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ABSTRACT 

In this paper a new block matrix factorisation strategy is considered urilising the spectral resolution 
method for the solution of  an elliptic partial differential equation with periodic boundary conditions 
in a rectangle. 

I. INTRODUCTION 

Confider the elliptic (Helmholtz's) equation in two space 
dimensions given by, 

V2U = 02U+ 82U = 2rU(x,y) +q (x,y), (1.1) 
8x 2 ay 2 

in a rectangular region, 

R: (1.2) 
~gygb  

enclosed by the boundary region aR, and with the period- 
ic boundary conditions in both the x- and y-directions 
given by, 
U(0,y) = U (a,y), 
u(~,o)  = u(~,b),  (1.3) 

where q(x,y) is a known function in x and y, and r is any 
positive constant. 
We define the mesh spacings/~x= a/m and Ay=b/n (m,n 
are integers) and then super-impose meih-points 
(xi,Yj) = (iAx, jAy) over the interior region R h and the 
discrete boundary region, aR h where 

Rh= {(xi,Yj) [ l < i ~ m - l , l ~ j ~ n - 1 } ,  
and 
aR h = aRn ((xi,yj) { 0 g i g  m, 0 g j  g n}. 
Further by using the notation Ui, j = U(xi,Yj) and then 
applying the five point finite difference approximation, 
i°e.) 

V2Ui,j _ 1 (Ui_l, j_2Ui,j +Ui+l,j) 
(Ax) 2 

+ 1 (Ui,j_ 1-2Ui, j +Ui,j+l), (1.4) 
(~Ay) 2 

the given elliptic equation (1.1) at the point (Lj) becomes, 

where  

o - (A~) 2 and di, j = (Ax)2qi,j. 

We shall here adopt a column-wise ordering of the mesh 
points as illustrated in f~ure 1. 
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Hence, by applying equation (1.-5) over the enclosed 
rectangular region together with the periodic boundary 
conditions (1.3), we obtain the block matrix system, 
Au = d, (1.6) 
where 

B I I ]  
I, B I .  0 ] 

A=A[I,B,I]=[ " - - I , .  . .. (1,7) 

0 "'-".".I 
b "'-f"Bl(mX m) 

u the approximate finite difference solution of (1.1) is Ui-l'J'+ °Ui'j-1-2(1+°~" )Ui'j +°Ui'j+l +Ui+l'J --did' given by 
(1.5) 
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ii  ui'll u2 ui, 2 
u =  , u i =  . , i = 1 , 2  ..... m, 

tUi,n] 

and the vector d is similarly partitioned as u. 
The matrix B is an (nXn) periodic tridiagonal matrix of 
the form, 

[-2(1+o+r) o o 
[ o. o 

B=B[o,_2(l+o+r),o]=l " - .  " ' . .  " . . .  

[o " - e  -2 ( i+o+r )  

(1.8) 

and I is the (nX n) identity matrix. 

2. THE CYCLIC FACTORISATION METHOD AND ITS 
VARIANTS 

In Evans and Okolie [1] the general cyclic factorisation 
method was introduced for the solution of the general 
periodic tridiagonal matrix equation and here we now 
introduce various simplified variants of that general 
algorithm. 

Symmetric case 

Consider the matrix equation, 

Cu = d, (2 . ! )  

where C is a constant term, symmetric cyclic tridiagonal 
matrix of the form, 

. , b , a , ,  O 

/ 
La ".a'b]  

We seek to obtain algorithms that take advantage of the 
special structure of the coefficient matrix (2.2). First, we 
consider simplified variants of the generalised cyclic 
factorisation method of Evans and Okolie [1]. 
Following the cyclic factotisation method, the matrix C 
can be decomposed into the product of P and Q such that 

C = P Q,  (2.3) 

where 

Ii • ] '~,  v , a .  O 

P = and ~ = " , , ' ,  • 
\ X, / o " , " ,  / o ",'a 

[ "£ "1 1 "'v 

From (2.3), the elements l ,v are related in the following 
f o r m ,  

t v  ~-- a ,  

and (2.4) 
v+La = b. 

