An intemational Journal computers \& mathematics with applications

Conjugacy in the Discretized Fold Bifurcation

G. FARKAS*
Department of Mathematics, István Széchenyi University of Applied Sciences
Hédervári u. 3, H-9026 Győr, Hungary
gyfarkas@taltos.math.szif.hu
(Received October 2000; revised and accepted May 2001)

Abstract

In this paper, we construct a conjugacy between the time-1-map of the solution flow generated by an ordinary differential equation and its numerical approximation in a neighborhood of a fold bifurcation point. Our main result is that the conjugacy is $O\left(h^{p}\right)$-close to the identity on the center manifold where h is the step size and p is the order of the numerical method. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords-Generalized Hartman-Grobman theorem, Fold bifurcation, Discretization.

1. INTRODUCTION

It is well known that conjugacies play a fundamental role in the qualitative theory of ordinary differential equations. Indecd, when a conjugacy exists between two dynamical systems, then the dynamical systems have the same orbit structure; they are qualitatively the same.

The discretization of a dynamical system is a family of maps (depending on the step size h) which is close to the time-h-map of the dynamical system. We want to claim that under certain conditions, the dynamics of the discretization considered as a discrete dynamical system and of the original system are the same. Thus, it is natural to seek for conjugacies between a dynamical system and its numerical approximation.

In the vicinity of a hyperbolic equilibrium point, this was done in [1] by putting the problem in the general framework of the Hartman-Grobman theorem. A similar approach was carried out in [2] in the case of delay differential equations. Structural stability results were obtained in [3] (for Morse-Smale systems without periodic orbits) and in [4] (for systems satisfying Axiom A and the strong transversality condition). The construction of the conjugacies uses the various type of hyperbolicity conditions of the dynamical system.

However, hyperbolicity is usually lost in a bifurcation point. So these results cannot be applied to a bifurcation problem. We note that, in general, we cannot expect that a conjugacy exists in

[^0]a neighborhood of a nonhyperbolic equilibrium point, as the simple example of the planar linear center and the Euler method shows. (Indeed, consider the planar linear center $\dot{x}=y, \dot{y}=-x$, and its Euler discretization $X=x+h y, Y=y-h x$. A simple calculation shows that the origin becomes unstable under Euler discretization for all step size h.) On the other hand, under certain conditions, the existence of a conjugacy can be saved. Namely, we show in this paper that in the neighborhood of a fold bifurcation point, the desired conjugacy exists. Moreover, the conjugacy is $O\left(h^{p}\right)$-close to the identity on the center manifold where p is the order of the method.

The proof of our main result works via the generalized Hartman-Grobman theorem (see [5,6]), the center manifold reduction (see $[7,8]$), and the method of fundamental domains. The use of fundamental domains was inspired by a lecture by Y.A. Kuznetsov, where the topological normal form of the fold bifurcation was constructed in a similar way. The center manifold reduction played a fundamental role in [9] where a numerical Hopf bifurcation theorem was proved for partial differential equations.

The paper is organized as follows. Preliminaries are placed into Section 2. Section 3 contains our main result. We end this note with some final remarks.

2. PRELIMINARIES

Let $f: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$ be a globally Lipschitzian C^{j} function with $j \geq 4$. Consider the following ordinary differential equation depending on a single parameter α :

$$
\begin{equation*}
\dot{z}=f(z ; \alpha) \tag{1}
\end{equation*}
$$

Denote the solution flow of (1) with parameter value α by $\Phi(\cdot, \cdot ; \alpha): \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$.
By the h-discretized equation of (1), we mean equation

$$
\begin{equation*}
Z=\phi(h, z ; \alpha), \quad z, Z \in \mathbf{R}^{n}, \quad h>0 \tag{2}
\end{equation*}
$$

where ϕ is a fixed one-step method with step size h. Assume that ϕ is smooth and is of order $p \geq 1$; i.e., there exist a constant h_{0} and a constant K_{1} (depending only on f) such that

$$
\begin{equation*}
|\Phi(h, z ; \alpha)-\phi(h, z ; \alpha)|_{j} \leq K_{1} h^{p+1}, \quad \text { for all } h \in\left(0, h_{0}\right], \quad z \in \mathbf{R}^{n} \tag{3}
\end{equation*}
$$

where $\Phi(h, \cdot ; \alpha): \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is the time- h-map of the induced solution flow of (1) with parameter value α and $|\cdot|_{j}$ denotes the usual C^{j}-norm of the space $C^{j}\left(\mathbf{R}^{n} \times \mathbf{R}, \mathbf{R}^{n}\right)$.

