Nil Polynomials of Prime Rings

Chi-Tsuen Y eh and Chen-Lian Chuang

Abstract

Department of Mathematics, National Taiwan University, Taipei, Taiwan, Republic of China

tadata, citation and similar papers at core.ac.uk

Abstract

A ssume that R is a prime ring without nonzero nil one-sided ideals and that $f\left(x_{1}, \ldots, x_{d}\right)$ is a polynomial in the noncommuting variables x_{1}, \ldots, x_{d} and with the coefficients in the extended centroid C of R. If for all $r_{1}, \ldots, r_{d} \in R$, there exists an integer $n=n\left(r_{1}, \ldots, r_{d}\right) \geq 1$, depending on $r_{1}, \ldots, r_{d} \in R$, such that $f\left(r_{1}, \ldots, r_{d}\right)^{n}=0$, then either $f\left(r_{1}, \ldots, r_{d}\right)=0$ for all $r_{1}, \ldots, r_{d} \in R$ or R is a finite matrix ring over a finite field. © 1996 A cademic Press, Inc.

(I) RESULT

Let R be an associative ring. An element $r \in R$ is said to be nilpotent if $r^{n}=0$ for some integer $n \geq 1$. A subset S of R is called nil if all $r \in S$ are nilpotent. It is easy to see that R has no nil right ideals if and only if R has no nil left ideals. Nil right ideals or nil left ideals together are generally called nil one-sided ideals.

A ssume that R is a prime ring with the extended centroid C. The ring $R C$ is called the central closure of R. Let $f=f\left(x_{1}, \ldots, x_{d}\right)$ be a polynomial in the noncommuting variables x_{1}, \ldots, x_{d} and with the coefficients in the extended centroid C. The polynomial f is called an identity of R, if $f\left(r_{1}, \ldots, r_{d}\right)=0$ for all $r_{1}, \ldots, r_{d} \in R$. The polynomial f is said to be nil on R if for any $r_{1}, \ldots, r_{d} \in R, f\left(r_{1}, \ldots, r_{d}\right)$ is nilpotent, that is, $f\left(r_{1}, \ldots, r_{d}\right)^{n}=0$ for some integer $n=n\left(r_{1}, \ldots, r_{d}\right) \geq 1$ depending on r_{1}, \ldots, r_{d}. Our aim is to investigate nil polynomials on a prime ring R without nonzero nil one-sided ideals: Polynomial identities are nil on R in a trivial way. One may thus wonder whether the converse holds. By the result of [2], this is false when R is a finite matrix ring over a finite field.

We hence exclude these somewhat trivial exceptions. Here are some known partial results: Herstein first proved the case for $f=[x, y] \stackrel{\text { def. }}{=} x y-$ $y x$ on arbitrary prime rings. The assertion for any arbitrary f on (semi)primitive rings only was proved in a joint work of Herstein, et al. [4]. The assertion for multilinear f on arbitrary prime rings was proved by Felzenszwalb and Giambruno $[5,6]$. The special case for $f=[x, y]_{k}$ on any prime rings was proved in [3]. (Here $[x, y]_{k}$ is defined inductively by $[x, y]_{1} \stackrel{\text { def. }}{=}[x, y]$ and $[x, y]_{k} \stackrel{\text { def. }}{=}\left[[x, y]_{k-1}, y\right]$ for $k>1$.) This problem is solved in its full generality as follows:

Theorem. Assume that R is a prime ring without nonzero nil one-sided ideals. If a polynomial $f\left(x_{1}, \ldots, x_{d}\right)$, in the noncommuting variables x_{1}, \ldots, x_{d} and with the coefficients in the extended centroid C of R, is nil on R, then either $f\left(x_{1}, \ldots, x_{d}\right)$ is a polynomial identity of R or R is a finite matrix ring over a finite field.

The theorem can be used to improve results on this line by removing the multilinearity assumption. Let us mention two of them here: Let R be a prime ring without nonzero nil one-sided ideals and let $f\left(x_{1}, \ldots, x_{d}\right)$ be a polynomial satisfying the following two conditions: (A) If the characteristic of R is of the finite characteristic $p \geq 2$, then $f\left(x_{1}, \ldots, x_{d}\right)$ is not an identity for $p \times p$ matrices over an infinite field of the characteristic p. (B) The polynomial $f\left(x_{1}, \ldots, x_{d}\right)$ is homogeneous in some nonempty subset of its variables.
(I) Let δ be a nonzero derivation of R. If for every $r_{1}, \ldots, r_{d} \in R$, there exists an integer $n=n\left(r_{1}, \ldots, r_{d}\right) \geq 1$, depending on r_{1}, \ldots, r_{d}, such that