Now either ~ or v can be expressed as an infinite period- 
ic continued fraction. We consider v, which is then ex- 
pressed in the form, 

a 2 a 2 a 2 a 2 a 2 
v = ff2-_ b-= b- b-L-- b~.. (2.5a) 

with unit cycle length in the periodicity of the continued 
fraction. 
Now the infinite continued fraction (2.5a) is generated 
by the linear fractional transformation, 

a2 , 
r(1) (60) = ff-~ (2.5b) 

whose fixed points co 1, 602 are given by the roots of the 
quadratic equation, 

2 a ¢.0 = ~--~, 

or co2-bco+a 2 --- 0. 

Hence the value of v, defined as max (6o1,~o2) becomes, 

v = ( b + ~ ) / 2 ,  b>~ 2a, 1 

and [ (2.6) 

£ = a__ ( b - ~ ) / 2 a ,  b/> 2a. 
V 

It follows immediately from (2.6) that if b/> 2a, then 
~<1 .  
The values of v and 12 could simply have been obtained 
from (2.4) direcdy without the need to express any of 
them as an infinite continued fraction, but this has been 
done to maintain the uniformity of approach with the 
earlier strategy in the generalised factorisation. 
The algorithm is summarised below. 

Step 1. Compute : £ = ( b - ~ ) / 2 a ,  b ~  2a, (2.7) 
p -- IZ/a. 

Step 2. Compute the following pre-computed coefficients, 

= is odd ] ¢i £1, i f i  

=_~i, i f i iseven [ i =  1,2 ..... n. (2.8) 

?i e n - i +  1. 

Step 3. Calculate the following : - 

(a) d 0 = 0,di'= di-~di_ 1, i = 1,2 ..... n (2.%) 

(b) Yn = dn/( l+¢n) '  t 
Yi = di'-~iYn' i = 2,3 ..... n- l ,  J (2.9b) 

(c) = PYn' = [ 

'1 
pyi_~g..,.1,i_., n - l , n - 2  ..... 1 (2.9c) 

gi 

and 

(d) u 1 = gi/(lq3'l)', i = 2,3 ..... n (2.9d) 
ui = gi-?iUl ' 

where u = (u 1,u 2 ..... un)T is the required solution vector. 

Steps 1 and 2 are computed only once during the first 
solution; thereafter for subsequent solutions only step 3 
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need be repeated. Thus, the algorithm requires 5n multi- 
plications and 4n additions, in addition to n precomputed 
coefficients. 
The stability of this algorithm is always guaranteed when- 
ever [,~[ < 1, (since IZ is used as a multiplier in an elimina- 
tion 'process) which is easily shown to be satisfied (using 
(2.7)) whenever the coefficient matrix is strictly diagon- 
ally dominant, i.e. Ibl > 12al. 

L ~  

If a = -1, then ~ = (-b + ~ / ~ ) / 2 ,  b > 2, p = -£ and 
hence (2.9c) becomes, 

gn = -~Yn' 
and 

~ = - ~ ( y i + g ; + l  ), i = n - l , n - 2  ..... 1. 

which results in a saving of n extra multiplications to 
give the required arithmetic operation count as 4n multi- 
plications and 4n additions for the solution of (2.1) 
when the coefficient matrix C is of the form, /rb - 1  -1] 

I-l,b -1,,o 
x\  x• x 

O , ,,21 
L-1 . "-i "b 

Similarly, if a= 1, then 

= (b-VC2-~)/2, b > 2, ~ = p. 
and equation (2.9c) becomes, 

gn = ~Yn' 
and 

g~ = ~(Yi-gi+l)' i =  n-l ,n-2 ..... 1. 

These simple factorisation techniques resulting in fast 
algorithmic procedures can also be readily applied to the 
cases when C is unsymmetric as well as Toeplitz in form 
(Okolie [91). 

