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a b s t r a c t

A nonlinear dynamical systemwas established in our preceding work to describe the batch
and continuous bioconversions of glycerol to 1,3-propanediol byKlebsiella pneumoniae. The
purpose of this article is to analyze the sensitivity of kinetic parameters of the dynamical
system and identify their values from experiment. A global sensitivity analysis approach
is constructed by combining the local technique with the Monte Carlo method. With
only those parameters of higher sensitivity as design variables, we propose a parameter
identification model and solve it by a gradient-based simulated annealing algorithm.
Numerical results show that our methods are feasible and efficient.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The bioconversion of glycerol by Klebsiella pneumoniae (K. pneumoniae) to 1,3-propanediol (1,3-PD) is of interest to
industry because of the increasing glycerol surplus on the market and the potential uses of 1,3-PD [1]. Since the 1980s,
several mathematical models have been established to describe this bioconversion process [2–5].

In our precedingwork [6], a novelmathematicalmodelwas proposed to describe the batch and continuous fermentations
of glycerol, in which the enzyme-catalytic kinetics on the reductive pathway, the transport mechanisms of glycerol and
1,3-PD across cell membrane, together with the inhibition of 3-hydroxypropionaldehyde (3-HPA) to glycerol dehydratase
(GDHt) and 1,3-PD oxydoreductase (PDOR) are all taken into consideration. More influence factors in the fermentation
process gives rise to more kinetic parameters, which usually are set to their expected values or fitted to experimental data.
However, it is difficult to identify or optimize the kinetic parameters for such an over parameterizedmodel. In consideration
of the fact that not all parameters have a significant influence on the behavior of the model, sensitivity analysis technique
is needed to identify whether parameters are ‘‘significant’’.

Sensitivity analysis deals with the influence that small changes in nominal values of model parameters exerts on model
results [7]. An important classification of the existing methods refers to the way that the parameters are treated. In local
sensitivity analysis (or called ‘‘one-factor-at-a-time’’ analysis), only one parameter at-a-time is varied to a given percentage
of its expected values while keeping all other model parameters fixed to their expected value [8]. This approach means
that the analysis concentrates on estimating the local impact of a parameter on the model output. Opposed to this, global
techniques analyze the whole parameter space at once.
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A local analysis method can be integrated to a global one by various methods [9,10], one of which is the sampling-based
approach. TheMonte Carlomethod is one of global samplingmethods, which scans in a randomor systematic way the entire
range of possible parameter values and possible parameter sets [10]. Therefore, combining withMonte Carlo methods, local
sensitivity analysis gets integrated to a global sensitivity analysis approach, which is both effective and widely used [11,12].

Up to date, there are a large number of researches developed for parameter identification of kinetic models in glycerol
fermentation [13–15]. However, work concerning parameter sensitivity analysis is scarce.

In the present work, a nonlinear dynamical system presented in our preceding work is investigated. To assess the
influences of the kinetic parameters on the behavior of the nonlinear dynamical system, we develop a global sensitivity
analysis method by combining an existing local technique with Monte Carlo sampling of the parameter space. For the
purpose of determining those parameters of higher sensitivity, a parameter identification model is proposed, in which the
continuous state inequality constraints are dealt with via the constraint transformation and local smoothing technique, and
solved by a gradient-based simulated annealing algorithm, where the gradients of the constraint functions are calculated.
Finally, the proposed methods are carried out on the basis of four groups of real experiments in batch culture.

This paper is organized as follows. In Section 2, we briefly introduce the nonlinear dynamical system of glycerol batch
fermentation. Section 3 explores a novel global sensitivity analysis technique. A parameter identificationmodel is presented
in Section 4. In Section 5, a gradient-based algorithm is developed. Section 6 shows numerical results. Conclusions are
presented at the end of the paper.

