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Abstract 

Radar equipment of stealth platforms such as aircraft have adopted the newest modern technology to design the signal wave-
forms. One of the important and effective methods is the hybrid waveform called spread spectrum stretch (S-cubed) which com-
bines linear frequency modulation (LFM) and discrete phase code. In order to investigate the function of enemy’s stealth radar 
equipment, the interception algorithm of S-cubed is needed. In this paper, a novel detection and parameter estimation approach 
for the reconnaissance S-cubed radar signal is presented. First, the generalized time-frequency representation of Zhao, Atlas, and 
Marks (ZAM-GTFR) and Hough transforms (HT) are applied to detecting the signal, and then the initial frequency and modula-
tion slope of LFM are estimated from the ZAM-GTFR. On the basis of LFM information, the reconstructing signal is generated. 
Finally, the code rate of discrete phase code is extracted from the negative peaks of the ZAM-GTFR. Simulation results show 
that the proposed algorithm has higher estimation accuracy when the signal to noise ratio (SNR) is above 3 dB. 

Keywords: signal detection; parameter estimation; spread spectrum stretch (S-cubed); generalized time-frequency representation 

(GTFR); Hough transforms 

1. Introduction1 

In the past few decades, radio frequency (RF) radar 
stealth has become an important research focus, and 
one of the key problems is the waveform design for 
radar equipment of stealth platforms. Lynch [1] showed 
that a spread spectrum stretch (S-cubed) radar signal 
was often chosen as the waveform of stealth radar 
equipment. Since the instantaneous bandwidth of the 
S-cubed signal is wide, it is an effective waveform to 
fight against electronic support measures (ESMs) re-
ceiving equipment, making it difficult to complete the 
measurement of radar frequency and analysis of in-
tra-pulse modulation.  

The S-cubed signal is a kind of time-varying signal 
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which could be analyzed by the time-frequency repre-
sentation (TFR). A variety of TFR approaches have 
been presented for the detection and parameter estima-
tion in some similar signals. Stankovi and Djurovi[2] 
applied the spectrogram and Wigner-Ville distribution 
(WVD) to motion parameter estimation. Kay and 
Boudreaux-Bartels [3] used WVD for detection. Bar-
barossa[4-5] studied the cross-terms suppression, opti-
mal detection and parameter estimation using com-
bined Wigner-Hough transforms (WHT), further used 
it to analyze the mono- or multi-component linear fre-
quency modulation (LFM) signals. Flandrin [6] de-
signed the time-frequency receivers for locally optimal 
detection. Kwok and Jones [7] estimated instantaneous 
frequency (IF) using an adaptive short-time Fourier 
transform. Chen[8] finished multi-component LFM 
signal detection and parameter estimation based on 
Radon-HHT. However, it is not an easy task to detect 
the phase discontinuity of the S-cubed signal when we 
use the above-mentioned methods. 

Another TFR called the generalized time-frequency 
representation of Zhao, Atlas, and Marks (ZAM-GTFR) 
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was investigated to solve this problem [9-11]. The 
ZAM-GTFR simultaneously preserves the property of 
finite time support, enhances spectral peaks and sup-
presses cross-terms. It is shown that the ridge of the 
ZAM-GTFR reflects the variation of IF and some 
characteristic features are easy to be extracted from the 
2D time-frequency plane, such as the negative peaks 
with respect to the phase discontinuity of discrete 
phase code, which is suitable for analyzing the S-cubed 
signal. In conclusion, we could find some useful ways 
for the detection and parameter estimation of the 
S-cubed signal from the ZAM-GTFR perspective. 

We formulate the ZAM-GTFR and find an analysis 
approach of the stealth S-cubed radar signal. The re-
mainder of this paper is organized as follows. Section 2 
gives the model of the S-cubed signal and brie�y re-
calls the definitions of the ZAM-GTFR and HT. In 
Section 3, we finish the detection of the S-cubed signal. 
In Section 4, we first extract the ridge of the 
ZAM-GTFR to estimate the initial frequency and 
modulation slope of LFM, and then use information of 
LFM to estimate the rate of discrete phase code. Sec-
tion 5 shows performances of the proposed algorithm 
including the computation complexity, detection prob-
ability and normalized root mean squared error 
(NRMSE) and Section 6 presents conclusions. 

