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Abstract Scour around bridge supports such as abutments can result in structural collapse and

loss of life and property, so there is a need to control and minimize the local scour depth. In this

paper, numerical and experimental studies were carried out to investigate the effect of different

relative radii of the bridge abutment provided with collar on local scour depth. A 3-D numerical

model is developed to simulate the scour at bridge abutment using SSIIM program. This model

solves 3-D Navier–Stokes equations and a bed load conservation equation. The k–e turbulence

model is used to solve the Reynolds-stress term. It was found the curvature shape of bridge abut-

ment provided with collar could share to reduce the local scour depth by more 95%. In addition, the

results of simulation models agree well with the experimental data.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Local scour at bridge foundation can cause damage or failure

of bridges and result in excessive repairs, or even death. A
study was produced in 1973 for the U.S. Federal Highway
Administration that concluded of 383 bridge failures, 25%
involved pier damage and 72% involved abutment damage
[1]. There are generally three types of scours that affect the

performance and safety of bridges, namely, local scour,
contraction scour, and degradational scour [2]. Scour counter-
measures can be generally categorized into two groups:
armoring countermeasures and flow altering countermeasures.

The armoring countermeasure is the addition of another layer,
to resist the hydraulic shear stress and therefore provides
protection to the erodible materials underneath. In the other

side, the flow altering countermeasures aim to change the
hydraulic properties of flows by using spur dikes, guide banks,
parallel walls, collars, etc., and therefore reducing the scour

effect at bridge piers and abutments [3]. A comprehensive
review of different scour countermeasures for bridge piers
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Figure 1 Sketch of experimental models.

Table 1 Details of experimental conditions.

Discharge (L/s) 3.5 Median sand size (mm) 1.77

Abutment width (b) cm 7.5 Flow depth (cm) 3–7

Collar width (L1) cm 6 Froude number 0.20–0.55

Collar length (Lc) cm 29–58 Radius (r) cm 1.5–100
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and abutments was investigated [4,5]. Spur dikes as a counter-
measure to local scour at wing wall abutments was studied
experimentally [6]. There are different methods for estimating

local scour depth at bridge abutments [7–10]. In addition, lots
of researches are carried out to minify the scour dimensions by
implementing a circular collar around the pier [11–16], sub-

merged vanes [17], a slot through the pier [18–22]. The guide
wall was used to protect the scour depth at bridge abutment
[23]. The effect of constructing two adjacent bridges on the

flow characteristics and local scour around bridge piers was
discussed [24]. Integrating approach to the estimation of local
scour depth at bridge piers and abutments was presented [25].
Scour around bridge abutment is studied experimentally [26–

28]. Bridge abutment was studied numerically [29,30]. Analysis
of experimental data sets for local scour depth around bridge
abutments using artificial neural networks was investigated

[31]. Gene expression programming and artificial neural net-
works were used to predict the time variation of scour depth
at a short abutment [32]. Previous studies [33,34] showed that

different empirical equations may predict various bridge scour
depths for a certain case. Hence, numerical simulation of local
scour depth may be assumed as an alternative and to some

extent more reliable scour depth predictor. Another important
issue in the estimation of bridge scour depth deals with scale
effect [35]. In fact, traditional methodologies originally
developed on the basis of small-scaled laboratory experiments,

while this problem will not be faced in numerical simulations.
In the present study, the scour depth at bridge abutment has
curved shape and provided with collar was studied numerically

and experimentally. The simulated models were created by
using SSIIM (sediment simulation in water intakes with
multiblock option) program. This 3D CFD model was based

on the finite volume method to solve the Navier–Stokes
equations [36].