2. Nonlinear hybrid dynamical system

Let x = (x1, x2, . . . , x8)T , the components of which represent the concentrations of biomass (g/L), extracellular glycerol
(mmol/L), extracellular 1,3-PD (mmol/L), acetate (mmol/L), ethanol (mmol/L), intracellular glycerol (mmol/L), 3-HPA
(mmol/L), intracellular 1,3-PD (mmol/L) in the reactor, respectively. In our preceding work [6], we concluded that there
exists a facilitated mechanism for 1,3-PD across cell membranes. Therefore, we assume that both glycerol and 1,3-PD pass
the cell membrane by passive diffusion coupled with facilitated transport in this paper. For any positive integer n, we use
the notation In to represent the set {1, 2, . . . , n}. The nonlinear dynamical system of glycerol batch fermentation under this
assumption can be described by

ẋ = F(x,u), (1)

where u denotes the kinetic parameter vector to be identified. The right hand side of (1) is of the form F(x,u) =

(f1(x,u), . . . , f8(x,u))T with the components defined as

f1(x,u) = µx1, (2)
f2(x,u) = −q2x1, (3)
f3(x,u) = q3x1, (4)
f4(x,u) = q4x1, (5)
f5(x,u) = q5x1, (6)

f6(x,u) =
1
k7


k8

x2
x2 + k9

+ k10(x2 − x6)NR+
(x2 − x6) − q20


− µx6, (7)

f7(x,u) = k11
x6

KG
m


1 +

x7
k12


+ x6

− k13
x7

K P
m + x7


1 +

x7
k14

 − µx7, (8)

f8(x,u) = k13
x7

K P
m + x7


1 +

x7
k14

 − k15
x8

x8 + k16
− k17(x8 − x3)NR+

(x8 − x3) − µx8. (9)

Here, KG
m and K P

m are Michaelis–Menten constants. NR+
(·), the indicator function of a real number ξ , is defined as

NR+
(ξ) =


1, ξ > 0,
0, ξ ≤ 0.

The specific cell growth rate µ, the specific consumption rate of extracellular glycerol q2 and the specific formation rate
of extracellular 1,3-PD q3 are expressed in [6]

µ = µm
x2

x2 + Ks


1 −

x2
x∗

2

 
1 −

x3
x∗
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1 −

x4
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4

 
1 −

x5
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, (10)

q2 = k1
x2

x2 + k2
+ k3(x2 − x6)NR+

(x2 − x6), (11)

q3 = k4
x8

x8 + k5
+ k6(x8 − x3)NR+

(x8 − x3), (12)
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where µm is the maximum specific growth rate and Ks is a Monod saturation constant. x∗

i , i = 2, 3, 4, 5, are the critical
concentrations of glycerol, 1,3-PD, acetate and ethanol for cell growth, respectively.

While the uptake of extracellular glycerol and the formation of acetate together with ethanol are all considered as ‘‘black
box’’ models, the specific consumption rate of glycerol q20, the specific formation rate of acetate q4 and that of ethanol q5
can be expressed in [5,14]

q20 = m2 +
µ

Y2
+ 1q2

x2
x2 + K ∗

2
, (13)

q4 = m4 + µY4, (14)
q5 = m5 + µY5. (15)

Here, mi, Yi, i = 2, 4, 5, 1q2 and K ∗

2 are kinetic parameters. The kinetic parameter vector is defined as u := (u1, u2,

. . . , u25)
T

:= (k1, k2, . . . , k17,m2,m4,m5, Y2, Y4, Y5, 1q2, K ∗

2 )T ∈ R25.
The allowable sets of x and u are denoted by Wa :=

8
i=1[0, x

∗

i ] and Du :=
25

j=1[uj∗, u∗

j ] ⊂ R25, respectively, with the
values of x∗

i , i ∈ I8, uj∗ and u∗

j , j ∈ I25, given in our preceding work [6]. Let [0, T ] be the total fermentation time interval and
x0 the initial state; then the nonlinear dynamical system (1) can be rewritten as

ẋ(t) = F(x(t),u), u ∈ Du, t ∈ [0, T ], x(0) = x0. (16)

According to the actual experiments, we assume the following.

(H1) No medium is pumped inside or outside the reactor in the process of batch fermentation.
(H2) The concentration of reactants are uniform in the reactor, while time delay and nonuniform space distribution are

ignored.

Under the assumptions (H1)–(H2), we have proved the following properties for system (16) in our preceding work [6].