2. Signal Model and Definition 

2.1. Signal model 

The general S-cubed signals are a kind of hybrid 
modulated signals which superimpose a short, cycli-
cally repeated discrete phase code on an LFM wave-
form. Thus, the S-cubed signal can be denoted as 
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, and T1 is the width of code, T2 the pe-

riod of code, P the length of period, and N the number 
of periods. fc and K are the initial frequency and 

modulation slope of LFM, respectively. 0�  is the 

initial phase and cp the value of encoding. 
Lynch[1] showed there are some guiding principles 

for the choice of discrete phase code which are the 
minimum of mismatch loss and optimum of spread 
spectrum. We assume that the signal adopts the typical 
binary discrete phase code whose mismatch is 0 dB as 

an example, i.e., for {1, 1}pc � �  and P=4, the code is 

[1  1  �1  1]. 

2.2. Definition 

The ZAM-GTFR of the received signal x(t) with 

kernel ( )g �  is [9]  
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where the mark �  stands for complex conjugation, �  

and ( )g �  are the time delay and the window function, 

respectively. ( , )A t �  is the local autocorrelation func-

tion (LAF) at time t, that is, 
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HT is a feature extraction technique used in image 
analysis, computer vision and digital signal process-

ing[12-14]. It uses a new coordinate ( , ) !  to concen-

trate straight lines. When lines exist, ( , )xH  ! 
  

HT{ ( , )}xC t f  computes the integration over all the 

lines. So we can say HT is only a mapping of coordi-

nate from (t, f ) to ( , ) !  essentially. The relationship 

is 

 cos sint f ! !
 
  (4) 

Arranging Eq. (4) yields 

 2 2 sin arctan
tt f
f
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For a fixed point in (t, f ), there is a sine curve in 

( , ) !  corresponding to it. On the one hand, if there is 

a straight line in (t, f ), the sine curves mapping from 
the points of this line will intersect at one point just 
like integration. Intersection makes the accumulation 
of energy which leads to a sharp peak. On the other 
hand, the random noise distributes throughout the 
plane, therefore it cannot intersect to form a peak. In 
this case, we can extract the sharp peak as a feature to 
detect the presence of the S-cubed signal in noise. 

3. Signal Detection 

Because of the good performance in spread spectrum, 
it is a challenge to process the intercepted S-cubed 
signal. In this case, we study the ZAM-GTFR. It has 
the cone-shaped kernel and has been shown to generate 
quite good TFR in comparison to other approaches. 
Asymptotically, the ZAM-GTFR is shown to produce 
results identical to that of the spectrogram for station-
ary signals. Moreover, the ZAM-GTFR is able to dras-
tically attenuate interference terms which are normally 
presented in many TFRs and has the ability to track 
phase discontinuity. When a signal is subjected to 
white noise, the ZAM-GTFR produces an unbiased 
estimate[10]. So the ZAM-GTFR is a potential technol-
ogy that could be used to analyze the S-cubed signal. 
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In order to detect the S-cubed signal and estimate the 
initial frequency and modulation slope, firstly we can 
compute the square of the signal to eliminate phase 
discontinuity.  

The square of xc (t) is 
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and the LAF is 
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To simplify the derivation, we choose rectangular 

window function ( )g � . Thus, the ZAM-GTFR of 

2
c ( )x t  is  
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where # denotes the convolution and 
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which is the generalized hypergeometric function with 
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 � 
� and a1=1/2, 

a2=1, b1=3/4, b2=5/4, b3=3/2, 2 4 2( ) /(16 )z f K
 � 	 . 

According to Ref. [11], the envelopes of 2
c

( )xR f  de-

cay with the increase of | f | and the maxima of 

2
c

( )xR f  are maintained at f = 0. 

Observed from Eq. (8), the ZAM-GTFR of the 
2
c ( )x t  simultaneously preserves the property of finite 

time support and strengthens spectral peaks. It has ap-
proximately ideal property of time-frequency concen-
tration, i.e., the energy concentrates on the straight line 

which represents the IF of 2
c ( )x t , f(t)=2fc+2Kt. 

Hence 2 2
c c

( , ) HT{ ( , )}x xH C t f ! 
  can extract this line 

to form a sharp peak which indicates that there is a 
signal in noise. The simulation results of processing are 

shown in Fig. 1. In the simulation, c 20f 
 MHz, 
124 10K 
 % , SNR=5 dB, and the duration is 5 �s. 

 

Fig. 1  S-cubed detection. 

where “sn” and “gn” stand for the HT value of ZAM- 

GTFR 2
c ( )x t in noise and white Gaussian noise, re-

spectively. 