3. THE CYCLIC BLOCK FACTORISATION METHOD 

Now an analogous block equivalent form of the general- 
ised factorisation algorithm can be derived, provided the 
norm of the matrix B is greater than 2 (see (2.6) for the 
equivalent condition for the point case). 
Here we give briefly the block form of the generalised 
algorithm which requires only the replacement of the 
matrix scalar dements %' and %' by the submatrix B and 
the identity matrix I respectively in order to obtain a 
direct solution of the block matrix equation (1.6) by the 
following procedure : 
By defining a submatrix N of order n, (cf. (2.7)), i.e., 

N = 0.5[B-(B2-4I)1/2], IIBII~> 2, (3.1) 

where W 112 is defined as the square root of matrix W 
(Spath [2]), then the right-hand side vector d is modified 
to be 

_dl =d_l } 
. (3.2) 

dl = d_i-Nd_i" 1, i = 2 , 3  ..... m. 

Next, we calculate the intermediate solution sub-vectors 
Yi (i = 1 ..... m) as 

Y_.m = (I+0Nm) -1 din, 
and , (3.3) 

Y i=d ; -0Ni l f  m, i = m - l , m - 2  ..... 1, 

where 0 = 1 (i odd) and 0 = -1, (i even). 
Further by defining the intermediate vectors, 

g_m = N• m ] 
and , (3.4) 

gl = N(Y_i-gi+l), i = m - l , m - 2  ..... 1 

we then obtain the Final solution vector u from the ex- 
pressions, 

u I = (l+ONm)-l_g I ] 

and [ . (3.5) 
u i = g i - 0 N m - i + l u l  , i = 2 , 3  .... ,m. 

This block factorisation method (3.1) -(3.5) gives the 
desired direct solution of equation (1.6) provided that 

the matrix (I+0N m) is nonsingular. It is also necessary 
for stability considerations, to have the norm of the 
matrix N (since N is used as a multiplier in an elimination 
process) to be less than unity. 
The determination of the submatrix N in the form given 
in (3.1) involves the evaluation of the square root of a 

positive definite matrix (B 2 - 4I). Various iterative 
methods, based on the Raphson-Newton scheme or its 
variants are known to exist for the determination of the 
square root of such matrices. References for this include 
Laasonen [3], Spath [2], Babuska et al [4] and Schofidd 
[5].  Also the algorithm involves the calculation of the 
multiple powers of the matrix N which can be achieved 
by repeated nested multiplication. However, both the 
iterative method for the evaluation of the square root 
of a matrix and the repeated matrix multiplication re- 
quired to obtain the higher order powers of the matrix 
N would lead to a grossly inefficient method requiring 
excessive computing effort and storage. Thus, in the, 
algorithmic solution these computational difficulties 
must be resolved before the algorithm can become com- 
petitive with alternative methods such as the spectral 
resolution method introduced in the next section. 

4. SPECTRAL RESOLUTION METHOD 

We consider the matrix equation, 

Au = d, (4.1) 

where A is the (mX m) block matrix of the form, 

p ,c , ,  o 
A= | " " " I (4.2) %~ %k" xx 

O , , , C  
L c ",C',B] (mXm) 

and the submatrices, B and C are (nXn) symmetric reai 
matrices. 
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The vectors u and d are written in partitioned form so as 
to conform with the structure of A and hence have the 
form, 

U ~ :  

[U-m1 

where, 

I l,j 1 
u2'j / 

u j =  . 

[Un,jJ 

Ii d2 
(4.3) 

and 

ldl,j] 

d2'j / 
d j =  . , j = 1 , 2  ..... m. 

['in,j] 

¢oiu"i,j_ 1 +Xi~i,j = _at,j, j = 2,3 ..... m-1. 
(4.9b) 

We assume that B and C commute, i.e., BC = CB, and 
have a common basis of eigenvectors. 

