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Abstract-In this paper, we construct a conjugacy between the time-l-map of the solution flow 
generated by an ordinary differential equation and its numerical approximation in a neighborhood of 
a fold bifurcation point. Our main result is that the conjugacy is O(hP)-close to the identity on the 
center manifold where h is the step size and p is the order of the numerical method. @ 2002 Elsevier 
Science Ltd. All rights reserved. 
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1. INTRODUCTION 

It is well known that conjugacies play a fundamental role in the qualitative theory of ordinary 
differential equations. Indeed, when a conjugacy exists between two dynamical systems, then the 
dynamical systems have the same orbit structure; they are qualitatively the same. 

The discretization of a dynamical system is a family of maps (depending on the step size h) 
which is close to the time-h-map of the dynamical system. We want to claim that under certain 
conditions, the dynamics of the discretization considered as a discrete dynamical system and of 
the original system are the same. Thus, it is natural to seek for conjugacies between a dynamical 
system and its numerical approximation. 

In the vicinity of a hyperbolic equilibrium point, this was done in [l] by putting the problem 
in the general framework of the Hartman-Grobman theorem. A similar approach was carried out 
in [2] in the case of delay differential equations. Structural stability results were obtained in [3] 
(for Morse-Smale systems without periodic orbits) and in [4] (for systems satisfying Axiom A and 
the strong transversality condition). The construction of the conjugacies uses the various type of 
hyperbolicity conditions of the dynamical system. 

However, hyperbolicity is usually lost in a bifurcation point. So these results cannot be applied 
to a bifurcation problem. We note that, in general, we cannot expect that a conjugacy exists in 
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a neighborhood of a nonhyperbolic equilibrium point, as the simple example of the planar linear 
center and the Euler method shows. (Indeed, consider the planar linear center i = y, j, = -5, 
and its Euler discretization X = z + hy, Y = y - hz. A simple calculation shows that the origin 
becomes unstable under Euler discretization for all step size h.) On the other hand, under certain 
conditions, the existence of a conjugacy can be saved. Namely, we show in this paper that in the 
neighborhood of a fold bifurcation point, the desired conjugacy exists. Moreover, the conjugacy 
is O(hP)-close to the identity on the center manifold where p is the order of the method. 

The proof of our main result works via the generalized Hartman-Grobman theorem (see [5,6]), 
the center manifold reduction (see [7,8]), and the method of fundamental domains. The use of 
fundamental domains was inspired by a lecture by Y.A. Kuznetsov, where the topological normal 
form of the fold bifurcation was constructed in a similar way. The center manifold reduction 
played a fundamental role in [9] where a numerical Hopf bifurcation theorem was proved for 
partial differential equations. 

The paper is organized as follows. Preliminaries are placed into Section 2. Section 3 contains 
our main result. We end this note with some final remarks. 

2. PRELIMINARIES 

Let f : Rn x R --) R be a globally Lipschitzian Cj function with j 1 4. Consider the following 
ordinary differential equation depending on a single parameter CY: 

i = f(z; a). (1) 

Denote the solution flow of (1) with parameter value cr by a(., .; a) : R x Rn -+ Rn. 
By the h-discretized equation of (l), we mean equation 

2 = 4+, z; a), z, Z E R”, h > 0, (2) 

where 4 is a tied one-step method with step size h. Assume that 4 is smooth and is of order 
p 2 1; i.e., there exist a constant ho and a constant K1 (depending only on f) such that 

IQ(h,z;a) -4(h,z;a)lj 2 KlhP+l, for all h E (0, ho], z E Rn, (3) 

where @(h, e; a) : Rn + R” is the time-h-map of the induced solution flow of (1) with parameter 
value Q and 1 . Ij denotes the usual @-norm of the space Cj(R” x R, Rn). 

In the usual definition of the order of the method, the I . 10 norm is used instead of the I . Ij 
norm. Since property (3) is a consequence of the Co-closeness, for sufficiently smooth systems 
we use (3) as a definition of the order of the method. A more detailed treatment of this property 
can be found in [l]. 

With [.I denoting the integer part, for fixed t > 0 the approximation of the time-t-map of the 
induced solution flow, i.e., Q(t), is 

&+](h, .; a), 

and if t/h E N, then 

a(& z; a) - 4 [tih](h,z;a)lj 5 K2hp (4) 

holds with some constant Kz > 0 (depending only on f and t). For a detailed treatment of 
inequality (4), we refer to [lo]. 

