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Assume that R is a prime ring without nonzero nil one-sided ideals and that
f(xy,...,x,) is a polynomial in the noncommuting variables x,,...,x,; and with
the coefficients in the extended centroid C of R. If for all r{,...,r; € R, there
exists an integer n = n(ry,...,r,) = 1, depending on r,...,r, € R, such that
fGry, ..., r))" = 0, then either f(ry,...,r,) =0forall r,...,r, € R or R is a finite
matrix ring over a finite field.  © 1996 Academic Press, Inc.

(D RESULT

Let R be an associative ring. An element r € R is said to be nilpotent if
r* = 0 for some integer n > 1. A subset S of R is called nil if all r € S
are nilpotent. It is easy to see that R has no nil right ideals if and only if R
has no nil left ideals. Nil right ideals or nil left ideals together are
generally called nil one-sided ideals.

Assume that R is a prime ring with the extended centroid C. The ring
RC is called the central closure of R. Let f = f(x,,..., x,) be a polyno-
mial in the noncommuting variables x,, ..., x, and with the coefficients in
the extended centroid C. The polynomial f is called an identity of R, if
fGry,...,r,))=0forall r,...,r, € R. The polynomial f is said to be nil
on R if for any r,...,r,€R, f(r,...,r,) is nilpotent, that is,
fGry,...,r,))" =0 for some integer n = n(r,,...,r,) > 1 depending on
ry, ..., F;. Our aim is to investigate nil polynomials on a prime ring R
without nonzero nil one-sided ideals: Polynomial identities are nil on R in
a trivial way. One may thus wonder whether the converse holds. By the
result of [2], this is false when R is a finite matrix ring over a finite field.
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We hence exclude these somewhat trivial exceptions. Here are some

. . . def.
known partial results: Herstein first proved the case for f =[x, y] = xy —
yx on arbitrary prime rings. The assertion for any arbitrary f on
(semi)primitive rings only was proved in a joint work of Herstein, et al. [4].
The assertion for multilinear f on arbitrary prime rings was proved by
Felzenszwalb and Giambruno [5, 6]. The special case for f = [x, y], on any
prime rings was proved in [3]. (Here [x, y], is defined inductively by

[x,ylldif'[x,y] and [x,y]kdif'[[x,y]k_l,y] for k > 1.) This problem is
solved in its full generality as follows:

THEOREM. Assume that R is a prime ring without nonzero nil one-sided
ideals. If a polynomial f(x,, ..., x,), in the noncommuting variables x,, . . ., x,,
and with the coefficients in the extended centroid C of R, is nil on R, then
either f(x,, ..., x,) is a polynomial identity of R or R is a finite matrix ring
over a finite field.

The theorem can be used to improve results on this line by removing the
multilinearity assumption. Let us mention two of them here: Let R be a
prime ring without nonzero nil one-sided ideals and let f(x,,..., x,) be a
polynomial satisfying the following two conditions: (A) If the characteristic
of R is of the finite characteristic p > 2, then f(x,,...,x,) is not an
identity for p X p matrices over an infinite field of the characteristic p.
(B) The polynomial f(x,,...,x,) is homogeneous in some nonempty
subset of its variables.

() Let & be a nonzero derivation of R. If for every ry,...,r, €R,
there exists an integer n = n(ry,...,r,) > 1, depending on r,...,r,, such
that

S(f(rl, ) ..,rd)”) =0,

then the polynomial f(x,,...,x,) is power central valued on R and the
ring R satisfies the standard polynomial identity of the degree [ + 2,
where [ is the degree of f(x,,..., x,).

(D If for every ry,...,r;8,...,5, €R, there exist two integers
n,m = 1, both depending on r,,...,r,, s,,...,s, altogether, such that

Flraneord) f(spsg)™ = f(spos) " flrora) ™

then the polynomial f(x,,..., x,) is a power central valued on R and the
ring R satisfies the standard polynomial identity of the degree [ + 2,
where [ is the degree of f(x,,..., x,).