In the usual definition of the order of the method, the $|\cdot|_{0}$ norm is used instead of the $|\cdot|_{j}$ norm. Since property (3) is a consequence of the C^{0}-closeness, for sufficiently smooth systems we use (3) as a definition of the order of the method. A more detailed treatment of this property can be found in [1].

With [.] denoting the integer part, for fixed $t>0$ the approximation of the time- t-map of the induced solution flow, i.e., $\Phi(t)$, is

$$
\phi^{[t / h]}(h, \cdot ; \alpha),
$$

and if $t / h \in \mathbf{N}$, then

$$
\begin{equation*}
\left|\Phi(t, z ; \alpha)-\phi^{[t / h]}(h, z ; \alpha)\right|_{j} \leq K_{2} h^{p} \tag{4}
\end{equation*}
$$

holds with some constant $K_{2}>0$ (depending only on f and t). For a detailed treatment of inequality (4), we refer to [10].

Assume that $\Phi(t, 0 ; 0)=0$ and $\phi(h, 0 ; 0)=0$ for all $t \in \mathbf{R}$ and all $h \in\left(0, h_{0}\right]$, respectively. Assume further that $\alpha=0$ is a fold bifurcation point for both (1) and (2). To be concrete, assume that there are no equilibria for $\alpha>0$ and there are two equilibria for $\alpha<0$. We note that a simple analysis of (4) shows that ϕ must have a nearby fold bifurcation point whenever
$\alpha=0$ is a fold bifurcation point for Φ. We only assume for simplicity that this point is shifted into 0 .

By enlarging the dimension by 1 , i.e., by adding $\dot{\alpha}=0$ and $A=\alpha$ to (1) and to (2), respectively, we have local center manifolds around 0 in the enlarged phase space denoted by

$$
W_{\mathrm{loc}}^{C}(0)=\{(x, \xi(x, \alpha), \alpha): x \in \mathbf{R},|x|,|\alpha| \text { are sufficiently small }\}
$$

and

$$
W_{\text {loc }}^{C_{h}}(0)=\left\{\left(x, \xi_{h}(x, \alpha), \alpha\right): x \in \mathbf{R},|x|,|\alpha| \text { are sufficiently small }\right\},
$$

where $\xi, \xi_{h}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}^{n-1}$ are C^{j} functions.
Applying the result of [11] (or of [1]), we have that these manifolds are C^{j}-close; i.e., the functions ξ and ξ_{h} are C^{j}-close, and moreover, their C^{j}-distance is bounded by $O\left(h^{p}\right)$. For the sake of simplicity, we denote the solution flow of the enlarged system and its discretization simply by Φ and ϕ, respectively. Finally, denote the reduced maps on their center manifolds by Φ_{C} and $\phi_{C_{h}}$, respectively; i.e.,

$$
\Phi_{C}(t, x ; \alpha)=y, \quad \text { where }(y, \xi(y, \alpha), \alpha)=\Phi(t,(x, \xi(x, \alpha)) ; \alpha)
$$

and

$$
\phi_{C_{h}}(h, x ; \alpha)=y, \quad \text { where }\left(y, \xi_{h}(y, \alpha), \alpha\right)=\phi\left(h,\left(x, \xi_{h}(x, \alpha)\right) ; \alpha\right) .
$$