Assume that Q(t, 0;O) = 0 and qS(h,O; 0) = 0 for all t E R and all h E (0, ho], respectively. 
Assume further that Q = 0 is a fold bifurcation point for both (1) and (2). To be concrete, 
assume that there are no equilibria for (Y > 0 and there are two equilibria for 0 < 0. We note 
that a simple analysis of (4) shows that 4 must have a nearby fold bifurcation point whenever 
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QI = 0 is a fold bifurcation point for a. We only assume for simplicity that this point is shifted 
into 0. 

By enlarging the dimension by 1, i.e., by adding tr = 0 and A = (II to (1) and to (2), respectively, 
we have local center manifolds around 0 in the enlarged phase space denoted by 

cm = {(x9 ax, a)7 a) : z E R, 1x1, [al are sufficiently small} 

and 
WE:(O) = {(s,&(z,a),cu) : cc E R, (xl, IcxI are sufficiently small}, 

where [, & : R x R + Rn-’ are Cj functions. 
Applying the result of [ll] (or of [l]), we have that these manifolds are @-close; i.e., the 

functions t and & are Cj-close, and moreover, their @-distance is bounded by O(hP). For 
the sake of simplicity, we denote the solution flow of the enlarged system and its discretization 
simply by Q, and 4, respectively. Finally, denote the reduced maps on their center manifolds 
by @C and &,,, respectively; i.e., 

where (Y, E(Y, a), 4 = a(4 (x9 t(x, 0)); a) 

and 

$c,, (h, s; a) = Y, where (y,Eh(y,a),~) = 4(h, (s,&&a));~). 

From the @-closeness of the center manifolds and from (4), it follows that 

&(t x-a) - &‘hl(h,z;cr) I , I, j 
= O(hp), (5) 

where t/h E N. From now on, we restrict ourselves to the case l/h E N. 
Following [7], we see that the construction of the normal form of the fold bifurcation works 

via Taylor expansion, implicit function theorem (to eliminate the parameter dependent first- 
order term), and inverse function theorem (to introduce a new parameter). Thus, our closeness 
property (5) yields the following lemma. 

LEMMA 1. There are positive numbers E, ~0, and smooth invertible coordinate transforms r 
and oh, such that T transforms @c(l) into 

x = x + a! + ax2 + x3$(x, cr) =: f’(x; a), (6) 

while oh transforms &I”’ (h) into 

x = 2 + o! + a/&x2 + X3$h(X, a) =: f,(x; a), (7) 

where a > 0, $J, and $h are smooth functions of x and cr provided 1x1 < E and IcyI < CYO holds. 
Moreover, we have that 

1$(x, a)- h4~ all 5 &ihp, 

3. MAIN RESULT 

Assume all the conditions listed in Section 2 hold true. We prove the following theorem. 
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THEOREM 1. There axe positive numbers hl, ~1, 01, and a real function J defined on (0, hl] x 
(-Ed, cl) x (-a~, (~1) such that J(h, ., CI) is a homeomorphism, 

f’(J(h,x,(r);a) = J(h,f,2(~$~), (8) 

and 
1 J(h, ., a) - idlo 5 KhP 

holds with some constant K > 0 independent of h and Q. 

PROOF. Set 

(9) 

X =z+c2+az2 =:g(z;cr). 

Our method is to construct homeomorphisms H(., CX) and G(h, ., a) such that 

and 

IH(.,a) - G(h,*,a)lo I Khp 

hold. Then it remains to set J = H o G-l. 

(12) 

Let N be a neighborhood of x = 0 and 0 < h 5 h2 such that f ‘, fh, and g have the same 
number of fixed points with the same stability, provided ICX[ is sufficiently small. Fix 0 > y,, E N 

such that g(yo; a) < f’(g(Yo; a); a), g(yo; a) < fh(g(yo; a); a), and if a I 0, then g(-90; Q) E N, 
g(-yo; 0) > (fl)-‘(g(-yo; Q); a), g(-yo; a) > (f~)-l(g(-yo; a);(~). We divide the construction 
of H and G into three parts according to Q < 0, Q = 0, or a > 0. 

CASE (Y < 0. Fix x0 = 0 and set Xk = g”(xo;a), k E Z. Note that x1 = CY. Set H(xo,a) = 
G(h,xo,cr) = g(xo;a) and H(xk,(Y) = (f’)“(xl;cr), G(h,xk,a) = (f,$“(x~;c~), k E Z. On 
[x~,xo], extend both H and G linearly. For y E [x2,21], set H(y,cr) = fl(H(g-‘(y;(r),a);C) 
and G(h, y, CX) = fi(G(h, g-‘(y; a), a); a). Recursively, in both directions, we see that H and G 
extend continuously to the interval (x- , x+), where x- , x+ are the negative and positive fixed 
points of g, respectively. Finally, set H(x-,cr) = xy, G(h,x-,cu) = xy, H(x+,cr) = xt, and 
G(h,x+ ,a) = xt, where XC;, xt are the negative and positive fixed points of f ‘; XT, x2’ are the 
negative and positive fixed points of fi, respectively. 