2. Experimental work

The experimental work was carried out in a re-circulating
channel with 4 m length, 20 cm depth and 40 cm width (Photo

1). Stones with different sizes were used at entrance to damp
carefully disturbances. The discharge was measured using a
pre-calibrated orifice meter. The median sand size (D50) is
1.77 mm. The sediment is to be considered as uniform at which

the geometric stander deviation of the particle size distribution
is less than 1.3 (rg = D84/D50 = 1.29). The experimental work
was conducted under the clear-water condition. Clear water

scour occurs for velocities up to the threshold for the general
bed movement, i.e., U/Uc 6 1 (U, is the approach flow velocity,
and Uc, is mean approach velocity at the threshold condition

[25]. In the present study the value of U/Uc equals 0.86 (i.e.,
clear water scour). For each test of the experimental program,
the sand was leveled along the entire length of flume using a
wooden screed with the same width as the flume. The sand

level was checked in random points with a point gauge. The
flume was slowly filled with water to the required depth. The
pump was then turned on and its speed increased slowly until

the desired flow rate was achieved, after that the tailgate was
adjusted to get the required water depth. At the end of the test
the pump was turned off and the flume was drained slowly

without disturbing the scour topography. The bed topography
was measured with point gauge with 0.01 mm accuracy on a
grid with meshes of 3 cm · 3 cm (sometimes 1 cm · 1 cm
depending on the bed topography) over an area of
2.5 m · 0.4 m spanning between 1.0 m upstream and 1.1 m

downstream from the abutment. The grid pattern was dense
to obtain accurate bed topography at the end of each experi-
ment. Details of experimental models were shown in Fig. 1.

Wooden edge abutments with 40 cm length (L), and 7.5 cm
widths (b), were installed in the channel sides. The used protec-
tive plate (collar) in the experiments is 2 mm thickness and is

made from Perspex. The collars fixed at the same level as the
mobile bed. The collar width (L1), is 6 cm, and the collar
lengths (Lc), are ranged from 29 to 59 cm. The curvature radii
(r) are 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 18.15, 30.5 and 100 cm. The

total numbers of experiments are 80. Details of the experimen-
tal conditions were summarized in Table 1. Fig. 2, presents the
required time for each test, in which ds/dsEquilibrium was plotted

against the time. It was found that 90% of maximum scour
depth was achieved at 2 h.

3. The numerical model

The SSIIM program solves the Navier–Stokes equations with
the k–e on a three dimensional and general non-orthogonal

co-ordinates. These equations are discretized with a control
volume approach. An implicit solver is used, producing the
velocity field in geometry. The velocities are used when solving

the convection–diffusion equations. The Navier–Stokes
equations for non-compressible and constant density flow
can be modeled as follows:
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Figure 3 The relationship between ds/yt and Ft at different
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Figure 2 Ratio of maximum to equilibrium scour depths

(ds/dsEquilibrium) versus time.
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The left term on the left side of the Eq. (1) indicates the time

variations. The next term is the convective term. The first term
on the right-hand side is the pressure term and the second term
on the right side of the equation is the Reynolds stress. The

Reynolds stress is evaluated using turbulence model k–e. The
free surface is calculated using a fixed-lid approach, with zero
gradients for all variables. The locations of the fixed lid and its
movement as a function of time and water flow field are

computed by different algorithms. The 1D backwater compu-
tation is the default algorithm and it is invoked automatically.
Formula developed by Van Rijn [37] was used to calculate the

equilibrium sediment concentration close to the bed. This
equation has the form

Cbed ¼ 0:015
d0:3½ðs� scÞ=sc�1:5

a ððqs � qwÞgÞ=ðqwv
2Þ½ �0:1

ð2Þ

where C bed is the sediment concentration, d is the sediment
particle diameter, a is a reference level set equal to the

roughness height, s is the bed shear stress, sc is the critical
bed shear stress for movement of sediment particles according
to Shield’s curve, qw and qs are the density of water and sedi-

ment respectively, m is the Kinematic viscosity of the water and
g is the gravitational acceleration.