¢oiui, 1 +~oiu-i,m_ 1 +~iUi,m = ai, m 
Now, if we write 

F i = 

(4.4) 

0-i= 

then 

(4.9c) 

~k i 60 i 

~ i  ~ i  ~wi \ 0 
\ \ .. : , (4.10) 

0 
c~i ¢°i" Xi (mX m) 

, and _~i = . , (4.11) 

[~i,ml i, 
the equations in (4.9) are equivalent to the system 

Then, by the well known theorem of Frobenius (see, for 
example,Varga [6]) there exists an orthogonal matrix Q 

(i.e. QT = Q-l )  whose columns are the set of eigenvectors 
of B and C such that, 

QTBQ = A } Q T c Q  = (4.5) 

where A and ~ are the diagonal matrices whose elements 
X i, 6o i (i = 1,2,...,n) are the eigenvalues of B and C 

respectively. 
The system (4.1) together with (4.2) and (4.3), may be 
written as, 

Bu I +Cu 2 +Cum = dl ,  (4.6a) 

Cuj_ 1 +Buj +Cuj+ 1 = dj, j = 2,3 ..... m-1. (4.6b) 

and 

Cu I +BUm_ 1 +Cum = d m. (4.6c) 

By using equation (4.5) we have, 

B = QAQ T 
and 
C = Q~QT 

which, when substituted into (4.6) give the following 
equations, 

A~-I +I2-~2 +~2~am = d-l' (4.7a) 

f~u-j-1 +A~j+f~h--j+l= ~-j' j = 2 , 3  ..... m - l ,  (4.7b) 

f~--Ul +I2U-m-1 +A~m = d-m' (4.7c) 
where 

u_j = Q T u j  l 
-~j = QTd-j I j =  1,2,...,m, (4.8) 

and _uj, ~_j are labelled as in (4.4). 

Further, we now resolve the equations in (4.7) by re~ 
writing them, for i  = 1,2 ..... n, as 

Xi~i, 1 + 6oiai,2 +¢oi~i, m = ai, 1, (4.9a) 

rift i = a i, i =  1,2 ..... n. (4.12) 

Thus, the vector fii satisfies a symmetric tridiagonal 
matrix system ofequations that has a constant diagonal, 
super- and sub-diagoual elements as in (4.10) which can 
be solved in an effident manner by using the generalised 
factorisation algorithm. 
After solving (4.12) it is then possible to solve for 

uj = Q~_j, j = 1,2 ..... m. (4.13) 

The above matrix decomposition algorithm is due to 
Buzbee ei al [8]. If we regard the block vectors u and d 
as 2-dimensional arrays, then the above algorithm may 
be summarised as follows : 

Step 1 
Compute or determine the eigenvalues of matrices B 
and C and the eigenvectors of B. These eigensystems are 
often given by known analytical formulae for certain 
representations of B and C; e.g. in the case of solving a 
Poisson equation in a rectangle, B is tridiagonal and C is 
diagonal. 

Step 2 
Compute the vectors, 

J-d; = QTd_j, j = 1,2 ..... m, (4.14) 

which is equivalent to multiplying each row of d by QT. 

Step 3 
Next, we re-order the array ~_ by vertical lines instead of 
horizontal lines to generate the array _~ and then solve 
the tridiagoual systems, 

rifi_i = a_i, i =  1,2 ..... n. .  (4.15) 

Step 4 
Finally, we re-order the array u by horizontal lines in- 
stead of vertical lines to generate the array _~ aad then 
compute the solution vector, 

uj = Qu_-j, j = 1,2 ..... m. (4.16) 

If we neglect the computation of the eigensystem (step 1) 
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then, the operation count for the spectral resolution 
method is given as shown in table 1. A reduction in the 
ari thmetic operat ion count is possible i f  the fast Fourier 
transfer (Cooley and Tukey [7] ) i  s used to perform steps 
2 and 4. 

TABLE 1. Summary o f  arithmetic operat ion count 

Steps 

2 
3 
4 

Multiplications (X) 

n2m 

5nm 
n2m 

Addit ions (+) 

n2m 
4nm 
n2m 

TOTAL 2n2m + 5nm 2n2m + 4 n m  
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