The result (1) for multilinear f(x,,...,x,) is proved in [9], which
generalizes [5], where only inner derivation § is considered. The result (I1)
for multilinear f(x,,...,x,) is proved in [1] with the restriction that the
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characteristic of R is not 2. The hypotheses (A) and (B) on the polynomial
f(x,,...,x,) are inherited from the fundamental work [4], where the
structure of power central polynomials on division rings is determined
under these two hypotheses. The general method for attacking problems
(1) and (1) is a reduction to nil polynomials on prime rings and to power
central polynomials on division rings. Hence any progress on the knowl-
edge of nil polynomials on prime rings and power central polynomials on
division rings will automatically improve the known results in the form (1)
and (I1) above. Our theorem is one step toward this goal. The proofs of (1)
and (11) as stated above are pretty much the same as those in [9, 1] and are
omitted here for brevity.

(1) PROOF

We first recall three simple facts, whose proofs are also included here
for the sake of completeness:

FAcT 1. Assume that R is a prime ring without nil-onesided ideals. Let p
def.
be a one-sided ideal of R and let 1( p) = {x €ER:xp =0} be the left

annihilator of p. Then the quotient ring ﬁdif p/p N I(p) is also a prime ring
without nil one-sided ideals. Furthermore, each element of the extended
centroid of R can be naturally interpreted as an element of the extended
centroid of p.

Proof. For t € p, let i denote the element ¢ + p N I( p) in the quotient

ring ﬁdif'p/p N I(p). For a subset T of p, let Tdif'{i :t €T} For
a,b € p, if apb = 0 or, equivalently, apbp = 0, then, by the primeness of
R, either ap = 0 or bp = 0, that is, either @ = 0 or b = 0. This shows the
primeness of p. Any right ideal of p is of the form T, where T is a right
ideal of p satisfying T 2 p N I( p). Conversely, for any right ideal T of p
satisfying 7 2 p N I( p), T is a right ideal of p. Let T be a right ideal of p
satisfying 7 2 p N I( p) such that T is nil. For any r € T, " = 0 for some
n, that is, t" € I( p) and hence ¢t"** = 0. So T is nil. Since Tp C T, Tp is
nil. But Tp is a right ideal of R. So Tp = 0 and hence T = 0. This shows
that p has no nonzero nil one-sided ideals. Finally, let « be an element of
the extended centroid of R and let 0 # I be a two-sided ideal of R such
that af CR. The map o :f € pI— at< p for t € pI is well defined and
gives an element of the extended centroid of p. Hence «, when it acts on
p, is interpreted as a.

FACT 2. Assume that R is a prime ring satisfying a nontrivial generalized
polynomial identity and that C is the extended centroid of R. Then for any



784 YEH AND CHUANG

idempotent e in the socle of RC, R N eRCe is a prime ring and eRCe = (R N
eRCe)C.

Proof. First, we show the primeness of R N eRCe: Pick a two-sided
ideal 7 # 0 of R such that el, Ie C R. Then el?¢ C R N eRCe. For a,b €
R N eRCe, if a(R N eRCe)b =0, then 0 = a(el?e)b = al’h and hence
either a = 0 or b = 0. Next, we show that eRCe is the Martindale quotient
ring of R N eRCe: Let a € eRCe be arbitrary and let 0 # J be a two-sided
ideal of R such that e/, Je,al,Ja C R. We verify that 0 # e/ is a
two-sided ideal of R N eRCe: For any x € R N eRCe, we have xeJ%e =
exJ3e C eRJ% CeJ3e and similarly eJ%ex C eJ%. Observe that ael3e =
eal®e C eRJ%e C eJ?e C R N eRCe and similarly eJ%¢a € R N eRCe. Hence
eRCe is "a” two-sided Martindale quotient ring of R N eRCe, as asserted.
Since R satisfies a nontrivial generalized polynomial identity, eRCe is a
Pl-ring and hence so is R N eRCe. For a prime Pl-ring, its central quotient
ring and its Martindale quotient ring coincide. But the center of eRCe is
obviously eC. So we have eRCe c (R N eRCe) - eC = (R N eRCe)C. The
other inclusion eRCe 2 (R N eRCe)C is obvious. So we have the equality
eRCe = (R N eRCe)C, as asserted.