Property 1. The function F(x,u) defined in (2)–(15) satisfies

(1) F(x,u) is Lipschitzian in x on Wa and continuous in u on Du;
(2) for fixed u ∈ Du, there exist positive constants a, b such that the linear growth condition holds, i.e.,

∥F(x,u)∥ ≤ a∥x∥ + b, ∀x ∈ Wa,

where ∥ · ∥ is the Euclidean norm;
(3) for fixed u ∈ Du, there exists a unique solution to system (16), denoted by x(·;u). Furthermore, x(·;u) is continuous in u

on Du.

We define the following sets.

S(u) := {x(·;u) | x(·;u) is a solution to (16) with x0 ∈ Wa}, (17)
Sw(u) := {x(·;u) | x(·;u) ∈ S(u) and x(t;u) ∈ Wa, ∀t ∈ [0, T ]}, (18)
Duw := {u ∈ Du | x(·;u) ∈ Sw(u)}. (19)

Property 2. If the sets S(u), Sw(u) and Duw are all nonempty, then S(u) and Sw(u) are compact in C([0, T ], R8) with Duw
compact in R25.

3. Parameter sensitivity analysis

In this section, we shall develop a novel global sensitivity analysis method by combining an existing local technique with
Monte Carlo sampling of the parameter space. This enables us to determine which set of parameters from the entire set has
to be tuned/optimized [16].

As mentioned in the literature [17], a definition of sensitivity analysis should involve models, model input and model
output. In this work, the input and the output of system (16) are, respectively, the parameter vector u and the state vector x.

Generally, the sensitivity index is basically the ratio of the change in output to the change in input while all other
parameters remain constant [18]. Then, we give a definition of the sensitivity index as follows.

Definition 1. The sensitivity index of the state vector x with respect to the ith component of u with a perturbation rui is
defined as

Rr
i (u) :=

 T
0

∥x(t;(u1,...,ui+rui,...,u25)T )−x(t;u)∥

∥x(t;u)∥
dt

|r|
, i ∈ I25, (20)

where rui is the perturbation in ui with |r| ≤ 1.
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For the reason that a local method only evaluates sensitivity at one sample point in the parameter space and this sample
may be defined by default values or a crude manual model calibration, we use Monte Carlo techniques to perform random
sampling from the feasible parameter space Duw and assess the average sensitivity of all the sample points.

Let M1 be the size of the Monte Carlo experiments. Denote the perturbation vector r := (r1, r2, . . . , rM2)
T , i.e., there are

M2 different perturbations at each component of a fixed sample point. Let π be a partition of [0, T ] given by

π := {0 = t0 < t1 < · · · < tM3−1 < tM3 = T ,M3 ∈ N},

with ti := iT/M3, i ∈ IM3 . Then, the sensitivity analysis method is presented as follows.

Algorithm 1.

Step 1.1 Set positive integersM1,M2,M3 and perturbation vector r, and setm := 1, k := 1.
Step 1.2 Ifm < M1 + 1, randomly generate a sample point u from Duw , denote u(m)

= u, goto Step 1.3. Else goto Step 1.5.
Step 1.3 If k < M2 + 1, goto step 1.4; else calculate the sensitivity index

¯̄Ri :=
1
M2

M2
k=1

R̄rk
i , i = 1, . . . , 25

stop.
Step 1.4 Compute

Rrk
i (u(m)) =

M3
n=0

 8
j=1

[xj(tn;(u
(m)
1 ,...,u(m)

i +rku
(m)
i ,...,u(m)

25 )T )−xj(tn;u(m))]2 8
j=1

[xj(tn;u(m))]2

·
T
M3

|rk|
,

i = 1, . . . , 25. Set m := m + 1, goto Step 1.2.
Step 1.5 Compute

R̄rk
i :=

1
M1

M1
m=1

Rrk
i (u(m)), i = 1, . . . , 25,

set k := k + 1, goto Step 1.3.

Then, ¯̄Ri is the sensitivity index of the state vector x with respect to the parameter ui, i ∈ I25. Additionally, denote
¯̄R := ( ¯̄R1,

¯̄R2, . . . ,
¯̄R25)

T as the sensitivity index of the state vector x with respect to the parameter vector u.

