Gröbner-Shirshov basis for the braid group in the Artin-Garside generators

L.A. Bokut
Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
South China Normal University, Guangzhou, 510631, PR China
Received 3 July 2006; accepted 16 February 2007
Available online 17 November 2007

Abstract

Using [Bokut, L., Fong, Y., Ke, W.-F., Shiao, L-S., 2003. Gröbner-Shirshov basis for the braid semigroup. In: Shum, K.-P. (Ed.), Advances in Algebra and Related Topics. Proceedings of the ICM2002 Satellite Conference on Algebra, Hong Kong. World Scientific, River Edge, pp. 14-25], we find a Gröbner-Shirshov basis S for the braid group B_{n+1} in the Artin-Garside generators. We prove that S irreducible words of the B_{n+1} coincide with the Garside normal form words. It gives a new proof of the uniqueness of the Garside normal form of a word, as well as a new proof that the semigroup B_{n+1}^{+}of positive braids is a subsemigroup into B_{n+1}. (C) 2007 Elsevier Ltd. All rights reserved.

Keywords: Gröbner-Shirshov basis; Braid group; Garside normal form

1. Introduction and the theorem

Markov (1945) and Artin (1947) independently found a normal form for words in the braid group

$$
B_{n+1}=g p\left\langle a_{1}, \ldots a_{n} \mid a_{i+1} a_{i} a_{i+1}=a_{i} a_{i+1} a_{i}, 1 \leq i \leq n-1, a_{k} a_{s}=a_{s} a_{k}, k-s>1\right\rangle .
$$

It was proved in Bokut et al. (2007) that the Markov-Artin normal form leads to a GröbnerShirshov basis of B_{n+1} in the Artin-Burau generators with the so-called inverse tower order of words in the generators. Recall that the Artin-Burau generators are the elements

$$
a_{i}, A_{i j}=a_{j-1} \ldots a_{i+1} a_{i}^{2} a_{i+1}^{-1} \ldots a_{j-1}^{-1}
$$

where $1 \leq i<j \leq n+1$.
E-mail address: bokut@math.nsc.ru.

In the paper Bokut et al. (2003), a Gröbner-Shirshov basis of the semigroup of positive braids B_{n+1}^{+}in the Artin generators a_{i} was found.

In this paper, we find a Gröbner-Shirshov basis of the braid group B_{n+1} in the Artin-Garside generators $a_{i}, 1 \leq i \leq n, \Delta, \Delta^{-1}$ (Garside, 1969). Here we have

$$
\Delta=\Lambda_{1} \Lambda_{2} \ldots \Lambda_{n}, \quad \text { with } \Lambda_{i}=a_{i} \ldots a_{1} .
$$

Let us order these generators

$$
\Delta^{-1}<\Delta<a_{1}<\ldots a_{n}
$$

We order words in this alphabet in the deg-lex way comparing two words first by theirs degrees (lengths) and then lexicographically when the degrees are equal.

By $V(j, i), W(j, i), \ldots$, where $j \leq i$, we understand positive words in the letters $a_{j}, a_{j+1}, \ldots, a_{i}$. Also $V(i+1, i)=1, W(i+1, i)=1, \ldots$.

Given $V=V(1, i)$, let $V^{(k)}, 1 \leq k \leq n-i$ be the result of shifting in V all indices of all letters by $k, a_{1} \mapsto a_{k+1}, \ldots a_{i} \mapsto a_{k+i}$, and we also use the notation $V^{(1)}=V^{\prime}$. We write $a_{i j}=a_{i} a_{i-1} \ldots a_{j}, j \leq i-1, a_{i i}=a_{i}, a_{i i+1}=1$.