From the C^{j}-closeness of the center manifolds and from (4), it follows that

$$
\begin{equation*}
\left|\Phi_{C}(t, x ; \alpha)-\phi_{C_{h}}^{[t / h]}(h, x ; \alpha)\right|_{j}=O\left(h^{p}\right), \tag{5}
\end{equation*}
$$

where $t / h \in \mathbf{N}$. From now on, we restrict ourselves to the case $1 / h \in \mathbf{N}$.
Following [7], we see that the construction of the normal form of the fold bifurcation works via Taylor expansion, implicit function theorem (to eliminate the parameter dependent firstorder term), and inverse function theorem (to introduce a new parameter). Thus, our closeness property (5) yields the following lemma.
Lemma 1. There are positive numbers ε, α_{0}, and smooth invertible coordinate transforms τ and τ_{h}, such that τ transforms $\Phi_{C}(1)$ into

$$
\begin{equation*}
X=x+\alpha+a x^{2}+x^{3} \psi(x, \alpha)=: f^{1}(x ; \alpha), \tag{6}
\end{equation*}
$$

while τ_{h} transforms $\phi_{C_{h}}^{[1 / h]}(h)$ into

$$
\begin{equation*}
X=x+\alpha+a_{h} x^{2}+x^{3} \psi_{h}(x, \alpha)=: f_{h}^{2}(x ; \alpha), \tag{7}
\end{equation*}
$$

where $a>0, \psi$, and ψ_{h} are smooth functions of x and α provided $|x|<\varepsilon$ and $|\alpha|<\alpha_{0}$ holds. Moreover, we have that

$$
\left|a-a_{h}\right| \leq K_{3} h^{p}, \quad\left|\psi(x, \alpha)-\psi_{h}(x, \alpha)\right| \leq K_{3} h^{p}, \quad\left|\tau(x, \alpha)-\tau_{h}(x, \alpha)\right| \leq K_{3} h^{p},
$$

for all $|x|<\varepsilon,|\alpha|<\alpha_{0}$.

3. MAIN RESULT

Assume all the conditions listed in Section 2 hold true. We prove the following theorem.

ThEOREM 1. There are positive numbers $h_{1}, \varepsilon_{1}, \alpha_{1}$, and a real function J defined on $\left(0, h_{1}\right] \times$ $\left(-\varepsilon_{1}, \varepsilon_{1}\right) \times\left(-\alpha_{1}, \alpha_{1}\right)$ such that $J(h, \cdot, \alpha)$ is a homeomorphism,

$$
\begin{equation*}
f^{1}(J(h, x, \alpha) ; \alpha)=J\left(h, f_{h}^{2}(x ; \alpha), \alpha\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
|J(h, \cdot, \alpha)-\mathrm{id}|_{0} \leq K h^{p} \tag{9}
\end{equation*}
$$

holds with some constant $K>0$ independent of h and α.
Proof. Set

$$
X=x+\alpha+a x^{2}=: g(x ; \alpha)
$$

Our method is to construct homeomorphisms $H(\cdot, \alpha)$ and $G(h, \cdot, \alpha)$ such that

$$
\begin{align*}
f^{1}(H(x, \alpha) ; \alpha) & =H(g(x ; \alpha), \alpha) \tag{10}\\
f_{h}^{2}(G(h, x, \alpha) ; \alpha) & =G(h, g(x ; \alpha), \alpha) \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
|H(\cdot, \alpha)-G(h, \cdot, \alpha)|_{0} \leq K h^{p} \tag{12}
\end{equation*}
$$

