII, 249-275, (1993).
- 2. G. Farkas, A Hartman-Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic equilibria, ZAMP (to appear).
- B.M. Garay, On structural stability of ordinary differential equations with respect to discretization methods, Numer. Math. 72, 449-479, (1996).
- 4. M.-C. Li, Structural stability of flows under numerics, J. Diff. Eqs. 141, 1-12, (1997).
- 5. U. Kirchgraber and K.J. Palmer, Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization, Pitman Research Notes in Mathematics Series, John Wiley & Sons, New York, (1990).
- A.N. Šošitaĭšvili, The bifurcation of the topological type of the singular points of vector fields that depend on parameters, (in Russian), Trudy Sem. Petrovsk. Vyp., 279-309, (1975).
- 7. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, (1998).
- 8. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, (1990).
- C. Lubich and A. Ostermann, Hopf bifurcation of reaction-diffusion and Navier-Stokes equations under discretization, Numer. Math. 81, 53-84, (1998).
- B.M. Garay, On C^j-closeness between the solution flow and its numerical approximation, J. Difference Eqs. Appl. 2, 67-86, (1996).
- 11. W.-J. Beyn and J. Lorenz, Center manifolds of dynamical systems under discretization, Numer. Funct. Anal. Optimiz. 9, 381-414, (1987).
- 12. T. Hüls and Y. Zou, Polynomial estimates and discrete saddle-node homoclinic orbits, Preprint 00-004, SFB343, University of Bielefeld, (submitted).
- B. Aulbach and B.M. Garay, Linearizing the expanding part of noninvertible mappings, ZAMP 44, 469-494, (1993).
- G. Farkas, On C^j-closeness of invariant foliations under numerics, Acta Math. Univ. Comenianae LXIX, 215-228, (2000).