Theorem 1.1. A Gröbner-Shirshov basis of B_{n+1} in the Artin-Garside generators consists of the following relations:

$$
\begin{align*}
& a_{i+1} a_{i} V(1, i-1) W(j, i) a_{i+1 j}=a_{i} a_{i+1} a_{i} V(1, i-1) a_{i j} W(j, i)^{\prime}, \tag{1.1}\\
& a_{s} a_{k}=a_{k} a_{s}, \quad s-k \geq 2, \tag{1.2}\\
& a_{1} V_{1} a_{2} a_{1} V_{2} \ldots V_{n-1} a_{n} \ldots a_{1}=\Delta V_{1}^{(n-1)} V_{2}^{(n-2)} \ldots V_{n-1}^{\prime}, \tag{1.3}\\
& a_{l} \Delta=\Delta a_{n-l+1}, \quad 1 \leq l \leq n, \tag{1.4}\\
& a_{l} \Delta^{-1}=\Delta^{-1} a_{n-l+1}, \quad 1 \leq l \leq n, \tag{1.5}\\
& \Delta \Delta^{-1}=1, \quad \Delta^{-1} \Delta=1, \tag{1.6}
\end{align*}
$$

where $1 \leq i \leq n-1,1 \leq j \leq i+1, W$ begins with a_{i} if it is not empty, and $V_{i}=V_{i}(1, i)$.
Recall that a subset S of the free algebra $k\langle X\rangle$ over a field k on X is called a Gröbner-Shirshov set (basis) if every composition of elements of S is trivial. This definition goes back to Shirshov's 1962 paper (Shirshov, 1962). We recall the definition of triviality of a composition in the next section. In Section 3, we recall the definition of the Gröbner-Shirshov basis of a semigroup (group).

Let us define

$$
\begin{aligned}
& \Lambda_{i}^{(-)}=a_{i} \ldots a_{2}, i \geq 2, \quad \Lambda_{1}^{(-)}=1, \quad E_{i}=\Lambda_{1} \ldots \Lambda_{n-i} \Lambda_{n-i+1}^{(-)} \Lambda_{n-i+2} \ldots \Lambda_{n} \\
& \quad 1 \leq i \leq n .
\end{aligned}
$$

Then

$$
E_{i} a_{i}=\Delta, \quad \text { and so } a_{i}^{-1}=\Delta^{-1} E_{i}
$$

It follows that we do not need the letters a_{i}^{-1} and the relations $a_{i} a_{i}^{-1}=1, a_{i}^{-1} a_{i}=1$ in the above presentation of the group B_{n+1}.

We will write

$$
\Lambda_{i}^{(--)}=a_{i} \ldots a_{3}, \quad i \geq 3, \quad \Lambda_{2}^{(--)}=1
$$

2. Proof of the theorem

Formulas (1.1)-(1.4) are valid in B_{n+1}^{+}for

$$
\begin{aligned}
& W(j, i) a_{i+1 j}=a_{i+1 j} W^{\prime}, \quad V_{i-1} \Lambda_{i}=\Lambda_{i} V_{i-1}^{\prime}, \quad a_{i} \Lambda_{i-1} \Lambda_{i}=\Lambda_{i-1} \Lambda_{i} a_{1}, \\
& a_{1} \Lambda_{i+1} \ldots \Lambda_{n}=\Lambda_{i+1} \ldots \Lambda_{n} a_{n-i+1} .
\end{aligned}
$$

Formula (1.5) follows from (1.4).
Here and henceforth the notations are the same as in Theorem 1.1.
We need to prove that all compositions of relations (1.1)-(1.6) are trivial. The triviality of compositions of (1.1) and (1.2) was proved in Bokut et al. (2003).

By "a word" we will mean a positive word in $a_{i}, \Delta ; u=v$ is either the equality in B_{n+1}^{+}or the graphical (letter-by-letter) equality (the meaning would be clear from the context).

We use the following notation for words u, v :

$$
u \equiv v
$$

if u can be transformed to v by the eliminations of leading words of relations (1.1)-(1.4), i.e., by the eliminations of left parts of these relations. Actually, we will use an expansion of this notation meaning that $u \equiv v$ if

$$
u \mapsto u_{1} \mapsto u_{2} \mapsto \cdots \mapsto u_{k}=v,
$$

where $u_{i}<u$ for all i and each transformation is an application of (1.1)-(1.4) (so, in general, only the first transformation $u \mapsto u_{1}$ is the elimination of the leading word of (1.1)-(1.4)).