hold. Then it remains to set $J=H \circ G^{-1}$.
Let N be a neighborhood of $x=0$ and $0<h \leq h_{2}$ such that f^{1}, f_{h}^{2}, and g have the same number of fixed points with the same stability, provided $|\alpha|$ is sufficiently small. Fix $0>y_{0} \in N$ such that $g\left(y_{0} ; \alpha\right)<f^{1}\left(g\left(y_{0} ; \alpha\right) ; \alpha\right), g\left(y_{0} ; \alpha\right)<f_{h}^{2}\left(g\left(y_{0} ; \alpha\right) ; \alpha\right)$, and if $\alpha \leq 0$, then $g\left(-y_{0} ; \alpha\right) \in N$, $g\left(-y_{0} ; \alpha\right)>\left(f^{1}\right)^{-1}\left(g\left(-y_{0} ; \alpha\right) ; \alpha\right), g\left(-y_{0} ; \alpha\right)>\left(f_{h}^{2}\right)^{-1}\left(g\left(-y_{0} ; \alpha\right) ; \alpha\right)$. We divide the construction of H and G into three parts according to $\alpha<0, \alpha=0$, or $\alpha>0$.
CASE $\alpha<0$. Fix $x_{0}=0$ and set $x_{k}=g^{k}\left(x_{0} ; \alpha\right), k \in \mathbf{Z}$. Note that $x_{1}=\alpha$. Set $H\left(x_{0}, \alpha\right)=$ $G\left(h, x_{0}, \alpha\right)=g\left(x_{0} ; \alpha\right)$ and $H\left(x_{k}, \alpha\right)=\left(f^{1}\right)^{k}\left(x_{1} ; \alpha\right), G\left(h, x_{k}, \alpha\right)=\left(f_{h}^{2}\right)^{k}\left(x_{1} ; \alpha\right), k \in \mathbf{Z}$. On $\left[x_{1}, x_{0}\right]$, extend both H and G linearly. For $y \in\left[x_{2}, x_{1}\right]$, set $H(y, \alpha)=f^{1}\left(H\left(g^{-1}(y ; \alpha), \alpha\right) ; \alpha\right)$ and $G(h, y, \alpha)=f_{h}^{2}\left(G\left(h, g^{-1}(y ; \alpha), \alpha\right) ; \alpha\right)$. Recursively, in both directions, we see that H and G extend continuously to the interval $\left(x^{-}, x^{+}\right)$, where x^{-}, x^{+}are the negative and positive fixed points of g, respectively. Finally, set $H\left(x^{-}, \alpha\right)=x_{1}^{-}, G\left(h, x^{-}, \alpha\right)=x_{2}^{-}, H\left(x^{+}, \alpha\right)=x_{1}^{+}$, and $G\left(h, x^{+}, \alpha\right)=x_{2}^{+}$, where x_{1}^{-}, x_{1}^{+}are the negative and positive fixed points of $f^{1} ; x_{2}^{-}, x_{2}^{+}$are the negative and positive fixed points of f_{h}^{2}, respectively.

From initial points y_{0} and $-y_{0}$, the same construction can be carried out (by taking the inverse when necessary). Note that here the assumptions on y_{0} enter. As a result, we obtain functions H and G defined on some neighborhood of $x=0$ for all $\alpha<0,|\alpha|$ sufficiently small, and all $0<h \leq h_{2}$.

From the construction, it is easy to see that H and G are homeomorphisms (since they are continuous, strictly monotone functions) and are indeed the desired conjugacies; i.e., equations (10) and (11) hold.

It remains to prove the closeness of H and G, i.e., inequality (9). We restrict ourselves to estimate the distance between H and G on $\left[y_{0}, 0\right]$; the complementary part can be treated similarly.

First, we estimate $|H-G|$ on $\left[x^{-}, 0\right]$. It is clear that $|H(x, \alpha)-G(h, x, \alpha)| \leq K_{4} h^{p}$ holds for $x \in\left[x_{1}, x_{0}\right]$. Note that

$$
\begin{equation*}
\left|f^{1}(x ; \alpha)-f_{h}^{2}(x ; \alpha)\right| \leq\left|a-a_{h}\right| \cdot|x|^{2}+\left|\psi(x, \alpha)-\psi_{h}(x, \alpha)\right| \cdot|x|^{3} \leq K_{5} h^{p}|x|^{2}, \tag{13}
\end{equation*}
$$

provided N and α_{1} are sufficiently small. Consequently,

$$
\begin{equation*}
\left|f^{1}(x ; \alpha)-f_{h}^{2}(x ; \alpha)\right| \leq K_{5} h^{p}\left|x^{-}\right|^{2}=K_{5} h^{p}\left(-\frac{\alpha}{a}\right) \tag{14}
\end{equation*}
$$