4. Parameter identification model

For convenience, the components of u are rearranged in order of decreasing sensitivity index, and the allowable set Du is
also reordered. Assume that there are q parameters of higher sensitivity. Denote the new parameter vector by v ∈ R25 and
the allowable set Dv :=

25
i=1[vi∗, v

∗

i ] with vi∗ = v∗

i = vi, i = q + 1, . . . , 25, i.e., the last 25 − q components of v are kept
constant. Then, system (16) can be rewritten as the following equivalent formulation.

ẋ(t) = F(x, v), t ∈ [0, T ], v ∈ Dv, x(0) = x0. (21)

Obviously, system (21) has similar properties to system (16). According to (17)–(19), we can define the setDvw as follows.

Dvw :=

v ∈ Dv|x(·; v) is a solution to (21) with x0 ∈ Wa and x(t; v) ∈ Wa, ∀t ∈ [0, T ]


.

Suppose that there are N groups of experiments in batch culture, and that we have measured the substance
concentrations at L(n), n ∈ IN , different instants during the whole fermentation process of the nth experiment. Let
yn,l := (yn,l1 , yn,l2 , yn,l3 )T ∈ R3 be extracellular experimental results of biomass, glycerol and 1,3-PD at the observation time
tn,l, l ∈ IL(n), n ∈ IN , and xi(tn,l; v), i = 1, 2, 3, the corresponding computational results from system (21). The parameter
identification problem can be formulated as

PIP : min J(v) :=
1
N

N
n=1

L(n)
l=1

3
i=1

|xi(tn,l; v) − yn,li |

3
i=1

|yn,li |

s.t. v ∈ Dvw.

(22)
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According to the actual fermentation process, we assume the following.

(H3) Given x0 ∈ Wa, system (21) is controllable and observable.
(H4) Dvw is nonempty in R25.

Similar to our preceding work [6], we can prove the following theorem.

Theorem 1. Suppose that assumptions (H1)–(H4) are satisfied, then, there exists an optimal solution v∗ to PIP, i.e., ∃v∗
∈ Dvw

such that

J(v∗) ≤ J(v), ∀v ∈ Dvw.

5. A gradient-based algorithm

PIP is essentially an optimization problem subject to continuous state constraints. In this section, the constraint transform
and local smoothing technique [19,20] shall be applied to PIP, and a gradient-based simulated annealing algorithm shall be
developed to solve the transformed identification problem.

In PIP, it is difficult to directly judgewhether the constraint condition v∗
∈ Dvw holds or not. In fact, the essential difficulty

lies in the judgment of the condition x(t; v) ∈ Wa, ∀t ∈ [0, T ].
Let

gk(x(t; v)) := xk(t; v) − x∗

k ,

g8+k(x(t; v)) := xk
∗
− xk(t; v),

k ∈ I8, ∀t ∈ [0, T ].

Then, the condition x(t; v) ∈ Wa, ∀t ∈ [0, T ], is equivalently transcribed into G(v) = 0, with G(v) :=
16

k=1

 T
0 max{0,

gk(x(t; v))}dt . However, G(v) is non-smooth in v. Consequently, standard optimization routines would have difficulties in
dealing with this type of equality constraints. The following smoothing technique is to replace max{0, gk(x(t; v))} by

ĝk,ϵ(x(t; v)) :=


0, if gk(x(t; v)) < −ϵ,

(gk(x(t; v)) + ϵ)2

4ϵ
, if − ϵ ≤ gk(x(t; v)) ≤ ϵ,

gk(x(t; v)), if gk(x(t; v)) > ϵ,

(23)

where ϵ > 0 is an adjustable parameter controlling the accuracy of the approximation. Note that

Ĝϵ(v) :=

16
k=1

 T

0
ĝk,ϵ(x(t; v))dt (24)

is a smooth function in v. The equality constraint G(v) = 0 can now be approximated by

Ĝϵ(v) = 0. (25)

In fact, (25) is slackened to the following inequality constraint in the actual computation

G̃ϵ,γ (v) := Ĝϵ(v) − γ ≤ 0, (26)

where γ > 0 is an adjustable parameter controlling the feasibility of constraint (26).
Next, we shall give the gradient formula for the constraint functionals with respect to the control parameters.