Another expansion of that formula is

$$
u \equiv v(\bmod w)
$$

meaning that u can be transformed to v as before and all $u_{i}<w, u \leq w$.
By abuse of notation, we take that in a word equivalence chain starting with a word u,

$$
u \equiv v \equiv w \equiv t \ldots
$$

each equivalence $v \equiv w, w \equiv t, \ldots$ is $\bmod u$.
This agrees with the definition of triviality of a composition (see Bokut (1972, 1976)). Namely, a composition $(f, g)_{w}$ is called trivial $\bmod (S, w)$, if

$$
(f, g)_{w}=\sum \alpha_{i} a_{i} s_{i} b_{i}, a_{i} \overline{s_{i}} b_{i}<w
$$

where $s_{i} \in S, a_{i}, b_{i} \in X^{*}, \alpha_{i} \in k$. Here $k\langle X\rangle$ is a free associative algebra over a field k on a set $X, S \subset k\langle X\rangle, X^{*}$ is the set of all words in X, \bar{s} is the leading monomial of a polynomial s. Recall that

$$
(f, g)_{w}=f b-a g, w=\bar{f} b=a \bar{g}, \operatorname{deg}(f)+\operatorname{deg}(g)>\operatorname{deg}(w)
$$

or

$$
(f, g)_{w}=f-a g b, w=\bar{f}=a \bar{g} b .
$$

Here w is called the ambiguity of the composition $(f, g)_{w}, a, b \in X^{*}$.

Let S be the set of polynomials corresponding to semigroup relations $u_{i}=v_{i}, u_{i}>v_{i}$, $(f, g)_{w}=u-v$ is a composition of two "semigroup" polynomials $f, g \in S, u, v \in X^{*}, u, v$ $<w$. The triviality of $(f, g)_{w} \bmod (S, w)$ means that in the previous sense

$$
u \equiv t(\bmod w), \quad v \equiv t(\bmod w)
$$

for some word t.
Take $V=V(j, i), 2 \leq j \leq i$. By $V^{(-k)}$, where $1 \leq k \leq j-1$, we will mean the result of shifting in V the indices of all letters by $-k, a_{j} \mapsto a_{j-k}, \ldots, a_{i} \mapsto a_{i-k}$.

Take $\Delta_{i}=\Lambda_{1} \ldots \Lambda_{i}, V=V(1, i), V_{i}^{ \pm 1}=\Delta_{i}^{\mp 1} V \Delta_{i}^{ \pm 1}$. Then $V^{\Delta_{i}^{ \pm 1}}$ is equal in B_{n+1} to the word that is the result of substitutions $a_{j} \mapsto a_{i-j+1}, 1 \leq j \leq i$ in V. By abuse of notation, we will identify $V^{\Delta_{i}^{ \pm 1}}$ with this word.

We need the formulas:

$$
\begin{align*}
& \Lambda_{i} W(2, i) \equiv W^{(-1)} \Lambda_{i}, \quad \Lambda_{i}^{(-)} W(3, i) \equiv W^{(-1)} \Lambda_{i}^{(-)} \tag{2.1}\\
& a_{i} \Lambda_{i-1} \Lambda_{i}^{(-)} \equiv \Lambda_{i-1} \Lambda_{i}, \quad a_{i} \Lambda_{i-1} \Lambda_{i} \equiv \Lambda_{i-1} \Lambda_{i} a_{1}, \tag{2.2}\\
& a_{i} \Lambda_{i-1} \Lambda_{i}^{(--)} \equiv \Lambda_{i-1}^{(-)} \Lambda_{i}, \quad a_{i} \Lambda_{i-1}^{(-)} \Lambda_{i}^{(-)} \equiv \Lambda_{i-1}^{(-)} \Lambda_{i}^{(-)} a_{2}, \tag{2.3}\\
& a_{i} \Lambda_{i-1} V_{i-1} \Lambda_{i} \equiv \Lambda_{i-1} \Lambda_{i} a_{1} V_{i-1}^{\prime}, \tag{2.4}\\
& a_{i} \Lambda_{1} V_{1} \ldots \Lambda_{i-1} V_{i-1} \Lambda_{i} \equiv \Delta_{i} a_{1} V_{1}^{(i-1)} \ldots V_{i-1}^{\prime}, \tag{2.5}\\
& a_{i} V(1, i-1) \Lambda_{1} V_{1} \ldots \Lambda_{i-1} V_{i-1} \Lambda_{i} \equiv \Delta_{i} a_{1} V^{\Delta_{i}} V_{1}^{(i-1)} \ldots V_{i-1}^{\prime}, \tag{2.6}\\
& a_{i} V(1, i-2) \Lambda_{i-1} W(2, i-1) \Lambda_{i}^{(-)} \equiv \Lambda_{i-1} \Lambda_{i} V^{(2)} W(2, i-1)^{\prime}, \tag{2.7}\\
& W(1, i-1)^{\prime} \Lambda_{2}^{(-)} \ldots \Lambda_{i}^{(-)}=\Lambda_{2}^{(-)} \ldots \Lambda_{i}^{(-)} W(1, i-1)^{\Delta_{i}}, \tag{2.8}\\
& W(1, i-2)^{\Delta_{i-1}} \Lambda_{i}=\Lambda_{i} W W(1, i-2)^{\Delta_{i}}, \tag{2.9}\\
& a_{n} \cdot a_{n-1} a_{n} \cdots a_{1} \ldots a_{n} \equiv \Delta, \tag{2.10}
\end{align*}
$$

where $i \geq 2, V_{j}=V_{j}(1, j), 1 \leq j \leq i$.
Formula (2.1) follows from (1.1).
Formula (2.2) can be proved by induction on $i \geq 2$. For $i=2$, it is clear. Let $i>2$. Then

$$
a_{i} \Lambda_{i-1} \Lambda_{i}^{(-)}=a_{i} a_{i-1} \Lambda_{i-2} a_{i} \Lambda_{i-1}^{(-)} \equiv a_{i-1} a_{i} a_{i-1} \Lambda_{i-2} \Lambda_{i-1}^{(-)} \equiv a_{i-1} a_{i} \Lambda_{i-2} \Lambda_{i-1} \equiv \Lambda_{i-1} \Lambda_{i}
$$

Formula (2.3) can also be proved by induction on $i \geq 2$. For $i=2$, it is clear. Let $i>2$. Then

$$
\begin{aligned}
a_{i} \Lambda_{i-1} \Lambda_{i}^{(--)} & =a_{i} a_{i-1} \Lambda_{i-2} a_{i} \Lambda_{i-1}^{(--)} \equiv a_{i-1} a_{i} a_{i-1} \Lambda_{i-2} \Lambda_{i-1}^{(--)} \\
& \equiv a_{i-1} a_{i} \Lambda_{i-2}^{(-)} \Lambda_{i-1} \equiv \Lambda_{i-1}^{(-)} \Lambda_{i}
\end{aligned}
$$

Formula (2.4) follows from (1.1) and (2.2).
Formula (2.5) follows from (1.1) and (2.2):