for all $x \in\left[x^{-}, x_{0}\right]$. On the other hand, the derivative of f^{1} (and f_{h}^{2}) is strictly monotone increasing, and thus,

$$
\begin{equation*}
\left|\left(f^{1}\right)_{x}^{\prime}(y ; \alpha)\right| \leq\left|\left(f^{1}\right)_{x}^{\prime}\left(x_{1} ; \alpha\right)\right| \leq(1+2 \tilde{a} \alpha)<1, \tag{15}
\end{equation*}
$$

with some nonzero constant \tilde{a}, for all $y \leq x_{1}$ (provided $|\alpha|$ small enough).
Now estimate $|H-G|$ on $\left[x_{2}, x_{1}\right]$ as

$$
\begin{aligned}
\sup _{y \in\left[x_{2}, x_{1}\right]}|H(y, \alpha)-G(h, y, \alpha)| \leq & \sup _{y \in\left[x_{2}, x_{1}\right]}\left|f^{1}\left(H\left(g^{-1}(y ; \alpha), \alpha\right) ; \alpha\right)-f^{1}\left(G\left(h, g^{-1}(y ; \alpha), \alpha\right) ; \alpha\right)\right| \\
& +\sup _{y \in\left[x_{1}, x_{0}\right]}\left|f^{1}(y ; \alpha)-f_{h}^{2}(y ; \alpha)\right| \\
\leq & (1+2 \tilde{a} \alpha\} \sup _{y \in\left[x_{1}, x_{0}\right]}|H(y, \alpha)-G(h, y, \alpha)|+K_{5} h^{p}\left(-\frac{\alpha}{a}\right) .
\end{aligned}
$$

Repeating inductively, we see that

$$
|H(y, \alpha)-G(h, y, \alpha)| \leq K_{4} h^{p}+\frac{K_{5}(-\alpha / a)}{-2 \tilde{a} \alpha} h^{p}=K_{6} h^{p}
$$

for all $y \in\left(x^{-}, x_{0}\right]$. Finally, at x^{-}this inequality holds as well.
Finally, we estimate $|H-G|$ on $\left[y_{0}, x^{-}\right]$. By setting $y_{k}=g^{k}\left(y_{0} ; \alpha\right), k \in \mathbf{N}$, we have that $\sup _{y \in\left[y_{0}, y_{y}\right]}|H(y, \alpha)-G(h, y, \alpha)| \leq K_{6} h^{p}$; on the other hand,

$$
\begin{array}{r}
\sup _{y \in\left[y_{1}, y_{2}\right]}|H(y, \alpha)-G(h, y, \alpha)| \leq \sup _{y \in\left[y_{1}, y_{2}\right]}\left|f^{1}\left(H\left(g^{-1}(y ; \alpha), \alpha\right) ; \alpha\right)-f^{1}\left(G\left(h, g^{-1}(y ; \alpha), \alpha\right) ; \alpha\right)\right| \\
+\sup _{y \in\left[y_{0}, y_{1}\right]}\left|f^{1}(y ; \alpha)-f_{h}^{2}(y ; \alpha)\right| .
\end{array}
$$

Define $a_{k}=\left|y_{k}\right|^{2}$. Since

$$
\begin{equation*}
\left|\left(f^{1}\right)_{x}^{\prime}(y ; \alpha)\right| \leq\left|\left(f^{1}\right)_{x}^{\prime}\left(x^{-} ; \alpha\right)\right| \leq q<1 \tag{15}
\end{equation*}
$$

and

$$
\sup _{y \in\left[y_{k}, y_{k+1}\right]}\left|f^{1}(y ; \alpha)-f_{h}^{2}(y ; \alpha)\right| \leq K_{5} h^{p}\left|y_{k}\right|^{2}=a_{k} K_{5} h^{p} \quad(\text { by (13)) },
$$

inductive application of the above estimate yields

$$
\sup _{y \in\left[y_{0}, y_{k+1}\right]}|H(y, \alpha)-G(h, y, \alpha)| \leq q^{k} K_{6} h^{p}+\left(q^{k-1} a_{0}+q^{k-2} a_{1}+\cdots+a_{k-1}\right) K_{5} h^{p} .
$$