An element a € R is of the nilpotency index n if a” = 0and a" ! # 0.
If there exists an integer m > 1 such that any nilpotent element of R has
the nilpotency index < m, then the ring R is said to be of bounded
nilpotency index and the least such integer m is called the nilpotency
index of R. If there does not exist such an integer m > 1, then R is said to
be of unbounded nilpotency index.

FacT 3. If R is a ring of unbounded nilpotency index, then for any integer
n > 2, there exists a € R with the nilpotency index n.

Proof. Let n > 2 be given. Since R is of unbounded nilpotency index,
there exists b € R of the nilpotency index s > n?. Set

adif'b[s/n]+l’

where [-] denotes the greatest integer function. Then

n([s/n] +1) >n(s/n) =s >n[s/n] = (n —1)[s/n] + [s/n]
> (n—1)([s/n] +1).
Sowe have " =0but a” 1 #0. |

Fix arbitrarily finitely many distinct noncommuting variables
X,zy,..., 2z, We will consider polynomials in these variables and with their
coefficients in the extended centroid C of R. A typical monomial assumes
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the form

def.
wo=pm(x, 2,00, 24) = ax'oz; xfz; x'7 - z; x', (1)
where 0 # a € C, where n > 0, where i,,...,i, € {1,...,d} are not nec-
essarily distinct, and where ¢y,¢,,...,¢, > 0 are integers. If n =0, the

. . . def.

monomial w in (1) above is of the form w = ax’. The average x-degree of
the monomial w in (1) above is defined to be ©7_¢,/n for n > 0 and o« for
n = 0. The average x-degree of a polynomial f = f(x,z,,...,z,) in gen-
eral is defined to be the minimum of the average x-degrees of monomials
involved nontrivially in f. (Note that the average x-degree of a polynomial
is, in general, either a rational > 0 or o, not necessarily an integer. The
average x-degree of a polynomial is o if and only if it involves the variable
x only.) By a cyclic monomial of the initial degree m > 0, we mean a
monomial of the form

def.
o= (X, 2,0, 2y) = ax’"zilxlzile BT (2)
where 0 # « € C, where n > 1, where i,,...,i, € {1,..., d} are not nec-
essarily distinct, and where [, m are integers such that / > m > 0. The
average x-degree of the cyclic monomial wu displayed in (2) above is

obviously /. For convenience, the monomial of the form ,udif' ax' is also
said to be cyclic of the initial degree z. A cyclic monomial involved
nontrivially in a given polynomial f = f(x, z,, ..., z,) is said to be leading
if its average x-degree is equal to the average x-degree of f, that is, if it is
of the lowest possible average x-degree. For a given polynomial f =
f(x, z;, ..., z,), we define, for each integer m > 0, f'™ = f")(x, z,, ...,
z,4) to be the sum of leading cyclic monomials of f with the initial degree
m. (Hence if m is > the average x-degree of f, then f™ =0 by the
definition.)
The following contains the main computation of our argument:

Lemma 1. If f(x, z,,..., z,) is a polynomial of the average x-degree I,
where | is an integer, then the equality

a5 2) 0 = (L)

holds for any integers m,s > 0 with m <1 and for any a € R of the
nilpotency index | + 1.

Proof. Let f, = fo(x) = fo(x, z;,..., z,) be the sum of the monomials
of f which involve only the variable x. If a term wu(x,z,,...,z,) of
f(x, z;,...,z,) in the form (1) is such that 7, > [ — m or such that ¢, > [
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forsomei=1,...,n — 1, then u(a, z,,..., z,)a™ = 0. We hence let S be
the set of all terms w of f, in the form (1), with ¢z, <! —m and ¢; <[ for
alli=1,...,n — 1. Then we have

fla,zy,...,z)a™" = Y p(a, zy,...,2y) +f0(a))am.