Theorem 2. For each ϵ > 0, γ > 0, the derivatives of the constraint functionals G̃ϵ,γ (v) with respect to the parameters are

∂G̃ϵ(v)
∂vi

=

 T

0

∂H(x(t; v), v, λ(t))
∂vi

dt, i = 1, 2, . . . , 25, (27)

where

H(x(t; v), v, λ(t)) =

16
k=1

 T

0
ĝk,ϵ(x(t; v))dt + λT (t)F(x(t; v), v), (28)

and

λ(t) = (λ1(t), λ2(t), . . . , λ8(t))T , (29)

is the solution of the costate system

λ̇(t) = −
∂H(x(t; v), v, λ(t))

∂x

T

, (30)



J. Wang et al. / Journal of Computational and Applied Mathematics 236 (2012) 2268–2276 2273

with the boundary conditions

λ(0) = λ(T ) = (0, 0, 0, 0, 0, 0, 0, 0)T . (31)

Proof. Since

∂G̃ϵ,γ (v)
∂v

≡
∂G̃ϵ(v)

∂v
,

only the derivation of the gradient of the function G̃ϵ(v) with respect to v is given below. Let v ∈ Dvw be an arbitrary but
fixed vector and δi, i ∈ I25, an arbitrary real number. Define

vi,σ := (v1, . . . , vi + σδi, . . . , v25)
T ,

where σ > 0 is an arbitrary small real number such that v∗i < vi + σδi < v∗

i , i ∈ I25. Thus, G̃ϵ(vi,σ ) can be expressed as

G̃ϵ(vi,σ ) :=

16
k=1

 T

0
ĝk,ϵ(x(t; vi,σ ))dt +

 T

0
λT (t)[F(x(t; vi,σ ), vi,σ ) − ẋ(t; vi,σ )]dt,

where λ is yet arbitrary. Thus, it follows that

△G̃ϵ(vi) :=
dG̃ϵ(vi,σ )

dσ


σ=0

=
∂G̃ϵ(v)

∂vi
δi

=

 T

0


∂H(x(t; v), v, λ(t))

∂x
△x(t; v) +

∂H(x(t; v), v, λ(t))
∂vi

δi − λ(t)△ẋ(t; v)

dt, (32)

where H(x(t; v), v, λ(t)) is defined as in (28). Integrating (32) by parts and combining (28)–(31), we have

∂G̃ϵ(v)
∂vi

δi =

 T

0

∂H(x(t; v), v, λ(t))
∂vi

δidt. (33)

Since δi is arbitrary, conclusion (28) of the theorem follows. The proof is completed. �

Let Dϵ,γ := {v | x(·; v) ∈ S(v) and G̃ϵ,γ (v) ≤ 0}. Then, PIP can be approximated by the following problem.

PIPϵ,γ : min J(v) :=
1
N

N
n=1

L(n)
l=1

3
i=1

|xi(tn,l; v) − yn,li |

3
i=1

|yn,li |

s.t. v ∈ Dϵ,γ .

(34)

Similar to the work [19,20], we can prove the following theorem.

Theorem 3. Let v∗
ϵ,γ be the optimal solution of the approximate problem PIPϵ,γ . Suppose that there exists an optimal solution,

v∗, of the original problem PIP. Then

lim
(ϵ,γ )−→(0,0)

J(v∗

ϵ,γ ) = J(v∗).

Next, we shall develop a gradient-based simulated annealing algorithm to solve the approximate problem PIPϵ,γ .
SupposeQ1 andQ2 are the total number of steps of the outer- and inner-iteration in our annealing algorithm, respectively.

Q3 is the number of sample points which are randomly generated from the set Dvw . According to the approach proposed
in [21], the initial temperature T0 can be estimated as T0 := ςθ with θ the standarddeviation of the cost function ofQ3 sample
points and ς a coefficient. Additionally, the formulas for determining the acceptance probability and temperature lowering
way are given by the generalized Boltzmann–Gibbs statistics [22] and the pseudo Cauchy distribution [23], respectively. To
limit the new sample points within the set Dvw , we introduce the gradients of the constraint functions with respect to the
parameters into our algorithm, which is then constructed as follows.

Algorithm 2.

Step 2.1. Set parameters Q1,Q2,Q3, ς, β, η, ϵ, γ . Generate the initial sample point v0 from Dvw . Set vopt = vnext =

vcurrent := v0, J(vopt) = J(vnext) = J(vcurrent) := J(v0), k := 0 and m := 0.
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Table 1
Sensitivity index ¯̄R of the parameter vector u ∈ R25 of system (16) under four groups of experiments.