Set $c_{k}=q^{k} a_{0}+\cdots+a_{k}$ and $b_{k}=a_{k}-\left|x^{-}\right|^{2}$. Then $b_{k} \rightarrow 0$ as $k \rightarrow \infty$ and $c_{k} \leq\left|x^{-}\right|^{2} /(1-q)+$ $\sum_{i=0}^{\infty} b_{i}$ (for all k). We show that $\sum_{k=0}^{\infty} b_{k} \leq K_{7}$ with some constant $K_{7}>0$ independent of α and h. This will finish the proof of case $\alpha<0$ since $\left|x^{-}\right|^{2} /(1-q) \leq K_{8}$ with some constant K_{8} independent of α (and h). We note here that the trivial estimate $c_{k} \leq a_{0} /(1-q)$ does not work since $1 /(1-q) \rightarrow \infty$ as $\alpha \rightarrow 0$.

We construct a sequence z_{k} of negative numbers such that $z_{0}=y_{0}, z_{k}>-1 /(2 a)$ for all $k \in \mathrm{~N}$ and

$$
\begin{equation*}
z_{k+1} \leq z_{k}+\alpha+a z_{k}^{2}, \quad k=0,1, \ldots, \tag{16}
\end{equation*}
$$

hold. With such a sequence in hand (by using that $g(x ; \alpha)$ is strictly monotone increasing for $x>-1 /(2 a))$ we get that $y_{k} \geq z_{k}$, and thus $a_{k}=\left|y_{k}\right|^{2} \leq\left|z_{k}\right|^{2}$. To this end, let $z_{0}=y_{0}$, $z_{k}=-\sqrt{-\alpha / a}+\delta y_{0} / k^{1-\gamma}$, where $0<\gamma<1 / 2$ and $\delta \geq 1$ will be chosen later. It is easy to
see (note that $\delta \geq 1$) that the desired inequality (16) holds for $k=0$ provided $|\alpha|$ is sufficiently small. It remains to check that

$$
-\sqrt{-\frac{\alpha}{a}}+\frac{\delta y_{0}}{(k+1)^{1-\gamma}} \leq-\sqrt{-\frac{\alpha}{a}}+\frac{\delta y_{0}}{k^{1-\gamma}}+\alpha+a\left(-\sqrt{-\frac{\alpha}{a}}+\frac{\delta y_{0}}{k^{1-\gamma}}\right)^{2},
$$

or equivalently,

$$
\begin{equation*}
\frac{k^{2(1-\gamma)}}{(k+1)^{1-\gamma}} \geq\left(1-2 a \sqrt{-\frac{\alpha}{a}}\right) k^{1-\gamma}+a \delta y_{0} \tag{17}
\end{equation*}
$$

holds. We show a slightly stronger inequality, namely,

$$
\frac{k^{2(1-\gamma)}}{(k+1)^{1-\gamma}} \geq k^{1-\gamma}+a \delta y_{0} .
$$

It is easy to see that (since $a>0$)

$$
d_{k}(\gamma):=\frac{k^{1-\gamma}\left(k^{1-\gamma}-(k+1)^{1-\gamma}\right)}{a(k+1)^{1-\gamma}} \rightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

On the other hand, if γ is sufficiently close to $1 / 2$, then $d_{k}(\gamma)$ is strictly monotone increasing with respect to $k(\gamma=0.4$ works $)$. Note that $d_{1}(\gamma)>-1 /(2 a)$. With such a fixed γ, now choose $\delta \geq 1$ such that $d_{1}(\gamma) \geq \delta y_{0}$ holds. Note that δ is independent of α. Thus,

$$
d_{k}(\gamma) \geq d_{1}(\gamma) \geq \delta y_{0},
$$

and the desired inequality (16) follows. We remark that similarly, the exact asymptotic behavior can be studied about nonhyperbolic equilibria; see [12].