From initial points yo and -yo, the same construction can be carried out (by taking the inverse 
when necessary). Note that here the assumptions on yo enter. As a result, we obtain functions H 
and G defined on some neighborhood of x = 0 for all a < 0, Ial sufficiently small, and all 
0 < h 5 h2. 

From the construction, it is easy to see that H and G are homeomorphisms (since they are con- 
tinuous, strictly monotone functions) and are indeed the desired conjugacies; i.e., equations (10) 
and (11) hold. 

It remains to prove the closeness of H and G, i.e., inequality (9). We restrict ourselves to esti- 
mate the distance between H and G on [yo, 01; the complementary part can be treated similarly. 

First, we estimate IH - GI on [x-,0]. It is clear that IH(x,cr) - G(h,x,cr)l 5 KdhP holds for 
x E [xl, x0]. Note that 

If’(x;@) - fh(x;a)I L la - 4. /xl2 + I$+,c-u) - $h(x,c~)I. 1x13 I KghPlx12, (13) 

provided N and ~1 are sufficiently small. Consequently, 

If’(x+)- f;(xc;a)I < KjhP1x-[‘= K5hP(-_%), (14 
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for all x E [x-,x0]. On the other hand, the derivative of 
increasing, and thus, 

f1 (and f,“) is strictly monotone 

2iiCY) < 1, (W 

with some nonzero constant ii, for all y I xi (provided Jo] small enough). 
Now estimate ]H - G] on [x2,x1] as 

ye~k~Z1l IH(Y, o) - G(k Y> o)I 5 YE;u~Z1l ]f’(H(g-‘(Y;o),o);o) -f’(G(h,g-‘(Y;~),CY);Q)l 

+,;;PZO, ]fl(y;o) - .C(YX4 

I (1+2&o) sup 
YEbl ,Ql 

]H(y,a) - G(h,y,cr)] + KshP (-;) 

Repeating inductively, we see that 

]H(y,a) - G(h,y,cu)) I K4hp + K5(;;;a)hp = K,jhp, 

for all y E (x-, xc]. Finally, at x- this inequality holds as well. 
Finally, we estimate 1H - G] on [yc,x-1. By setting yk = g”(Yc;o), k E N, we have that 

supyEIyO,yll ]H(y,cr) - G(h, y,cr)l L K6hp; on the other hand, 

yEsyu~yzl My, a) -G(h Y, ~11 I yes;~y21 (1’ (H (g-‘(y; a), o) ; 0) - f’ (G (h g-b/; a)> Q) ; a) / 

+ ye=l&lj Ifl(YK4 - fh2(Y9)(. 

Define ok = ]yk]‘. Since 

I(f’):(y;a)( I ((S’): (x-4/ i q < I (by (15)) 

and 

yEl;ku;b+,l jf’(y; o) - .fh2(~; o)] I KshP]Yk12 = akKshP 

inductive application of the above estimate yields 

(by (13)) 

sup 
YEIYo,YI+ll 

]H(y, o) - G(h, y, ct)I 5 qkKGhP + (qk-‘ao + qk-*al f . +  ak-l) K5hp. 

Set ck = qkao $ . .. i- ak and bk = ak - lx-12. Then bk -+ 0 as k -+ cc and ck 5 [x-l”/(l - q) + 
Cz”=, bi (for all k). W e s h ow that ~~!“=, bk I KY with some constant I(7 > 0 independent of o 
and h. This will finish the proof of case a < 0 since ]x-12/(1 - q) 5 KS with some constant 1~s 
independent of cx (and h). We note here that the trivial estimate ck < as/(1 - q) does not work 
since l/(1 - q) -+03aSCY-+O. 

We construct a sequence zk of negative numbers such that zo = yc, zk > - 1/(2a) for all k E N 
and 

zk+l 5 zk + a! + UZ;, k = O,l, . . : (16) 

hold. With such a sequence in hand (by using that g(x;a) is strictly monotone increasing for 
5 > -1/(2a)) we get that y.k 2 Zkr and thus Uk = ]yk12 < ]Z,!12. To this end, let z. = yu, 
Zk=-dT o a + bye/k’-7, where 0 < y < l/2 and 6 2 1 will be chosen later. It is easy to 
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see (note that 6 1 1) that the desired inequality (16) holds for k = 0 provided ]a( is sufficiently 
small. It remains to check that 

- 
or equivalently, 

k2(1--Y) 
(k+I)l_r 2 (1-2aE)k1-7+ac5yc, (17) 

holds. We show a slightly stronger inequality, namely, 

,#l-7) 
> kl-“’ + adyo. 