Experiment 1: T = 7.3 h, x0 = (0.102 g/L, 418.2609 mmol/L, 0, 0, 0, 0, 0, 0)T ,
¯̄R = (5.6632, 0.0595, 6.2537, 18.6033, 4.1909, 9.1109, 6.0481, 0.5023, 0.0035, 6.3448, 30.9978, 0.0206, 0.998, 0.8642, 0.9649, 0.6322, 9.0698,
0.01909, 0.8456, 5.6401, 0.4706, 10.7913, 6.0902, 0.2279, 0.0105)T

Experiment 2: T = 6.6 h, x0 = (0.2025 g/L, 441.337 mmol/L, 0, 0, 0, 0, 0, 0)T ,
¯̄R = (6.2543, 0.0753, 7.0641, 24.2536, 4.5856, 13.8853, 6.8256, 0.5535, 0.0044, 7.1486, 28.714, 0.0206, 0.9833, 0.9018, 1.0219, 0.6455, 13.7616,
0.021, 0.8564, 7.1402, 0.5338, 13.6238, 7.7768, 0.2495, 0.0129)T

Experiment 3: T = 6.8 h, x0 = (0.173 g/L, 402.9348 mmol/L, 0, 0, 0, 0, 0, 0)T ,
¯̄R =

(5.9587, 0.0762, 6.2282, 19.3686, 3.9353, 10.5956, 5.9919, 0.5275, 0.0045, 6.3059, 26.2665, 0.0194, 0.9805, 0.7901, 0.9937, 0.5589, 10.5124,
0.0201, 0.9318, 6.2682, 0.5183, 12.3381, 7.005, 0.2372, 0.0131)T

Experiment 4: T = 8 h, x0 = (0.2245 g/L, 509.8913 mmol/L, 0, 0, 0, 0, 0, 0)T ,
¯̄R = (5.9574, 0.0587, 7.9242, 22.2547, 4.131, 12.8212, 7.7116, 0.5248, 0.0035, 8.0184, 28.0036, 0.0172, 0.9604, 0.8191, 0.9965, 0.5748, 12.7096,
0.01989, 0.9023, 7.4127, 0.4895, 13.7292, 7.8102, 0.2384, 0.0103)T

Step 2.2. Randomly generate Q3 sample points from Dvw , denoted by v(i), i = 1, 2, . . . ,Q3. Compute the cost functions
J(v(i)), i = 1, 2, . . . ,Q3, and the standard deviation θ of them, and set the initial temperature T0 := ςθ .

Step 2.3. If k > Q1, output vopt and J(vopt), stop; else goto Step 2.4.
Step 2.4. Ifm < Q2, goto Step 2.5; else set k := k+ 1,m := 0, and reduce temperature by setting Tk := T0βk, goto Step 2.3.
Step 2.5. Generate a random variable ξ from the interval (0, 1].
Step 2.6. Compute µ := Tksgn(ξ − 0.5)[(1 +

1
Tk

)|2ξ−1|
− 1], and the next point vnext := vcurrent + µ(v∗

− v∗), where v∗

and v∗ are the upper and lower bounds of the parameter sample v, respectively. Compute G̃ϵ,γ (vnext) by (26), goto
Step 2.7.

Step 2.7. If G̃ϵ,γ (vnext) ≤ 0, goto Step 2.8; else compute

h(vnext) :=
∂G̃ϵ(v)

∂v


v=vnext

,

and the point

vnext := vnext − ρ(vnext)h(vnext),

with −h(vnext) the search direction and ρ(vnext) the step-size selected by Armijo line search, goto Step 2.8.
Step 2.8. Compute J(vnext) and △J := J(vnext) − J(vcurrent). If △J < 0, compute vopt := argmin{J(vopt), J(vnext)}, and let

vcurrent := vnext,m := m + 1, goto Step 2.4. Else compute the acceptance probability P := [1 − (1 − η)
△J
Tk

]
1/(1−η),

and let vbad := Pvnext + (1 − P)vcurrent. Compute G̃ϵ,γ (vbad) by (26), goto Step 2.9.
Step 2.9. If G̃ϵ,γ (vbad) ≤ 0, set vcurrent := vbad, goto Step 2.10; else compute

h(vbad) :=
∂G̃ϵ(v)

∂v


v=vbad

and

vcurrent := vbad − ρ(vbad)h(vbad),

with −h(vbad) the search direction and ρ(vbad) the step-size selected by Armijo line search, goto Step 2.10.
Step 2.10. Setm := m + 1, goto Step 2.4.