Now we are in a position to prove the convergence of $\sum b_{k}$. Since $a_{k} \leq\left|z_{k}\right|^{2} \leq|x-|^{2}+$ $\left|\delta y_{0}\right|^{2} / k^{2(1-\gamma)}$, we have that $b_{k} \leq\left|\delta y_{0}\right|^{2} / k^{2(1-\gamma)}$, and the convergence of $\sum b_{k}$ follows from $2(1-\gamma)>1$. Finally, note that δ and γ were chosen independently of α, which completes the proof of case $\alpha<0$.
CASE $\alpha=0$. The construction of H and G is the same as in the case $\alpha<0$. The only difference is that $\left[x^{-}, x^{+}\right]=\{0\}$. Since $\left|\left(f^{1}\right)_{x}^{\prime}(y ; 0)\right| \leq 1$ for all $y \in\left[y_{0}, 0\right]$, we arrive at the following estimate:

$$
\sup _{y \in\left[y_{0}, y_{k}, 1\right]}|H(y, 0)-G(h, y, 0)| \leq K_{8} h^{p}+\left(a_{k-1}+\cdots+a_{0}\right) K_{5} h^{p},
$$

where as before $a_{k}=\left|y_{k}\right|^{2}=\left|g^{k}\left(y_{0} ; 0\right)\right|^{2}$. By using the $\alpha=0$ variant of the estimate of b_{k} from Case $\alpha<0$, we obtain $a_{k} \leq\left|\delta y_{0}\right|^{2} / k^{2(1-\gamma)}$ with suitably chosen $0<\gamma<1 / 2$ and $\delta \geq 1$, and thus

$$
\sup _{y \in\left[y_{0}, 0\right]}|H(y, 0)-G(h, y, 0)| \leq K_{9} h^{p} .
$$

CASE $\alpha>0$. The construction of H and G is the same as in the case $\alpha<0$. The only difference is that we do not make use of $-y_{0}$; i.e., only one initial point is necessary. Although we reach $x=0$ in a finite number of steps for all $\alpha>0$, the number of these steps tends to infinity as $\alpha>0$ tends to zero.

Since $\left|\left(f^{1}\right)_{x}^{\prime}(y ; \alpha)\right| \leq 1$ for all $y \in\left[y_{0}, 0\right]$, we arrive at the following estimate:

$$
\sup _{y \in\left[y_{0}, y_{k+1}\right]}|H(y, \alpha)-G(h, y, \alpha)| \leq K_{8} h^{p}+\left(a_{k-1}+\cdots+a_{0}\right) K_{5} h^{p},
$$

where $a_{k}=\left|y_{k}\right|^{2}=\left|g^{k}\left(y_{0} ; \alpha\right)\right|^{2}$. For $y_{k} \leq 0$, we show that $a_{k} \leq\left|g^{k}\left(y_{0} ; 0\right)\right|^{2}$. But this holds because $g^{k}\left(y_{0} ; \alpha\right)>g^{k}\left(y_{0} ; 0\right)$. (Case $k=0$ is clear ($\alpha>0$). By induction, using that $g(x ; \alpha)$ is monotone increasing, we have that $g^{k+1}\left(y_{0} ; \alpha\right)=g^{k}\left(y_{0} ; \alpha\right)+\alpha+a\left(g^{k}\left(y_{0}, \alpha\right)\right)^{2}>g^{k}\left(y_{0} ; 0\right)+\alpha+$ $\left.a\left(g^{k}\left(y_{0}, 0\right)\right)^{2}>g^{k}\left(y_{0} ; 0\right)+a\left(g^{k}\left(y_{0}, 0\right)\right)^{2}=g^{k+1}\left(y_{0}, 0\right).\right)$ Thus, $a_{k-1}+\cdots+a_{0} \leq \sum_{k=0}^{\infty}\left|g^{k}\left(y_{0} ; 0\right)\right|^{2}$, and as a result

$$
\sup _{y \in\left[y_{0}, 0\right]}|H(y, \alpha)-G(h, y, \alpha)| \leq K_{10} h^{p},
$$

which completes the proof of the theorem.