$$
\delta\left(f\left(r_{1}, \ldots, r_{d}\right)^{n}\right)=0,
$$

then the polynomial $f\left(x_{1}, \ldots, x_{d}\right)$ is power central valued on R and the ring R satisfies the standard polynomial identity of the degree $l+2$, where l is the degree of $f\left(x_{1}, \ldots, x_{d}\right)$.
(II) If for every $r_{1}, \ldots, r_{d}, s_{1}, \ldots, s_{d} \in R$, there exist two integers $n, m \geq 1$, both depending on $r_{1}, \ldots, r_{d}, s_{1}, \ldots, s_{d}$ altogether, such that

$$
f\left(r_{1}, \ldots, r_{d}\right)^{n} f\left(s_{1}, \ldots, s_{d}\right)^{m}=f\left(s_{1}, \ldots, s_{d}\right)^{m} f\left(r_{1}, \ldots, r_{d}\right)^{n}
$$

then the polynomial $f\left(x_{1}, \ldots, x_{d}\right)$ is a power central valued on R and the ring R satisfies the standard polynomial identity of the degree $l+2$, where l is the degree of $f\left(x_{1}, \ldots, x_{d}\right)$.

The result (I) for multilinear $f\left(x_{1}, \ldots, x_{d}\right)$ is proved in [9], which generalizes [5], where only inner derivation δ is considered. The result (II) for multilinear $f\left(x_{1}, \ldots, x_{d}\right)$ is proved in [1] with the restriction that the
characteristic of R is not 2 . The hypotheses (A) and (B) on the polynomial $f\left(x_{1}, \ldots, x_{d}\right)$ are inherited from the fundamental work [4], where the structure of power central polynomials on division rings is determined under these two hypotheses. The general method for attacking problems (I) and (II) is a reduction to nil polynomials on prime rings and to power central polynomials on division rings. Hence any progress on the knowledge of nil polynomials on prime rings and power central polynomials on division rings will automatically improve the known results in the form (I) and (II) above. O ur theorem is one step toward this goal. The proofs of (I) and (II) as stated above are pretty much the same as those in $[9,1]$ and are omitted here for brevity.

(II) PROOF

We first recall three simple facts, whose proofs are also included here for the sake of completeness:

FACT 1. Assume that R is a prime ring without nil-onesided ideals. Let ρ be a one-sided ideal of R and let $l(\rho) \stackrel{\text { def. }}{=}\{x \in R: x \rho=0\}$ be the left annihilator of ρ. Then the quotient ring $\bar{\rho} \stackrel{\text { def. }}{=} \rho / \rho \cap l(\rho)$ is also a prime ring without nil one-sided ideals. Furthermore, each element of the extended centroid of R can be naturally interpreted as an element of the extended centroid of $\bar{\rho}$.

Proof. For $t \in \rho$, let \bar{t} denote the element $t+\rho \cap l(\rho)$ in the quotient ring $\bar{\rho} \stackrel{\text { def. }}{=} \rho / \rho \cap l(\rho)$. For a subset T of ρ, let $\bar{T} \stackrel{\text { def. }}{=}\{\bar{t}: t \in T\}$. For $a, b \in \rho$, if $\bar{a} \bar{\rho} \bar{b}=0$ or, equivalently, $a \rho b \rho=0$, then, by the primeness of R, either $a \rho=0$ or $b \rho=0$, that is, either $\bar{a}=0$ or $\bar{b}=0$. This shows the primeness of $\bar{\rho}$. A ny right ideal of $\bar{\rho}$ is of the form \bar{T}, where T is a right ideal of ρ satisfying $T \supseteq \rho \cap l(\rho)$. Conversely, for any right ideal T of ρ satisfying $T \supseteq \rho \cap l(\rho), \bar{T}$ is a right ideal of $\bar{\rho}$. Let T be a right ideal of ρ satisfying $T \supseteq \rho \cap l(\rho)$ such that \bar{T} is nil. For any $t \in T, \bar{t}^{n}=0$ for some n, that is, $t^{n} \in l(\rho)$ and hence $t^{n+1}=0$. So T is nil. Since $T \rho \subseteq T, T \rho$ is nil. But $T \rho$ is a right ideal of R. So $T \rho=0$ and hence $\bar{T}=0$. This shows that $\bar{\rho}$ has no nonzero nil one-sided ideals. Finally, let α be an element of the extended centroid of R and let $0 \neq I$ be a two-sided ideal of R such that $\alpha I \subseteq R$. The map $\bar{\alpha}: \bar{t} \in \overline{\rho I} \mapsto \overline{\alpha t} \in \bar{\rho}$ for $t \in \rho I$ is well defined and gives an element of the extended centroid of $\bar{\rho}$. Hence α, when it acts on $\bar{\rho}$, is interpreted as $\bar{\alpha}$.