4. Parameter Estimation 

4.1. Initial frequency and modulation slope estimation 

The ridge of the ZAM-GTFR reflects important in-
formation about the characteristics of the S-cubed sig-
nal [15-16]. We introduce an algorithm to extract the 
ridge. The procedure is to search for the maxima of 
Cx(t, f ) along f. Therefore, the ridge of Cx(t, f ) could 
be defined as 

 ( ) arg max{ ( , )}xf
r t C t f
  (9) 
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Since the maxima of 2
c

c( 2 2 )xR f f Kt� �  locate at 

f(t)=2fc+2Kt, the ridge of 2
c

( , )xC t f  is a slope which 

stands for the IF, i.e.,  

 � � c( ) 2 2r t f t f Kt
 
 
  (10) 

Then we do polynomial curve fitting to r(t) using the 
least squares[17-18]. The cost function is 
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The problem of curve fitting is to solve the mini-
mum of the cost function. Particularly, for linear fitting, 
the polynomial coefficients can be computed by  
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mean of t and r, respectively, I is the length of signal. 
Then, the model is  
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Furthermore, the estimates of fc and K can be de-

scribed as c 0
ˆ ˆ / 2f d
 , 1

ˆˆ / 2K d
 . 

4.2. Discrete phase code rate estimation   

Utilizing the estimation of K , we can generate the 
reconstructing signal as 
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In order to study the feature caused by phase discon-
tinuity, we only pay attention to two different codes 
and the signal contains only one period. Then the 
original signal xc (t) can be simply rewritten to  
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, and t0 is the time of 

phase discontinuity. 
Multiplying xc (t) with the conjugation of sd(t), we 

have  
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If the error of K̂  is small, 0K+ , . 
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From Ref. [11], we have m c( , ) ( )yC t f C f f, � � 

c( , )V t f f�  with 0( , ) 1 2cos(2 | |)V t f f t t
 � 	 � , 

where m ( )C f  is the ZAM-GTFR of monopulse. Be-

cause the energy of m c( )C f f�  is concentrated at f = 

fc, we could just consider ( , )yC t f  around fc. When 

t=t0, c( , )V t f f�  gets the minimum �1, and 

c( , )yC t f , m (0)C� , where Cm(0) is positive. When 

0t t-  and f is nearby fc, c( , )V t f f�  increases with 

the increase of |(f�fc)(t�t0)|. As a result, there would be 
a negative peak around the point (t0, fc) and the value 
of this peak may be nearly equal to Cm(0).  

Based on the analysis above, we can extract the 
negative peaks as a useful feature to estimate the rate 
of discrete phase code. Specific steps are as follows: 

Step 1  Extract the negative peaks denoted as Np(t) 
from the ZAM-GTFR of y(t). 

Step 2  Compute fast Fourier transform (FFT) of 
Np(t). 

Step 3  Because the locations of negative peaks in-
dicate the time of phase discontinuity, the base fre-
quency fb of Fourier spectrum is equal to the rate of 
discrete phase code fr. Thus, we can search within the 

spectrum to obtain the estimate of  fr, r bf̂ f
 . 

5. Performance Analysis 

5.1. Estimation of computation complexity 

Assume L is the length of frequency bins, and M is 
the length of window, M = 2L+1.  

The square of the signal to eliminate phase discon-
tinuity needs I complex multiplications.  

In Ref. [9], Zhao, et al. discussed the discrete form 
of ZAM-GTFR: 
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Meanwhile, they pointed out that the discrete 
ZAM-GTFR can be formulated as the real part of a 
standard discrete Fourier transform (DFT) which can 
be computed by an FFT of radix 2 [19] without affecting 
the realness of the ZAM-GTFR. 
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function. From Eq. (21), we can know that the 
ZAM-GTFR needs [(M-1)Ilog2 I]/4 complex multipli-
cations.  

Polynomial curve fitting in this paper needs 2I+7 
complex multiplications approximately. Extracting the 
information of discrete phase code needs I complex 
multiplications, using FFT to compute code rate 
[Ilog2I]/2.  

Table 1 gives out the computation complexity in-
cluding complex additions. 