$$
\begin{aligned}
a_{i} \Lambda_{1} V_{1} \ldots \Lambda_{i-1} V_{i-1} \Lambda_{i} & \equiv \Lambda_{1} V_{1} \ldots \Lambda_{i-2} V_{i-2} a_{i} a_{i-1} \Lambda_{i-2} V_{i-1} \Lambda_{i} \\
& \equiv \Lambda_{1} V_{1} \ldots \Lambda_{i-2} V_{i-2} a_{i-1} a_{i} a_{i-1} \Lambda_{i-2} \Lambda_{i-1} V_{i-1}^{\prime} \\
& \equiv \Lambda_{1} V_{1} \ldots \Lambda_{i-2} V_{i-2} a_{i-1} a_{i} \Lambda_{i-2} \Lambda_{i-1} a_{1} V_{i-1}^{\prime} \\
& \equiv \Lambda_{1} V_{1} \ldots \Lambda_{i-2} V_{i-2} \Lambda_{i-1} \Lambda_{i} a_{1} V_{i-1}^{\prime} \equiv \Delta_{i} a_{1} V_{1}^{(i-1)} \ldots V_{i-1}^{\prime} .
\end{aligned}
$$

Remark, that the last word is less than the first word in the above chain of equivalence formulas, though it can be greater than the word just before the last.

Formula (2.6) can be proved by induction on $i \geq 2$. It is clear for $i=2$. Take $i>2$. Then formula (2.6) follows from (2.5) by induction on the number k of letters a_{i-1} in $V(1, i-1)$. If $k=0$, the result is clear. Take $k \geq 1$ and

$$
V(1, i-1)=W(1, i-1) a_{i-1} T(1, i-2) .
$$

Then

$$
a_{i-1} T(1, i-2) \Lambda_{1} V_{1} \ldots \Lambda_{i-2} V_{i-2} \Lambda_{i-1} \equiv \Delta_{i-1} a_{1} T^{\Delta_{i-1}} V_{1}^{(i-2)} \ldots V_{i-2}^{\prime}
$$

It follows that

$$
\begin{aligned}
& a_{i} W(1, i-1) a_{i-1} T(1, i-2) \Lambda_{1} V_{1} \ldots \Lambda_{i-1} V_{i-1} \Lambda_{i} \\
& \quad \equiv a_{i} W(1, i-1) \Delta_{i-1} a_{1} T^{\Delta_{i-1}} V_{1}^{(i-2)} \ldots V_{i-2}^{\prime} V_{i-1} \Lambda_{i} \\
& \quad \equiv a_{i} W(1, i-1) \Delta_{i} a_{2} T^{\Delta_{i}} V_{1}^{(i-1)} \ldots V_{i-1}^{\prime} \equiv \Delta_{i} a_{1} W^{\Delta_{i}} a_{2} T^{\Delta_{i}} V_{1}^{(i-1)} \ldots V_{i-1}^{\prime} .
\end{aligned}
$$

Remark again that here the second and third words above are less than the first one for $i-1 \geq 2$.

Formula (2.7) follows from (1.1) and (2.2).
Formula (2.8) follows from (1.2), (2.3) and (1.1).
Formula (2.9) follows from (1.1).
Formula (2.10) can be proved by induction on n. Indeed:

$$
\begin{aligned}
& a_{n} \cdot a_{n-1} a_{n} \cdots a_{2} \ldots a_{n} \cdot a_{1} \ldots a_{n} \equiv a_{2} \cdot a_{3} a_{2} \ldots a_{n} \ldots a_{2} \cdot a_{1} \ldots a_{n} \\
& \quad \equiv a_{2} \cdot a_{3} a_{2} \cdots a_{n-1} \ldots a_{2} \cdot a_{1} \ldots a_{n-1} \cdot a_{n} a_{n-1} \ldots a_{1} \equiv \ldots \\
& \quad \equiv a_{2} \cdot a_{3} a_{2} \cdot a_{1} a_{2} a_{3} \cdot a_{4} \ldots a_{1} \cdots a_{n} \ldots a_{1} \equiv a_{2} \cdot a_{1} a_{2} \cdot a_{3} a_{2} a_{1} \ldots a_{n} \ldots a_{1} \equiv \Delta
\end{aligned}
$$

Now let us check the composition of (1.1), $i+1=n$, and (1.3). Without loss of generality we may assume that $j=1$.