FACT 2. Assume that R is a prime ring satisfying a nontrivial generalized polynomial identity and that C is the extended centroid of R. Then for any
idempotent e in the socle of $R C, R \cap e R C e$ is a prime ring and eRCe $=(R \cap$ $e R C e) C$.

Proof. First, we show the primeness of $R \cap e R C e$: Pick a two-sided ideal $I \neq 0$ of R such that $e I, I e \subseteq R$. Then $e I^{2} e \subseteq R \cap e R C e$. For $a, b \in$ $R \cap e R C e$, if $a(R \cap e R C e) b=0$, then $0=a\left(e I^{2} e\right) b=a I^{2} b$ and hence either $a=0$ or $b=0$. Next, we show that $e R C e$ is the M artindale quotient ring of $R \cap e R C e$: Let $a \in e R C e$ be arbitrary and let $0 \neq J$ be a two-sided ideal of R such that $e J, J e, a J, J a \subseteq R$. We verify that $0 \neq e J^{3} e$ is a two-sided ideal of $R \cap e R C e$: For any $x \in R \cap e R C e$, we have $x e J^{3} e=$ $e x J^{3} e \subseteq e R J^{3} e \subseteq e J^{3} e$ and similarly $e J^{3} e x \subseteq e J^{3} e$. Observe that $a e J^{3} e=$ $e a J^{3} e \subseteq e R J^{2} e \subseteq e J^{2} e \subseteq R \cap e R C e$ and similarly $e J^{3} e a \subseteq R \cap e R C e$. H ence $e R C e$ is "a" two-sided M artindale quotient ring of $R \cap e R C e$, as asserted. Since R satisfies a nontrivial generalized polynomial identity, eRCe is a PI -ring and hence so is $R \cap e R C e$. For a prime PI -ring, its central quotient ring and its M artindale quotient ring coincide. But the center of $e R C e$ is obviously $e C$. So we have $e R C e \subseteq(R \cap e R C e) \cdot e C=(R \cap e R C e) C$. The other inclusion $e R C e \supseteq(R \cap e R C e) C$ is obvious. So we have the equality $e R C e=(R \cap e R C e) C$, as asserted.

A n element $a \in R$ is of the nilpotency index n if $a^{n}=0$ and $a^{n-1} \neq 0$. If there exists an integer $m \geq 1$ such that any nilpotent element of R has the nilpotency index $\leq m$, then the ring R is said to be of bounded nilpotency index and the least such integer m is called the nilpotency index of R. If there does not exist such an integer $m \geq 1$, then R is said to be of unbounded nilpotency index.

FACT 3. If R is a ring of unbounded nilpotency index, then for any integer $n \geq 2$, there exists $a \in R$ with the nilpotency index n.

Proof. Let $n \geq 2$ be given. Since R is of unbounded nilpotency index, there exists $b \in R$ of the nilpotency index $s>n^{2}$. Set

$$
a \stackrel{\text { def. }}{=} b^{[s / n]+1},
$$

where [•] denotes the greatest integer function. Then

$$
\begin{aligned}
n([s / n]+1) & >n(s / n)=s \geq n[s / n]=(n-1)[s / n]+[s / n] \\
& >(n-1)([s / n]+1) .
\end{aligned}
$$

So we have $a^{n}=0$ but $a^{n-1} \neq 0$.
Fix arbitrarily finitely many distinct noncommuting variables x, z_{1}, \ldots, z_{d}. We will consider polynomials in these variables and with their coefficients in the extended centroid C of R. A typical monomial assumes
the form

$$
\begin{equation*}
\mu=\mu\left(x, z_{1}, \ldots, z_{d}\right) \stackrel{\text { def. }}{=} \alpha x^{t_{0}} z_{i_{1}} x^{t_{1}} z_{i_{2}} x^{t_{2}} \cdots z_{i_{n}} x^{t_{n}} \tag{1}
\end{equation*}
$$

where $0 \neq \alpha \in C$, where $n \geq 0$, where $i_{1}, \ldots, i_{n} \in\{1, \ldots, d\}$ are not necessarily distinct, and where $t_{0}, t_{1}, \ldots, t_{n} \geq 0$ are integers. If $n=0$, the monomial μ in (1) above is of the form $\mu \stackrel{\text { def. }}{=} \alpha x^{t_{0}}$. The average x-degree of the monomial μ in (1) above is defined to be $\sum_{i=0}^{n} t_{i} / n$ for $n>0$ and ∞ for $n=0$. The average x-degree of a polynomial $f=f\left(x, z_{1}, \ldots, z_{d}\right)$ in general is defined to be the minimum of the average x-degrees of monomials involved nontrivially in f. (Note that the average x-degree of a polynomial is, in general, either a rational ≥ 0 or ∞, not necessarily an integer. The average x-degree of a polynomial is ∞ if and only if it involves the variable x only.) By a cyclic monomial of the initial degree $m \geq 0$, we mean a monomial of the form