The bed load discharge (qb) can be calculated using the fol-

lowing equation [37]:

qb

D1:5
50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððqs � qwÞgÞ=qw

p ¼ 0:053

� d0:3½ðs� scÞ=sc�1:5

D0:3
50 ððqs � qwÞgÞ=ðqwv

2Þ½ �0:1
ð3Þ

where D50 is the mean size of sediment.
The influence of rough boundaries on fluid dynamics is

modeled through the inclusion of the wall law

U

U�
¼ 1

K
lnð30z=KsÞ ð4Þ

where ks equals to the roughness height, K is von Karmen con-
stant, U is the mean velocity, U* is the shear velocity and z is
the height above the bed.
4. Model geometry and properties

A structured grid mesh on the x�y�z plane was generated:
three dimensional grid mesh with 234 elements in the x-direc-

tion, 66 elements in the y-direction and 22 elements in the
z-direction. An uneven distribution of grid lines in both hori-
zontal and vertical directions was chosen in order to keep

the total number of cells in an acceptable range and to get
valuable results in the area. The following grid line distribu-
tions were chosen: In X-direction: 3 cells with a 0.25 m, 10 cells
with a 0.05 m, 25 cells with a 0.02 m, 160 cells with a 0.005 m,

20 cells with a 0.02 m, 10 cells with a 0.05 m and 5 cells with a
0.11 m respectively. In Y-direction: 30 cells with a 0.005 m, 5
cells with a 0.02 m and 30 cells with a 0.005 m respectively.

In Z-direction: 10 cells with 1% height of the water depth, 4
cells with 5% of the water depth and 7 cells with 10% of the
water depth. The Abutment was generated by specifying its

ordinates, and then the grid interpolated using the elliptic grid
generation method. However, the Abutment was generated by
blocking the area of the Abutment.

5. Analysis and discussion

5.1. Effect of relative radius (r/b) for abutment edge at Lc/L =

0.73 on local scour depth

The relative collar length of Lc/L = 0.73 is fixed around bridge
abutment and the sharp edge of bridge abutment is changed to
have a curvature shape with different radii (see Fig. 5). The
edge shape of the abutment was changed to improve the flow

field around the bridge support and hence more control to
the local scour depth. The effect of different relative radii
(r/b), of the abutment edge on local scour depth at bridge abut-

ment was presented in Fig. 3. The relative radius of bridge
abutment was changed to cover a wide range (r/b), i.e.,
(r/b = 0 (sharp edge), 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 2.4, 4.1 and

13.3). It was found that as the relative radius increases the local
scour depth decreases and vice versa. In addition, the reduc-
tion percentages of local scour depth for r/b = 0 (sharp edge),
0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 2.4, 4.1, and 13.3 are 69%, 87%,

88%, 90%, 92%, 93%, 94%, 95%, 96%, and 95.5% respec-
tively, compared to the no-collar case for the present study
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Figure 4 Reduction percentages of local scour depth for

different r/b.
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and the other studies [38,39], see Fig. 4. It is obvious that as the
relative radius for abutment edge increases a well distribution
for velocity around the obstacle will be attained and hence
A

A

(i)

(ii)

(iii)

(iv)

Figure 5 Scour contour maps for (i) r/b= 0.2, (ii) r/b
smaller values of local scour depth occurred around abutment.
The scour contour maps for bridge abutment with r/b= 0.2,
0.6, 0.8, 1.0, 1.4, 2.4 and 4.1were presented in Fig. 5. This fig-

ure shows that, the scour hole dimensions for larger values of
r/b are smaller compared to the smallest values of r/b. On the
other hand, there are small scour holes formed downstream

the bridge abutment, these scour holes will be controlled in
the next section. Typical case for the time averaged velocity
vectors is displayed for elevation at section A–A (Fig. 5) for

r/b = 0.6 and 1.0 (Fig. 6a and b). It was shown that, flow
velocity decreases as the r/b increases. Moreover, the intensity
of circulatory motion is reduced for the larger values of r/b.
The lateral time averaged velocity distribution just upstream

the abutment nose was shown for r/b = 0.4, 1.0 and 2.4
Fig. 7. From this figure it is obvious that the distribution of
flow velocity in lateral direction decreases as r/b increases. In
A

A

= 0.6, (iii) r/b= 0.8 and (iv) r/b= 1.0 at Ft= 0.53.
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addition, the measured profile of bed is observed to be
close to the simulated ones using the computational fluid
dynamic models. The simulated models for different values

of r/b are compared to the measured data; the correlation
coefficient and standard error are 96% and 5%, respectively
Fig. 8.