The ambiguity is

$$
w=a_{n} a_{n-1} V(1, n-2) W(1, n-1) \Lambda_{1} V_{1} \ldots \Lambda_{n-1} V_{n-1} a_{n 1}
$$

Applying (1.3) to w, we obtain

$$
w_{1}=a_{n} a_{n-1} V(1, n-2) W(1, n-1) \Delta V_{1}^{(n-1)} \ldots V_{n-1}^{\prime}
$$

Applying (1.1) to w, we obtain

$$
w_{2}=a_{n-1} a_{n} a_{n-1} V(1, n-2) \Lambda_{n-1} W^{\prime} \Lambda_{1}^{\prime} V_{1}^{\prime} \ldots \Lambda_{n-1}^{\prime} V_{n-1}^{\prime}
$$

Applying (1.1) and (2.1)-(2.10) to w_{1}, w_{2}, we obtain

$$
\begin{aligned}
w_{1} & \equiv \Delta a_{1} a_{2} V^{\Delta} W^{\Delta} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime} \\
w_{2} & =a_{n-1} a_{n} a_{n-1} V(1, n-2) \Lambda_{n-1} W^{\prime} \Lambda_{2}^{(-)} V_{1}^{\prime} \ldots \Lambda_{n-1}^{(-)} V_{n-2}^{\prime} \Lambda_{n}^{(-)} V_{n-1}^{\prime} \\
& \equiv a_{n-1} a_{n} a_{n-1} V(1, n-2) \Lambda_{n-1} W^{\prime} \Lambda_{2}^{(-)} \ldots \Lambda_{n}^{(-)} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime}(\bmod w) \\
& \equiv a_{n-1} a_{n} a_{n-1} V(1, n-2) \Lambda_{n-1} \Lambda_{2}^{(-)} \ldots \Lambda_{n-1}^{(-)} \Lambda_{n}^{(-)} W^{\Delta} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime}(\bmod w) \\
& \equiv a_{n-1} a_{n} a_{n-1} V(1, n-2) \Lambda_{1} \Lambda_{2} \ldots \Lambda_{n-2} \Lambda_{n-1} \Lambda_{n}^{(-)} W^{\Delta} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime}(\bmod w) \\
& \equiv a_{n-1} a_{n} a_{n-1} \Lambda_{1} \Lambda_{2} \ldots \Lambda_{n-2} \Lambda_{n-1} \Lambda_{n}^{(-)} V^{\Delta} W^{\Delta} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime}(\bmod w)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv a_{n-1} a_{n} \Lambda_{1} \ldots \Lambda_{n-2} \Lambda_{n-1} \Lambda_{n}^{(--)} a_{1} a_{2} V^{\Delta} W^{\Delta} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime}(\bmod w) \\
& \equiv a_{n-1} \Lambda_{1} \ldots \Lambda_{n-2} \Lambda_{n-1}^{(-)} \Lambda_{n} a_{1} a_{2} V^{\Delta} W^{\Delta} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime}(\bmod w) \\
& \equiv \Delta a_{1} a_{2} V^{\Delta} W^{\Delta} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime}(\bmod w) .
\end{aligned}
$$

The composition is checked.
There is the composition of (1.1), $i+1<n$ and (1.3). Again, we may assume that $j=1$.
The ambiguity is

$$
w=a_{i+1} a_{i} V(1, i-1) W(1, i) \Lambda_{1} V_{1} \ldots \Lambda_{i+1} V_{i+1} \ldots V_{n-1} \Lambda_{n} .
$$

Applying (1.3) to w, we obtain

$$
\begin{aligned}
w_{1} & =a_{i+1} a_{i} V(1, i-1) W(1, i) \Delta V_{1}^{(n-1)} \ldots V_{n-1}^{\prime} \\
& \equiv \Delta a_{n-i} a_{n-i+1} V^{\Delta} W^{\Delta} V_{1}^{(n-1)} \ldots V_{n-1}^{\prime} .
\end{aligned}
$$