$$
\begin{equation*}
\mu=\mu\left(x, z_{1}, \ldots, z_{d}\right) \stackrel{\text { def. }}{=} \alpha x^{m} z_{i_{1}} x^{l} z_{i_{2}} x^{l} \cdots z_{i_{n}} x^{l-m} \tag{2}
\end{equation*}
$$

where $0 \neq \alpha \in C$, where $n \geq 1$, where $i_{1}, \ldots, i_{n} \in\{1, \ldots, d\}$ are not necessarily distinct, and where l, m are integers such that $l \geq m \geq 0$. The average x-degree of the cyclic monomial μ displayed in (2) above is obviously l. For convenience, the monomial of the form $\mu \stackrel{\text { def. }}{=} \alpha x^{t}$ is also said to be cyclic of the initial degree t. A cyclic monomial involved nontrivially in a given polynomial $f=f\left(x, z_{1}, \ldots, z_{d}\right)$ is said to be leading if its average x-degree is equal to the average x-degree of f, that is, if it is of the lowest possible average x-degree. For a given polynomial $f=$ $f\left(x, z_{1}, \ldots, z_{d}\right)$, we define, for each integer $m \geq 0, f^{(m)}=f^{(m)}\left(x, z_{1}, \ldots\right.$, z_{d}) to be the sum of leading cyclic monomials of f with the initial degree m. (H ence if m is $>$ the average x-degree of f, then $f^{(m)}=0$ by the definition.)

The following contains the main computation of our argument:
Lemma 1. If $f\left(x, z_{1}, \ldots, z_{d}\right)$ is a polynomial of the average x-degree l, where l is an integer, then the equality

$$
a^{l-m}\left(f\left(a, z_{1}, \ldots, z_{d}\right)\right)^{s} a^{m}=\left(f^{(m)}\left(1, a^{l} z_{1}, \ldots, a^{l} z_{d}\right)\right)^{s} a^{l}
$$

holds for any integers $m, s \geq 0$ with $m \leq l$ and for any $a \in R$ of the nilpotency index $l+1$.

Proof. Let $f_{0}=f_{0}(x)=f_{0}\left(x, z_{1}, \ldots, z_{d}\right)$ be the sum of the monomials of f which involve only the variable x. If a term $\mu\left(x, z_{1}, \ldots, z_{d}\right)$ of $f\left(x, z_{1}, \ldots, z_{d}\right)$ in the form (1) is such that $t_{n}>l-m$ or such that $t_{i}>l$
for some $i=1, \ldots, n-1$, then $\mu\left(a, z_{1}, \ldots, z_{d}\right) a^{m}=0$. We hence let S be the set of all terms μ of f, in the form (1), with $t_{n} \leq l-m$ and $t_{i} \leq l$ for all $i=1, \ldots, n-1$. Then we have

$$
f\left(a, z_{1}, \ldots, z_{d}\right) a^{m}=\left(\sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right) a^{m} .
$$

But for a typical term $\mu \in S$ of the form (1), since the average x-degree of μ is $\geq l$, we have $t_{0}+t_{n} \geq l$ and hence also $t_{0} \geq m$. We may thus write

$$
\sum_{\mu \in S} \mu\left(x, z_{1}, \ldots, z_{d}\right)=x^{m} g\left(x, z_{1}, \ldots, z_{d}\right)
$$

where $g\left(x, z_{1}, \ldots, z_{d}\right)$ is a polynomial of x, z_{1}, \ldots, z_{d}. We hence have

$$
\begin{aligned}
f\left(a, z_{1}, \ldots, z_{d}\right) a^{m} & =\left(\sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right) a^{m} \\
& =\left(a^{m} g\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right) a^{m} \\
& =a^{m}\left(g\left(a, z_{1}, \ldots, z_{d}\right) a^{m}+f_{0}(a)\right) .
\end{aligned}
$$

U sing this equality, we have for any integer $s>0$,

$$
\begin{aligned}
f\left(a, z_{1}, \ldots, z_{d}\right)^{s} a^{m}= & f\left(a, z_{1}, \ldots, z_{d}\right)^{s-1} f\left(a, z_{1}, \ldots, z_{d}\right) a^{m} \\
= & f\left(a, z_{1}, \ldots, z_{d}\right)^{s-1} a^{m}\left(g\left(a, z_{1}, \ldots, z_{d}\right) a^{m}+f_{0}(a)\right) \\
= & f\left(a, z_{1}, \ldots, z_{d}\right)^{s-2} a^{m}\left(g\left(a, z_{1}, \ldots, z_{d}\right) a^{m}+f_{0}(a)\right)^{2} \\
= & \cdots \\
= & a^{m}\left(g\left(a, z_{1}, \ldots, z_{d}\right) a^{m}+f_{0}(a)\right)^{s} \\
= & \left(a^{m} g\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right) \\
& \times a^{m}\left(g\left(a, z_{1}, \ldots, z_{d}\right) a^{m}+f_{0}(a)\right)^{s-1} \\
= & \left(a^{m} g\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{2} \\
& \times a^{m}\left(g\left(a, z_{1}, \ldots, z_{d}\right) a^{m}+f_{0}(a)\right)^{s-2} \\
= & \cdots \\
= & \left(a^{m} g\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s} a^{m} \\
= & \left(\sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s} a^{m} .
\end{aligned}
$$