(k + 1)1-r - 

It is easy to see that (since a > 0) 

d&Y) := 
kl--’ (ICI-7 - (k + l)‘-7) ~ o 

a(k + l)l-7 , ask-+co. 

On the other hand, if y is sufficiently close to l/2, then dk(Y) is strictly monotone increasing 
with respect to k (y = 0.4 works). Note that dl(y) > -1/(2a). With such a fixed y, now choose 
6 > 1 such that dl(y) 2 6y0 holds. Note that 5 is independent of Q. Thus, 

dk(?‘) 2 &(y) L 6~0, 

and the desired inequality (16) follows. We remark that similarly, the exact asymptotic behavior 
can be studied about nonhyperbolic equilibria; see [12]. 

Now we are in a POSitiOn t0 prove the convergence of c bk. Since ak < ]& I2 5 )5-12 + 
j6y012/k2(1--Y), we have that bk 5 j6yoj2/k2(‘-~), and the convergence of c bk follows from 
2(1 - y) > 1. Finally, note that b and y were chosen independently of cr, which completes the 
proof of case f3 < 0. 

CASE a = 0. The construction of H and G is the same as in the case a < 0. The only difference is 
that [Z-,X+] = (0). S ince l(P)~(~;o)l 51 for all Y E [YO,~], we arrive at the following estimate: 

sup IH(y, 0) - G(h, y, O)l I K8hp + (ak-1 + . . . + ao)K5hP, 
VEk4o~Y~+ll 

where as before ak = ]yk(2 = ]g”(ya; 0)j2. By using the Q: = 0 variant of the estimate of bk from 
Case cr < 0, we obtain ak 5 16yo(2/k2(1-~) with suitably chosen 0 < y < l/2 and 6 2 1, and thus 

sup WY, 0) - G(h, Y, 011 I Kchp. 
Y~lY0~Ol 

CASE CY > 0. The construction of H and G is the same as in the case o < 0. The only difference 
is that we do not make use of -yc; i.e., only one initial point is necessary. Although we reach 
z = 0 in a finite number of steps for all (Y > 0, the number of these steps tends to infinity as 
a > 0 tends to zero. 

Since ](f’)L(y; a)] 5 1 for all y E [ye,O], we arrive at the following estimate: 

sup IH(y,a) - G(h,y,cr)( I KshP+ (a&l +...+ao)KshP, 
YElYo,Y~+ll 

where Uk = ]?&I2 = ]gk(yo;a)12. For yk 5 0, we show that ak 5 ]gk(ye;O)12. But this holds 
because g”(yo;cr) > gk (yc;O). (Case k = 0 is clear (CE > 0). By induction, using that g(z;a) is 
monotone increasing, we have that gk+’ (~0; a) = s”(y0; a) + a + 4gk(y0, a)j2 > s”(y0; 0) + a + 

a(gk(yo,o)j2 > gk(Yo;O)+a(gk(yo,0))2 = gk+l(Yo,O).) Thus, ak-1 +“‘+a~ I CEO bk(Yo;o)12, 

and as a result 
SUP (WY, (~1 - G(h, y, a)l I KlohP, 

?IE [YO 41 

which completes the proof of the theorem. I 
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We end this section with a consequence of Theorem 1 claiming that @( 1) and @hl conjugate. 

COROLLARY 1. Q(1) and #~Il’~l conjugate in a neighborhood of the 0 equilibrium in R” x R. 

PROOF. By using the generalized Hartman-Grobman theorem for maps, see, e.g., [5,6], we get 
that Q(1) conjugates with @c(l) times a standard linear saddle and &lhl conjugates with &“I 
times a standard linear saddle. Moreover, using the @-closeness the linear saddles are the same. 
From Theorem 1, it follows that @c(l) and &“I conjugate since their normal forms conjugate. 
Thus, we obtain the desired result. I 

4. FINAL REMARKS 

We conjecture that the conjugacy appearing in Corollary 1 is O(P)-close to the identity. 
However, we admit that we cannot prove this closeness result by using the techniques of [6] or [5]. 
On the other hand, it is proved that partial linearization, see [13], can be carried out within the 
order of O(V). Moreover, certain invariant foliations (which are the main tool in proving the 
generalized Hartman-Grobman theorem) are preserved by the numerical method in the Cj-norm 
to the order of 0(/P); see [14]. 
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