Applying (1.1) to w, we have

$$
\begin{aligned}
w_{2} & =a_{i} a_{i+1} a_{i} V(1, i-1) \Lambda_{i} W(1, i)^{\prime} \Lambda_{1}^{\prime} V_{1}^{\prime} \ldots \Lambda_{i}^{\prime} V_{i}^{\prime} V_{i+1} \ldots V_{n-1} \Lambda_{n} \\
& \equiv \Lambda_{1} \ldots \Lambda_{i+1} a_{1} a_{2} V^{\Delta_{i+1}} W^{\Delta_{i+1}} V_{1}^{(i)} \ldots V_{i}^{\prime} V_{i+1} \Lambda_{i+2} \ldots V_{n-1} \Lambda_{n}(\bmod w) \\
& \equiv \Delta a_{n-i} a_{n-i+1} V^{\Delta} W^{\Delta} V_{1}^{(n-1)} \ldots V_{i}^{(n-i)} \ldots V_{n-1}^{\prime} .
\end{aligned}
$$

Here we use the calculation of w_{2} from the previous composition, substituting $n \mapsto i+1$. The second composition is checked.
There is the composition of (1.3) and (1.1).
The ambiguity is

$$
w=\Lambda_{1} V_{1} \ldots V_{n-1} a_{n i+2} a_{i+1} a_{i} \ldots a_{1} V(1, i-1) W(j, i) a_{i+1 j}
$$

Applying (1.3) to w, we obtain

$$
w_{1}=\Delta V_{1}^{(n-1)} \ldots V_{n-1}^{\prime} V W a_{i+1 j}
$$

Applying (1.1) to w, we have

$$
\begin{aligned}
w_{2} & =\Lambda_{1} V_{1} \ldots V_{n-1} a_{n i+2} a_{i} a_{i+1} a_{i} \ldots a_{1} V(1, i-1) a_{i j} W^{\prime} \\
& \equiv \Lambda_{1} V_{1} \ldots V_{n-1} a_{i} a_{n i+2} a_{i+1} a_{i} \ldots a_{1} V a_{i j} W^{\prime} \equiv \Delta V_{1}^{(n-1)} \ldots V_{n-1}^{\prime} a_{i+1} V a_{i j} W^{\prime} \\
& \equiv \Delta V_{1}^{(n-1)} \ldots V_{n-1}^{\prime} V a_{i+1 j} W^{\prime} \equiv \Delta V_{1}^{(n-1)} \ldots V_{n-1}^{\prime} V W a_{i+1 j}
\end{aligned}
$$

There is the composition of (1.1) and (1.4).
The ambiguity is

$$
w=a_{i+1} a_{i} V(1, i-1) W(j, i) a_{i+1 j+1} a_{j} \Delta .
$$

Applying (1.4) to w, we obtain

$$
\begin{aligned}
w_{1} & =a_{i+1} a_{i} V W a_{i+1 j+1} \Delta a_{n-j+1} \equiv \Delta a_{n-i} a_{n-i+1} V^{\Delta} W^{\Delta} a_{n-i} a_{n-i+1} \ldots a_{n-j+1} \\
& \equiv \Delta a_{n-i} a_{n-i+1} V^{\Delta} a_{n-i} a_{n-i+1} \ldots a_{n-j+1} W^{\Delta(-1)} \\
& \equiv \Delta a_{n-i} a_{n-i+1} a_{n-i} V^{\Delta} a_{n-i+1} \ldots a_{n-j+1} W^{\Delta(-1)}
\end{aligned}
$$

Applying (1.1) to w, we obtain

$$
\begin{aligned}
w_{2} & =a_{i} a_{i+1} a_{i} V a_{i j} W^{\prime} \Delta \equiv \Delta a_{n-i+1} a_{n-i} a_{n-i+1} V^{\Delta} a_{n-i+1} \ldots a_{n-j+1} W^{\prime} \Delta \\
& \equiv \Delta a_{n-i} a_{n-i+1} a_{n-i} V^{\Delta} a_{n-i+1} \ldots a_{n-j+1} W^{\prime} \Delta
\end{aligned}
$$