We now consider the product

$$
a^{l-m} f\left(a, z_{1}, \ldots, z_{d}\right)^{s} a^{m}=a^{l-m}\left(\sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s} a^{m} .
$$

If $\mu\left(x, z_{1}, \ldots, z_{d}\right) \in S$, in the form (1), satisfies $t_{0}>m$, then $a^{l-m} \mu\left(a, z_{1}\right.$, $\left.\ldots, z_{d}\right)=0$. We hence let T be the set consisting of all terms $\mu \in S$, in the form (1), with $t_{0} \leq m$. Then we have

$$
a^{l-m} \sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)=a^{l-m} \sum_{\mu \in T} \mu\left(a, z_{1}, \ldots, z_{d}\right) .
$$

A typical term $\mu \in T$ in the form (1) satisfies $t_{0} \leq m, t_{n} \leq l-m$, and $t_{i} \leq l$ for all $i=1, \ldots, n-1$. Since the average x-degree of $\mu \in T$ is $\geq l$, we must have $t_{0}=m, t_{n}=l-m$, and $t_{i}=l$ for all $i=1, \ldots, n-1$. That is, each $\mu \in T$ must be a leading cyclic monomial with the initial degree m. Conversely, T obviously consists of all such leading cyclic monomials with the initial degree m. Hence,

$$
f^{(m)}\left(x, z_{1}, \ldots, z_{d}\right)=\sum_{\mu \in T} \mu\left(x, z_{1}, \ldots, z_{d}\right) .
$$

Since each leading cyclic monomial of the initial degree m starts with x^{m} and ends with x^{l-m}, we may write

$$
f^{(m)}\left(x, z_{1}, \ldots, z_{d}\right)=x^{m} h\left(x, z_{1}, \ldots, z_{d}\right) x^{l-m},
$$

where $h\left(x, z_{1}, \ldots, z_{d}\right)$ is polynomial in x, z_{1}, \ldots, z_{d}. We hence have

$$
\begin{aligned}
a^{l-m} \sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right) & =a^{l-m} \sum_{\mu \in T} \mu\left(a, z_{1}, \ldots, z_{d}\right) \\
& =a^{l-m} f^{(m)}\left(a, z_{1}, \ldots, z_{d}\right) \\
& =a^{l} h\left(a, z_{1}, \ldots, z_{d}\right) a^{l-m} .
\end{aligned}
$$

W ith this equality, we compute:

$$
\begin{aligned}
a^{l-m} f & \left(a, z_{1}, \ldots, z_{d}\right)^{s} a^{m} \\
= & a^{l-m}\left(\sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right) \\
& \quad \times\left(\sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s-1} a^{m} \\
& =\left(a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times a^{l-m}\left(\sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s-1} a^{m} \\
= & \left(a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{2} \\
& \times a^{l-m}\left(\sum_{\mu \in S} \mu\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s-2} a^{m} \\
= & \cdots \\
= & \left(a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s} a^{l} .
\end{aligned}
$$

Since $a^{l+1}=0$ and since $f_{0}(a)$ is a C-linear combination of positive powers of a, we have $f_{0}(a) a^{l}=0$. Using this, we continue our computation:

$$
\begin{aligned}
\left(a^{l} h\right. & \left.\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s} a^{l} \\
& =\left(a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s-1}\left(a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right) a^{l} \\
& =\left(a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s-1} a^{l} h\left(a, z_{1}, \ldots, z_{d}\right) a^{l} \\
& =\left(a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)+f_{0}(a)\right)^{s-2} a^{l}\left(h\left(a, z_{1}, \ldots, z_{d}\right) a^{l}\right)^{2} \\
& =\cdots \\
& =a^{l}\left(h\left(a, z_{1}, \ldots, z_{d}\right) a^{l}\right)^{s} \\
& =\left(a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)\right)^{s} a^{l} .
\end{aligned}
$$

Finally, by the definition of the polynomial $h\left(x, z_{1}, \ldots, z_{d}\right)$, we observe

$$
a^{l} h\left(a, z_{1}, \ldots, z_{d}\right)=f^{(m)}\left(1, a^{l} z_{1}, \ldots, a^{l} z_{d}\right)
$$