6. Numerical example and results

Given r = (−0.2, −0.1, 0.1, 0.2)T ,M1 = 500 and M3 = 100 in Algorithm 1, we obtained the sensitivity index of the
parameter vector of system (16) under four groups of experiments as listed in Table 1.

According to Table 1, parameters u11, u4, u22, u6, u17, u23, u10, u3, u7, u20, u1 and u5 are identified as sensitive. On the
other hand, ui, i = 2, 8, 9, 12–16, 18, 19, 21, 24, 25, are considered insensitive for the reason that their sensitive index are
all smaller than 1.

Denote v = (v1, v2, . . . , v25)
T

:= (u11, u4, u22, u6, u17, u23, u10, u3, u7, u20, u1, u5, u15, u13, u19, u14, u16, u8, u21, u24, u2,
u18, u12, u25, u9)

T . With the values in Table 2, where every parameter takes the corresponding average value of 500 sample
points in Algorithm 1, the problem PIP is solved by solving the problem PIPϵ,γ using Algorithm 2. The parameters chosen
are as follows: Q1 = 1000,Q2 = 500,Q3 = 500, β = 0.98, η = −5, ϵ = 0.0001, γ = 0.0001. For selecting the best
value for ς , we run the algorithm for some different values of ς and finally determine its value by ς = 12. Consequently,
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Table 2
Fixed values of the insensitive parameters of system (16).

u2 u8 u9 u12 u13 u14 u15 u16 u18 u19 u21 u24 u25

3.8710 46.1633 2.7467 185.242 45.9992 1.3341 6.9401 26.6321 3.1453 −1.0522 0.0066 36.8436 16.2526

Table 3
Approximately optimal values of parameters vi, i = 1, 2, . . . , 12.

v1(u11) v2(u4) v3(u22) v4(u6) v5(u17) v5(u23) v6(u10) v7(u3) v8(u7) v9(u20) v10(u1) v10(u5)

38.7706 144.066 53.3623 85.2486 71.8511 12.8892 4543.09 101.122 8.2813 2.8003 51.4459 3.7595

Fig. 1. Comparisons of experimental data and simulating curves of biomass, glycerol and 1,3-PD concentrations in batch culture based on four groups of
experimental results. The horizontal axes represent time. The left vertical axes represent the concentrations of glycerol and 1,3-PD, while the right vertical
axes apply for biomass.

we obtained the approximately optimal values of those sensitive parameters u11, u4, u22, u6, u17, u23, u10, u3, u7, u20, u1 and
u5, i.e., vi, i = 1, 2, . . . , 12, as listed in Table 3.

Fig. 1 shows the comparisons between experimental results and simulating curves of biomass, glycerol and 1,3-PD
concentrations in batch culture under four groups of real experiments, where the scattergrams denote experimental results
and the dashed lines display simulating curves. From Fig. 1, we can find that the nonlinear dynamic system can simulate the
glycerol consumption and 1,3-PD formation well, but the simulation of biomass growth is not ideal. The reason may be that
the multistage growth of cell in batch culture is not considered in our model.

7. Conclusions

In this paper, aiming to reduce the number of kinetic parameters to be identified and to save the computational cost of
parameter identification, we carry out parameter sensitivity analysis of a nonlinear dynamical system by a global technique,
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which is constructed based on combining ‘‘one-factor-at-a-time’’ method with Monte Carlo samplings. To determine those
parameterswith higher sensitivity, a parameter identificationmodel is established and solved by a gradient-based simulated
annealing algorithm. Numerical results based on four groups of real experiments show both the feasibility and validity of
our algorithm.

The current work deals with the kinetic parameter sensitivity analysis and parameter identification of a nonlinear
dynamical system of glycerol batch fermentation. In a future work, wewill consider multistage analysis and optimal control
of this dynamical system.
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