MES

But for a typical term u € S of the form (1), since the average x-degree of
pis = [, we have ¢, + ¢, > [ and hence also ¢, > m. We may thus write

Yow(xzy,e02y) =x"g(X, 2100000 2g),
MES

where g(x, z,,..., z,) is a polynomial of x, z, ..., z,. We hence have

fa 2z = [ T a2y, 20) + fola) |a
RES

= (a"g(a,z,,...,z4) + fo(a))a™
=a"(g(a,z;,...,z,)a" + fo(a)).
Using this equality, we have for any integer s > 0,
f(a!zll""zd)sam :f(a!zll'"'Zd)s_lf(a'zll""Zd)am
=f(a,z,..., z,) Ta™(g(a, zy, ..., zg)a" + fo(a))

=f(a, z, ---'Zd)s_zam(g(a: Zyy e zg)a" +fo(a))2

=a"(g(a, z,,...,2,)a" + fo(a))’

= (a"g(a,zy,....2,) + foa))
xam(g(a, z1,....z)a" + fo(a))' "
(a"g(a, 21, 24) + fol@))’

xa"(g(a, zy,..., z,)a" +f0(a))s_2

= (a"g(a, z,,...,2,) +f0(a))sam

= ( Yom(a, zy, .., zg) +f0(a))sam.

[J,GS
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We now consider the product

a="f(a, zy, ..., zg) a" =a"" Y w(a, zy,. .., 2y) +f0(a))sam.
RES

If w(x,z,,...,z,) €S, in the form (1), satisfies ¢, > m, then a'~"u(a, z,,
..., zy) = 0. We hence let T be the set consisting of all terms u € S, in
the form (1), with ¢, < m. Then we have

a™" Y mazy, . zg) =adm Y ez 2y).
nrES neT

A typical term w € T in the form (1) satisfies 1, <m, t, </ — m, and
t;<lforalli=1,...,n — 1. Since the average x-degreeof u € T is > |,
we must have ty =m, t, =1 —m,and t,=/forall i =1,...,n — 1. That
is, each u € T must be a leading cyclic monomial with the initial degree
m. Conversely, T obviously consists of all such leading cyclic monomials
with the initial degree m. Hence,

f(m)(xlzll""zd) = Z /-L(xlzll"'vzd)'
neT

Since each leading cyclic monomial of the initial degree m starts with x™
and ends with x'~™, we may write

F™(x, 2,00 2) =x"h(x, 24, ..., z0)x ™™,
where h(x, z, ..., z,) is polynomial in x, z,, ..., z,. We hence have
al=m Z w(a,zy, ..., z,) =ql=m Z wla, zy,...,z,)
weSs uweT
=a'"""f"(a, z,,..., z,)
=ah(a,z,...,z;)a"~ ",

With this equality, we compute:

alfmf(a,Zl,---de)Sam
=al_’"( Yo oula,zy, .., zy) +f0(“))
nES

><( Yo ou(a, zy, 0 zy) +f0(a))s_la’"

[J,ES

= (alh(a,zl,...,zd) +f0(a))



788 YEH AND CHUANG

Xa’*m( Y ow(a, zy, .., zg) +f0(a))S1a’"

HES

= (a’h(a,zl,...,zd) +fo(“))2

(X plaz oz @) o
RES

= (alh(a, Ziyeeey Zg) +f0(a))sal_

Since a'*! =0 and since f,(a) is a C-linear combination of positive
powers of a, we have f,(a)a’' = 0. Using this, we continue our computa-
tion:

(a'h(a, z,,...,2,) + foa))
= (a'n(a,z,,...,2,) +f0(a))s_1(a’h(a,zl,...,zd) + fo(a))a!
= (a'h(a, z,,...,25) +fo(@)) a'h(a,z,, ..., 2,)d

= (alh(a,zl, e Zg) -|—fo(a))s_za’(h(a,zl,...,zd)al)2

= a’(h(a, Zyen, zd)al)s
= (alh(a, Zyyeees zd))xa’.
Finally, by the definition of the polynomial A(x, z,,..., z,), we observe
ah(a, z,,...,z,) =fm(1, az,,..., a’zd).

Combining all these computations, we have

a~"(f(a, zy,..., zd))sam = (f(’”)(l, az,,..., alzd))sal,

as asserted.