Combining all these computations, we have

$$
a^{l-m}\left(f\left(a, z_{1}, \ldots, z_{d}\right)\right)^{s} a^{m}=\left(f^{(m)}\left(1, a^{l} z_{1}, \ldots, a^{l} z_{d}\right)\right)^{s} a^{l}
$$

as asserted.
Since the average x-degree of a cyclic monomial must be an integer, only those polynomials with integral average x-degrees can possibly possess leading cyclic monomials. Obviously, not every polynomial $f\left(x, z_{1}, \ldots, z_{d}\right)$ with the integral average x-degree involves nontrivially leading cyclic monomials. However, for any given polynomial, there does exist a proper substitution that results in a polynomial involving nontriv-
ially leading cyclic monomials. For notational simplicity, we restrict ourselves to polynomials in two distinct variables only: A typical monomial in the two variables x, y assumes the form:

$$
\begin{equation*}
\mu=\mu(x, y) \stackrel{\text { def. }}{=} \alpha x^{t_{0}} y x^{t_{1}} y x^{t_{2}} \cdots y x^{t_{n}} \tag{3}
\end{equation*}
$$

where $0 \neq \alpha \in C$, where $n \geq 0$ and where $t_{0}, t_{1}, \ldots, t_{n} \geq 0$ are integers. Let z_{1}, \ldots, z_{n} be a set of distinct new variables. We consider the substitution of x by x^{b} and y by $\sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}$, where $b, \rho, \rho_{i} \geq 0$ are integers with $\rho \geq \rho_{i}$. A ssume that the average x-degree of $\mu(x, y)$, given in (3), is l, that is, $l \stackrel{\text { def. }}{=} \sum_{i=0}^{n} t_{n} / n$. Then the average x-degree of $\mu\left(x^{b}, y\right)$ is obviously equal to $b l$. It is also obvious that all terms in the expansion of $\mu\left(x^{b}, \sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}\right)$ have the average x-degree $b l+\rho$. Hence, if $\mu(x, y)$ is a term of a polynomial $f(x, y)$ with the lowest possible average x-degree, then all terms in the expansion of $\mu\left(x^{b}, \sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}\right)$ still possess the lowest possible average x-degree in $f\left(x^{b}, \sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}\right)$.

Lemma 2. Let $f=f(x, y)$ be a polynomial in the two distinct variables x, y. Assume that the monomial $\mu=\mu(x, y)$, in the form of (3), is a term of f with the lowest possible average x-degree. Then there exist integers $b, \rho, \rho_{i} \geq 0$, with $\rho \geq \rho_{i}$, such that, in the expansion of $\mu\left(x^{b}, \sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}\right)$, the polynomial expression.

$$
\begin{align*}
& \tilde{\mu}=\tilde{\mu}\left(x, z_{1}, \ldots, z_{n}\right) \stackrel{\text { def. }}{=} \alpha x^{b t_{0}}\left(x^{\rho_{1}} z_{1} x^{\rho-\rho_{1}}\right) x^{b t_{1}}\left(x^{\rho_{2}} z_{2} x^{\rho-\rho_{2}}\right) x^{b t_{2}} \ldots \\
&\left(x^{\rho_{n}} z_{n} x^{\rho-\rho_{n}}\right) x^{b t_{n}} \tag{4}
\end{align*}
$$

is a leading cyclic monomial of the polynomial $f\left(x^{b}, \sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}\right)$.
Proof. A ssume that the average x-degree of $f(x, y)$ is $l \geq 0$ and that the monomial $\mu(x, y)$, given in the form of (3), is a term of $f(x, y)$ also with the average x-degree l. We first choose $b \geq 1$ so that $b l$ is an integer. Then both $f\left(x^{b}, y\right)$ and $\mu\left(x^{b}, y\right)$ are of the average x-degree $b l$. Also, the expression (4), being a term of the expansion of $\mu\left(x^{b}, \sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}\right)$, is of the average x-degree $b l+\rho$. In order to make the expression (4) cyclic, the following conditions must be satisfied:

$$
\begin{array}{r}
\left(\rho-\rho_{1}\right)+b t_{1}+\rho_{2}=b l+\rho \\
\left(\rho-\rho_{2}\right)+b t_{2}+\rho_{3}=b l+\rho, \\
\cdots \\
\left(\rho-\rho_{n-1}\right)+b t_{n-1}+\rho_{n}=b l+\rho \\
\left(\rho-\rho_{n}\right)+b\left(t_{n}+t_{0}\right)+\rho_{1}=b l+\rho .
\end{array}
$$

These are equivalent to the following:

$$
\begin{gathered}
\rho_{2}-\rho_{1}=b l-b t_{1}, \\
\rho_{3}-\rho_{2}=b l-b t_{2}, \\
\cdots \\
\rho_{n}-\rho_{n-1}=b l-b t_{n-1}, \\
\rho_{1}-\rho_{n}=b l-b\left(t_{n}+t_{0}\right) .
\end{gathered}
$$