5.2. Effect of collar length (Lc/L) for r/b = 4.1 on local scour

depth

In the last section, the scour dimensions were reduced by more
than 95%, but in the other side, two scour holes were formed
downstream bridge abutment. So, it is an attempt to control
these scour holes by changing the relative collar length for a
typical case of r/b = 4.1. The collar length downstream of
abutment was changed to have different relative lengths
(Lc/L) = 1.3, 1.35, 1.4 and 1.45 with r/b = 4.1, to control

the local scour depth downstream bridge abutment. The
relationship between the maximum relative scour depth at
bridge abutment (ds/yt) and the tail Froude number (Ft) for

different relative lengths of collar was introduced in Fig. 9.
It was found that at the relative length of collar 1.40, the local
scour depth was vanished either for the upstream or for the

downstream of the bridge abutment as shown in Fig. 10ii. It
can be noticed that as the relative length of collar increases
beyond the downstream of bridge abutment the more protec-
tion to the hydraulic structures. In which, as the collar length

increases the down flow reduces. The local scour depth was



Figure 8 Simulated (ds/yt) versus experimental values for differ-

ent r/b.
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Figure 7 Time average velocity vectors for Lateral cross-section upstream the bridge abutment for (i) r/b= 0.6, (ii) r/b= 1.0 and (iii)

r/b= 2.4 at Ft = 0.42.

Figure 6 Time average velocity vectors for elevation cross-section A–A for (a) r/b= 0.6, (b) r/b= 1.0, (Fig. 5ii and iv, respectively).
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Figure 10 Scour contour maps for (i) Lc/L = 1.3 and (ii) 1.40 at Ft = 0.53.

Figure 11 Time average velocity vectors for Lateral cross-section upstream bridge abutment for (i) Lc/L = 1.3 and (ii) Lc/L = 1.45 at

Ft = 0.42.
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reduced by 94%, 95%, 97%, and 100% for (Lc/L) = 1.3, 1.35,
1.4, and 1.45, respectively. The lateral time averaged velocity

distribution just upstream the abutment nose was shown for
Lc/L = 1.30, and 1.45 Fig. 11. From this figure it is obvious
that the distribution of flow velocity in lateral direction

decreases as Lc/L increases. In addition, the measured profile
of bed is observed to be close to the simulated ones using
the computational fluid dynamic models. The simulated mod-

els for different values of Lc/L are compared to the measured
data; the correlation coefficient and standard error are 92%
and 3%, respectively Fig. 12.



Photo 1 Re-circulating flume and experimental model.
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6. Conclusions

In the present paper, experimental and numerical studies are
implemented on a bridge abutment to simulate the local scour

depth under the effect of changing the abutment edge shape
and collar lengths. 3-D computational fluid dynamic models,
which based on finite volume method to solve the Navier–
Stokes equations, are created by using SSIIM program. It

was found that, the relative scour depth decreases as the rela-
tive radius of abutment edge increases. In addition, the reduc-
tion percents of local scour depth for r/b = 0 (sharp edge), 0.2,

0.4, 0.6, 0.8, 1.0, 1.4, 2.4, 4.1, and 13.3 are 69%, 87%, 88%,
90%, 92%, 93%, 94%, 95%, 96%, and 95.5% respectively
compared to the no-collar case. In addition, the increases of

the relative length of collar share to more control and minimize
the local scour depth either for upstream or for downstream of
bridge abutment. Finally, the results of numerical models

using SSIIM were found to be agreed well with the measured
data for different experimental models.
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