Tabel  1  Computation complexity 

Processing Complex addition Complex multiplication

Square 

ZAM-GTFR 

Fitting 

Code rate 

Total 

0 

[(M�1)Ilog2 I]/2 

4I�1 

Ilog2 I 
[(M+1)Ilog2I]/2+4I�1 

I 
[(M�1)Ilog2 I]/4 

2I+7 

[Ilog2 I]/2+I 
[(M+1)Ilog2 I]/4+4I+7

5.2. Simulation 

In this simulation, the sampling frequency is 1 GHz 
and the code-width of discrete phase code is 15 ns. 
Both the initial frequency and bandwidth of LFM are 
100 MHz. The noise is white and Gaussian. The SNR 

values vary from �5 dB to 15 dB. Different signals are 
tested for 200 times in each SNR. 

Figure 2 shows the results of the detection probabil-
ity for various SNRs and for several values of period 
number. The number of periods (N) is 1, 2, 3. With the 
same discrete phase code, if the number of periods is 
larger, the points which are used for detection are more. 
The energy from the ZAM-GTFR of these points is 
larger, therefore, the HF value of ZAM-GTFR is larger 
and the detection threshold which is proportional to the 
noise energy. To provide the same probability, the 
threshold may be higher and then the SNR will be 
lower. So, according to Fig. 2, the probability of detec-

tion increases with the increase of period number at the 
same SNR, meanwhile the required SNR is lower for 
the larger number of periods to provide the same 
probability of detection.  

 

Fig. 2  Detection probability. 

Under the same signal model, there is no similar al-
gorithm of parameter estimation. Figures 3-4 only 
show the estimations of fc and K mentioned in this pa-
per and Ref. [5]. The number of periods is 8. Illustrated 
by Figs. 3-4, the WVD has the higher estimation accu-
racy of fc and K due to the better time-frequency ag-
gregation. However, it has a significant problem of 
high noise sensitivity. The ZAM-GTFR overcomes this 
problem more or less in the presence of white noise 
and generates an unbiased estimate[10]. It is shown that 
improved anti-noise performance can be obtained by 
the ZAM-GTFR, though the accuracy of parameter 
estimation decreases slightly. In summary, the 
ZAM-GTFR achieves a balance between the accuracy 
of parameter estimation and noise effect to finish the 
estimation at a lower SNR. Here, the NRMSE is de-
fined as 
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where ST is the experiment time, 1 the parameter to be 

estimated, and 01  the estimation value . 

Moreover, we recommend matched signal transform 
(MST) to have a performance contrast. MST is initially 
designed to localize TV signals with nonlinear phase at 
their modulation slope parameter. This localization is a 
result of choosing the nonlinear characteristic basis 

function ( )t2 of the transform to match, in 

time-frequency structure, the phase function of the 
analysis signal. In this paper, since the S-cubed signal 
contains the LFM modulation and has the nonlinear 

phase, we make 2( )t t2 
 in the MST which is appro-

priate [20]. 
Observed from Fig. 5, we can know that the MST 

algorithm has greater advantage at higher SNR but is 
easy to be influenced by the noise because of the main 
lobe characteristics and lost the initial frequency in-
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formation as a two-dimensional transform. The 
ZAM-GTFR algorithm is based on the extraction of 
ridge line which mostly depends on the design of 
cone-shaped kernels. 

 

Fig. 3  NRMSE of initial frequency by GTFR. 

 

Fig. 4  NRMSE of modulation slope by GTFR. 

 

Fig. 5  NRMSE of modulation slope by MST. 

Figures 6-7 show this algorithm is feasible when 
S-cubed signal is subjected to colored noise, Rayleigh 
clutter and K-distribution clutter. 

Figure 8 shows the NRMSE of the estimation of fr 
for various SNR and for several values of period num-
ber, respectively. The number of periods is 8, 9 and 10. 

Illustrated in Fig. 8, the NRMSE is less than 10�2 when 
the SNR is greater than 3 dB. Since negative peaks of 

the ZAM-GTFR characterize the phase discontinuity, 
the estimation of fr performances well. 

 

Fig. 6  NRMSE of initial frequency. 

 

Fig. 7  NRMSE of modulation slope. 

 

Fig. 8  NRMSE of code rate. 

6. Conclusions 

We have explored an approach of signal detection 
and parameter estimation of the S-cubed signal. The 
HT is used to extract the characteristic feather to detect 
the signal. The ridge of the ZAM-GTFR is used to 
compute the IF, and polynomial curve fitting of IF is 
used to estimate the initial frequency and modulation 
slope of LFM. The locations of phase discontinuity are 
detected by extracting the negative peaks of the 
ZAN-GTFR. The rate of discrete phase code is ac-
quired by FFT. The presented algorithm has higher 
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accuracy of parameter estimation when the SNR is 
above 3 dB. 
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