These n-equations are dependent: The last equation is the sum of the first $n-1$ equations since l, the average x-degree of $\mu(x, y)$, is defined to be $\sum_{i=0}^{n} t_{i} / n$. We can solve $\rho_{2}, \ldots, \rho_{n}$ in terms of ρ_{1} :

$$
\begin{aligned}
\rho_{2}= & \rho_{1}+b l-b t_{1}, \\
\rho_{3}= & \rho_{2}+b l-b t_{2}=\rho_{1}+2 b l-b\left(t_{1}+t_{2}\right), \\
& \cdots, \\
\rho_{n}= & \rho_{n-1}+b l-b t_{n-1}=\rho_{1}+(n-1) b l-b\left(t_{1}+\cdots+t_{n-1}\right) .
\end{aligned}
$$

We can thus choose the positive integer ρ_{1} so large that all $\rho_{2}, \ldots, \rho_{n} \geq 0$, and then we let ρ be the maximum of $\rho_{i}, i=1, \ldots, n$, to insure that each $\rho-\rho_{i} \geq 0$. Finally, we observe that among all terms of $f(x, y)$, only the monomial $\mu(x, y)$ can give rise to the expression (4). H ence the expression (4) does occur nontrivially in $f\left(x^{b}, \sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}\right)$, as asserted.

As we consider only polynomials in the two variables x, y, we need a substitution which converts polynomials in variables other than x, y to polynomials in x, y only:

Lemma 3. If $f=f\left(x, y, z_{1}, \ldots, z_{d}\right)$ is a nontrivial polynomial in the distinct variables $x, y, z_{1}, \ldots, z_{d}$, then there exist integers $m_{1}, \ldots, m_{n} \geq 1$ such that the polynomial

$$
f\left(x, y, x^{m_{1}} y, \ldots, x^{m_{d}} y\right),
$$

in the two variables x, y only, is nontrivial.
Proof. If m_{1} is an integer strictly larger than the x-degree of f, then the polynomial $f\left(x, y, x^{m_{1}} y, z_{2}, \ldots, z_{d}\right)$ remains nontrivial. (F or, by changing all occurrence of $x^{m_{1}} y$ in $f\left(x, y, x^{m_{1}} y, z_{2}, \ldots, z_{d}\right)$ back to z_{1}, we can get back $f\left(x, y, z_{1}, \ldots, z_{d}\right)$.) By repeating this process for z_{2}, \ldots, z_{d} consecutively, the claim is proved.

With these lemmas in hand, we are now ready to give:
Proof of Theorem. We first show that if R satisfies a nontrivial generalized polynomial identity, then the assertion of the theorem holds: By the result of [8], $R C$ is then a primitive ring with nonzero socle. First, assume that the extended centroid C is finite. We can then pick a nonzero two-sided ideal I of R such that $\alpha I \subseteq R$ for each $\alpha \in C$. But $I C$ is a nonzero two-sided ideal of $R C$ and hence must contain the socle. Since I is so chosen that $I C \subseteq R$, the ring R itself must also contain the socle and hence must be also primitive. The assertion now follows from Theorem 1.7 of [4]. Second, assume that C is infinite. Let $e \in R C$ be an idempotent of the finite rank k. Then f^{k} is a polynomial identity of $R \cap e R C e$. But the ring $R \cap e R C e$ and its central quotient ring $e R C e$ (by Fact 2) satisfy the same polynomial identities by Theorem 2 on page 52 of [7]. So f^{k} is also an identity of eRCe. By Theorem 2 on page 90 of [7], the polynomial f itself also vanishes identically on $e R C e$. Since any finitely many elements of the socle of $R C$ must fall in some $e R C e$ for a suitable idempotent $e \in R C$ of the large enough finite rank, f vanishes on the socle of $R C$. Since the socle of $R C$ is a dense subring of $R C$, the identity f vanishes on $R C$ and hence on R as asserted.