Since the average x-degree of a cyclic monomial must be an integer,
only those polynomials with integral average x-degrees can possibly pos-
sess leading cyclic monomials. Obviously, not every polynomial
f(x, zy,...,z,) with the integral average x-degree involves nontrivially
leading cyclic monomials. However, for any given polynomial, there does
exist a proper substitution that results in a polynomial involving nontriv-
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ially leading cyclic monomials. For notational simplicity, we restrict our-
selves to polynomials in two distinct variables only: A typical monomial in
the two variables x, y assumes the form:

def.
po=p(x,y) = axopiyx? - yx', (3)
where 0 # o € C, where n > 0 and where ¢,,¢,,...,¢t, > 0 are integers.
Let z,,..., z, be a set of distinct new variables. We consider the substitu-

tion of x by x” and y by X" ,x*iz;x? *i, where b, p, p; > 0 are integers
with p > p.. Assume that the average x-degree of u(x, y), given in (3), is /,

that is, ldif'Zj-’:Otn/n. Then the average x-degree of w(x’,y) is obviously
equal to bl. It is also obvious that all terms in the expansion of
u(xb, X1 xPiz,x P~ ") have the average x-degree bl + p. Hence, if u(x, y)
is a term of a polynomial f(x, y) with the lowest possible average x-degree,
then all terms in the expansion of w(x®, X7 ,x*iz,x?~*) still possess the
lowest possible average x-degree in f(x°, Xr_  xfiz,x P~ ).

LEMMA 2. Let f = f(x,y) be a polynomial in the two distinct variables
X, y. Assume that the monomial u = u(x, y), in the form of (3), is a term of f
with the lowest possible average x-degree. Then there exist integers b, p, p; > 0,
with p > p;, such that, in the expansion of u(x® Yr_ xPiz,x?™ "), the
polynomial expression.

~ ~ def. _ _
= M(x, Zyhnn, Zn) — axbfo(xhzlxﬂ Pl)xbf1(xpzzzxﬂ Pz)xblz
(xpnznxpfpn)xbfn (4)
is a leading cyclic monomial of the polynomial f(x°, X/_ xPiz;x P~ ")

Proof. Assume that the average x-degree of f(x,y) is / > 0 and that
the monomial w(x, y), given in the form of (3), is a term of f(x, y) also
with the average x-degree /. We first choose b > 1 so that bl is an integer.

Then both f(x?, y) and w(x?’, y) are of the average x-degree bl. Also, the
expression (4), being a term of the expansion of u(x? X7 xPiz,x P~ ), is
of the average x-degree bl + p. In order to make the expression (4) cyclic,
the following conditions must be satisfied:

(p—py) bt +p, =bl+p,

(p—py) +bt, + p3 =0l + p,

(p=pu-1) +bt, s +p,=bl+p,
(p=p,) +b(1, + 1) +py=bl+p.
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These are equivalent to the following:

py — py = bl — bty,
ps = pp = bl — bt,,

Py — Pp-1= bl — btnfl’
pL— p, =bl —b(t, +1,).

These n-equations are dependent: The last equation is the sum of the first
n — 1 equations since [, the average x-degree of u(x, y), is defined to be
Y ot;/n. We can solve p,,..., p, in terms of p;:

py = py + bl — bty,
ps = p, + bl —bt, = p, + 2bl — b(t; +1,),

Py = Py T DL —=bt, y=py+ (n = 1)bl = b(1y + - +1, ).

We can thus choose the positive integer p, so large that all p,,..., p, = 0,
and then we let p be the maximum of p;, i = 1,..., n, to insure that each
p — p; = 0. Finally, we observe that among all terms of f(x, y), only the
monomial u(x, y) can give rise to the expression (4). Hence the expression
(4) does occur nontrivially in f(x? X" x?iz,x?"*), as asserted.

As we consider only polynomials in the two variables x, y, we need a
substitution which converts polynomials in variables other than x,y to
polynomials in x, y only:

Lemma 3. If f=f(x,y,2,,...,2,) is a nontrivial polynomial in the
distinct variables x, y, z,, .. ., z4, then there exist integers m, ..., m, > 1 such
that the polynomial

fQx,y, x™y,. xmy),

in the two variables x, y only, is nontrivial.