We end this section with a consequence of Theorem 1 claiming that $\Phi(1)$ and $\phi^{[1 / h]}$ conjugate. Corollary 1. $\Phi(1)$ and $\phi^{[1 / h]}$ conjugate in a neighborhood of the 0 equilibrium in $\mathbf{R}^{n} \times \mathbf{R}$.
Proof. By using the generalized Hartman-Grobman theorem for maps, see, e.g., $[5,6]$, we get that $\Phi(1)$ conjugates with $\Phi_{C}(1)$ times a standard linear saddle and $\phi^{[1 / h]}$ conjugates with $\phi_{C_{h}}^{[1 / h]}$ times a standard linear saddle. Moreover, using the C^{j}-closeness the linear saddles are the same. From Theorem 1, it follows that $\Phi_{C}(1)$ and $\phi_{C_{h}}^{[1 / h]}$ conjugate since their normal forms conjugate. Thus, we obtain the desired result.

4. FINAL REMARKS

We conjecture that the conjugacy appearing in Corollary 1 is $O\left(h^{p}\right)$-close to the identity. However, we admit that we cannot prove this closeness result by using the techniques of [6] or [5]. On the other hand, it is proved that partial linearization, see [13], can be carried out within the order of $O\left(h^{p}\right)$. Moreover, certain invariant foliations (which are the main tool in proving the generalized Hartman-Grobman theorem) are preserved by the numerical method in the C^{j}-norm to the order of $O\left(h^{p}\right)$; see [14].

REFERENCES

1. B.M. Garay, Discretization and some qualitative properties of ordinary differential equations about equilibria, Acta Math. Univ. Comenianae LXII, 249-275, (1993).
2. G. Farkas, A Hartman-Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic equilibria, $Z A M P$ (to appear).
3. B.M. Garay, On structural stability of ordinary differential equations with respect to discretization methods, Numer. Math. 72, 449-479, (1996).
4. M.-C. Li, Structural stability of flows under numerics, J. Diff. Eqs. 141, 1-12, (1997).
5. U. Kirchgraber and K.J. Palmer, Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization, Pitman Research Notes in Mathematics Series, John Wiley \& Sons, New York, (1990).
6. A.N. Sošitaĭšvili, The bifurcation of the topological type of the singular points of vector fields that depend on parameters, (in Russian), Trudy Sem. Petrovsk. Vyp., 279-309, (1975).
7. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, (1998).
8. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, (1990).
9. C. Lubich and A. Ostermann, Hopf bifurcation of reaction-diffusion and Navier-Stokes equations under discretization, Numer. Math. 81, 53-84, (1998).
10. B.M. Garay, On C^{j}-closeness between the solution flow and its numerical approximation, J. Difference Eqs. Appl. 2, 67-86, (1996).
11. W.-J. Beyn and J. Lorenz, Center manifolds of dynamical systems under discretization, Numer. Funct. Anal. Optimiz. 9, 381-414, (1987).
12. T. Hüls and Y. Zou, Polynomial estimates and discrete saddle-node homoclinic orbits, Preprint 00-004, SFB343, University of Bielefeld, (submitted).
13. B. Aulbach and B.M. Garay, Linearizing the expanding part of noninvertible mappings, ZAMP 44, 469-494, (1993).
14. G. Farkas, On C^{j}-closeness of invariant foliations under numerics, Acta Math. Univ. Comenianae LXIX, 215-228, (2000).

[^0]: *Current address for correspondence: Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
 Supported by DAAD Project 323-PPP, Qualitative Theory of Numerical Methods for Evolution Equations in Infinite Dimensions and by the Hungarian National Research Fund under number T 031807.
 This work was done while the author was a visitor at the University of Bielefeld. The author would like to thank SFB 343 for the hospitality and Prof. W.-J. Beyn for the stimulating discussions.