It thus suffices to show that R satisfies a nontrivial generalized polynomial identity. By Lemma 3, R also possesses a nil polynomial in x, y only, say $g(x, y)$. We proceed by the induction on the y-degree of $g(x, y)$ to show that R satisfies a nontrivial generalized polynomial identity: As the induction basis, we first assume that the y-degree of $g(x, y)$ is 0 . That is, $g(x, y)$ is a polynomial in x only, say,

$$
g(x, y)=g(x) \stackrel{\text { def. }}{=} x^{m}\left(1+\alpha_{1} x+\cdots+\alpha_{n} x^{n}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{n} \in C$ and where $m \geq 1, n \geq 0$ are integers. If the J acobson radical $\mathcal{F}(R)$ of R is trivial, the assertion follows from Corollary 1.8 of [4]. We may thus assume that $\mathcal{F}(R) \neq 0$. Let I be a nonzero two-sided ideal of R such that $\alpha_{i} I \subseteq \mathcal{A}(R)$ for $i=1, \ldots, n$. For any arbitrary $a \in I$, there exists an integer $s=s(a) \geq 1$ such that

$$
0=g(a)^{s}=a^{m s}\left(1+\alpha_{1} a+\cdots+\alpha_{n} a^{n}\right)^{s} .
$$

Since $\alpha_{1} a, \ldots, \alpha_{n} a^{n} \in \mathscr{A}(R)$, the element $1+\alpha_{1} a+\cdots+\alpha_{n} a^{n}$ is invertible and hence $a^{m s}=0$. This shows that I is a nonzero nil two-sided ideal of R, a contradiction to our assumption. So we assume that the y-degree of $g(x, y)$ is >0. Fix an arbitrary term of $g(x, y)$ in the lowest possible average x-degree and let n be the y-degree of this term. (H ence n must be \leq the y-degree of $g(x, y)$.) By Lemma 2, there exist integers $b, \rho, \rho_{i} \geq 0$
with $\rho \geq \rho_{i}$ such that the polynomial

$$
h\left(x, z_{1}, \ldots, z_{n}\right) \stackrel{\text { def. }}{=} g\left(x^{b}, \sum_{i=1}^{n} x^{\rho_{i}} z_{i} x^{\rho-\rho_{i}}\right)
$$

possesses nonzero leading cyclic monomials, say, of the initial degree $m \geq 0$. Let l be the average x-degree of $h\left(x, z_{1}, \ldots, z_{n}\right)$. If R is of the bounded nilpotency index, say, q, then $g(x, y)^{q}$ is already a polynomial identity of R and we are done in this case. We may thus assume that R is of the unbounded nilpotency index. By Fact 3, we may pick $a \in R$ of the nilpotency index $l+1$. By Lemma 1 , the polynomial $h^{(m)}\left(1, z_{1}, \ldots, z_{n}\right)$ is nil on the right ideal $\rho \stackrel{\text { def. }}{=} a^{l} R$ and hence also on $\bar{\rho} \stackrel{\text { def. }}{=} \rho / \rho \cap l(\rho)$. By Lemma 3, there exist integers $m_{3}, \ldots, m_{n} \geq 1$ such that the polynomial

$$
g^{\prime}(x, y) \stackrel{\text { def. }}{=} h^{(m)}\left(1, x, y, x^{m_{3}} y, \ldots, x^{m_{n}} y\right)
$$

is nontrivial. The y-degree of $g^{\prime}(x, y)$ is obviously $<$ the y-degree of $g(x, y)$. By Fact $1, \bar{\rho} \stackrel{\text { def. }}{=} \rho / \rho \cap l(\rho)$ is a prime ring without nonzero nil one-sided ideals. By the induction hypothesis applied to the polynomial $g^{\prime}(x, y)$ nil on $\bar{\rho}, \bar{\rho}$ satisfies nontrivial generalized polynomial identities. By the result of the previous paragraph, $\bar{\rho}$ is a PI-ring. Say, $p\left(x_{1}, \ldots, x_{s}\right)$ is a polynomial identity of $\bar{\rho}$. Then $p\left(a^{l} x_{1}, \ldots, a^{l} x_{s}\right) a^{l}$ is a nontrivial generalized polynomial identity of R, as asserted.

REFERENCES

1. J. Bergen, Multilinear polynomials with power commuting values, Houston J. Math. 11 (1985), 283-292.
2. C.-L. Chuang, On ranges of polynomials in finite matrix rings, Proc. Amer. Math. Soc. 110 (1990), 293-302.
3. C.-L. Chuang and J.-S. Lin, Rings with nil and power central k-th commutators, Rend. Circ. Mat. Palermo 41 (1992), 62-68.
4. I. N. H erstein, C. Procesi, and M. Schacher, A Igebraic valued functions on noncommutative rings, J. Algebra 36 (1975), 128-150.
5. B. Felzenszwalb and A. Giambruno, Centralizers and multilinear polynomials in noncommutative rings, J. London Math. Soc. 19 (1979), 417-428.
6. B. Felzenszwalb and A. Giambruno, Periodic and nil polynomials in rings, Canad. Math. Bull. 23 (1980), 473-476.
7. N. Jacobson, "PI-A Igebra, An Introduction," Lecture Notes in Mathematics, Vol. 441 Springer-V erlag, N ew Y ork/Berlin, (1967).
8. W. S. M artindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
9. Di Vincenzo, Derivations and multilinear polynomials, Rend. Sem. Mat. Univ. Padova 81 (1989), 209-219.