Proof. If m, is an integer strictly larger than the x-degree of f, then
the polynomial f(x, y, x™y, z,,..., z,) remains nontrivial. (For, by chang-
ing all occurrence of x™y in f(x,y, x™y, z,,...,z,) back to z;, we can
get back f(x,y,z,...,z,).) By repeating this process for z,,...,z, con-
secutively, the claim is proved.
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With these lemmas in hand, we are now ready to give:

Proof of Theorem. We first show that if R satisfies a nontrivial general-
ized polynomial identity, then the assertion of the theorem holds: By the
result of [8], RC is then a primitive ring with nonzero socle. First, assume
that the extended centroid C is finite. We can then pick a nonzero
two-sided ideal I of R such that «f C R for each « € C. But IC is a
nonzero two-sided ideal of RC and hence must contain the socle. Since I
is so chosen that IC C R, the ring R itself must also contain the socle and
hence must be also primitive. The assertion now follows from Theorem 1.7
of [4]. Second, assume that C is infinite. Let e € RC be an idempotent of
the finite rank k. Then f* is a polynomial identity of R N eRCe. But the
ring R N eRCe and its central quotient ring eRCe (by Fact 2) satisfy the
same polynomial identities by Theorem 2 on page 52 of [7]. So f* is also
an identity of eRCe. By Theorem 2 on page 90 of [7], the polynomial f
itself also vanishes identically on eRCe. Since any finitely many elements
of the socle of RC must fall in some eRCe for a suitable idempotent
e € RC of the large enough finite rank, f vanishes on the socle of RC.
Since the socle of RC is a dense subring of RC, the identity f vanishes on
RC and hence on R as asserted.

It thus suffices to show that R satisfies a nontrivial generalized polyno-
mial identity. By Lemma 3, R also possesses a nil polynomial in x, y only,
say g(x,y). We proceed by the induction on the y-degree of g(x, y) to
show that R satisfies a nontrivial generalized polynomial identity: As the
induction basis, we first assume that the y-degree of g(x, y) is 0. That is,
g(x, y) is a polynomial in x only, say,

def.
g(x,y) =g(x) = x"(1+ ax + - +a,x"),

where «y,..., o, € C and where m > 1, n = 0 are integers. If the Jacob-
son radical #(R) of R is trivial, the assertion follows from Corollary 1.8 of
[4]. We may thus assume that #(R) # 0. Let I be a nonzero two-sided
ideal of R such that o;1 c #(R) for i = 1,..., n. For any arbitrary a € I,
there exists an integer s = s(a) > 1 such that

0 =g(a)s =a"™(1+ aa + - —I—ana”)s.

Since aia,..., a,a" € A(R), the element 1 + a,a + -+ +a,a” is invert-
ible and hence a™® = 0. This shows that [ is a nonzero nil two-sided ideal
of R, a contradiction to our assumption. So we assume that the y-degree
of g(x,y)is > 0. Fix an arbitrary term of g(x, y) in the lowest possible
average x-degree and let n be the y-degree of this term. (Hence n must be
< the y-degree of g(x, y).) By Lemma 2, there exist integers b, p, p; > 0
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with p > p; such that the polynomial

def. i
h(x,zy,....2,) = g(xb, Zx"fz,-x””')

i=1

possesses nonzero leading cyclic monomials, say, of the initial degree
m > 0. Let / be the average x-degree of h(x,z,...,z,). If R is of the
bounded nilpotency index, say, g, then g(x, y)? is already a polynomial
identity of R and we are done in this case. We may thus assume that R is
of the unbounded nilpotency index. By Fact 3, we may pick a € R of the
nilpotency index / + 1. By Lemma 1, the polynomial 2"(1, z,, ..., z,) is

. . . def. _ def.
nil on the right ideal p < a'R and hence also on p = p/p N I(p). By
Lemma 3, there exist integers m, ..., m, > 1 such that the polynomial

def.
g (x,y) = hU(1, x,y, x™3y, ..., x™y)

is nontrivial. The y-degree of g'(x,y) is obviously < the y-degree of

g(x,y). By Fact 1, f)dif'p/p N I(p) is a prime ring without nonzero nil
one-sided ideals. By the induction hypothesis applied to the polynomial
g'(x, y) nil on p, p satisfies nontrivial generalized polynomial identities. By
the result of the previous paragraph, p is a Pl-ring. Say, p(x,,...,x,) is a
polynomial identity of p. Then p(a'x,,...,a'x)a' is a nontrivial general-
ized polynomial identity of R, as asserted.
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