The composition is trivial since $W^{\Delta(-1)}=W^{\prime \Delta}$.
The triviality of the composition of (1.1) with (1.5) is proved similarly.
There is the composition of (1.3) and (1.4).
The ambiguity is

$$
w=\Lambda_{1} V_{1} \ldots V_{n-1} a_{n} \ldots a_{2} a_{1} \Delta
$$

Applying (1.3) to w, we have

$$
w_{1}=\Delta V_{1}^{(n-1)} \ldots V_{n-1}^{\prime} \Delta \equiv \Delta^{2} V_{1}^{(n-1)} \Delta \ldots V_{n-1}^{\prime} \Delta
$$

Applying (1.4) to w, we obtain

$$
\begin{aligned}
w_{2} & =\Lambda_{1} V_{1} \ldots V_{n-1} a_{n} \ldots a_{2} \Delta a_{n} \equiv \Delta \Lambda_{1}^{\Delta} V_{1}^{\Delta} \ldots V_{n-1}^{\Delta} a_{1} \ldots a_{n-1} a_{n} \\
& =\Delta a_{n} V_{1}^{\Delta} a_{n} a_{n-1} \ldots V_{n-1}^{\Delta} a_{1} \ldots a_{n} \\
& \equiv \Delta a_{n} \cdot a_{n-1} a_{n} \ldots a_{1} \ldots a_{n} V_{1}^{\Delta(-(n-1))} \ldots V_{n-1}^{\Delta(-1)} \\
& \equiv \Delta^{2} V_{1}^{(n-1) \Delta} \ldots V_{n-1}^{\prime} \Delta
\end{aligned}
$$

for $V_{i}^{(j) \Delta}=V_{i}^{\Delta(-j)}, 2 \leq i+j \leq n$.
The composition is checked.
The triviality of composition of (1.3) and (1.5) is proved similarly.

3. Corollaries

Let $S \subset k\langle X\rangle$. A word u is called S-irreducible if $u \neq a \bar{s} b$, where $s \in S, a, b \in X^{*}$. Let $\operatorname{Irr}(S)$ be the set of all S-irreducible words.

Recall Shirshov's Composition lemma (Shirshov, 1962; Bokut, 1972, 1976):
Let S be a Gröbner-Shirshov basis in $k\langle X\rangle$. If $f \in \operatorname{ideal}(S)$, then $\bar{f}=a \bar{s} b, s \in S$. The converse is also true: If for any $f \in \operatorname{ideal}(S)$ we have $\bar{f}=a \bar{s} b, s \in S$, then S be a GröbnerShirshov basis in $k\langle X\rangle$.

The Main corollary to this lemma is the following statement:
A subset $S \subset k\langle X\rangle$ is a Gröbner-Shirshov basis iff the set $\operatorname{Irr}(S)$ is a linear basis for the algebra $k\langle X\rangle /$ ideal $(S)=k\langle X \mid S\rangle$ generated by X with defining relations S.

Let $G=\operatorname{sgp}\langle X \mid S\rangle$ be the semigroup generated by X with defining relations S. Then S is called a Gröbner-Shirshov basis of G if S is a Gröbner-Shirshov basis of the semigroup algebra $k(G)$, i.e., S is a Gröbner-Shirshov set in $k\langle X\rangle$. It follows from the Main corollary to the Composition lemma that in this case any word u in X is equal in G to a unique S irreducible word $C(u)$, called the normal (canonical) form of u. If $G=g p\langle X \mid S\rangle$ is a group, then $G=\operatorname{sgp}\left\langle X \cup X^{-1} \mid S_{0}\right\rangle$, where $S_{0}=S \cup\left\{x x^{-1}=1, x^{-1} x=1, x \in X\right\}$. Then S_{0} is called a Gröbner-Shirshov basis for the group G if it is a Gröbner-Shirshov basis for G as the semigroup.

Now let S be the set of relations (1.1)-(1.6), and let $C(u)$ be a normal form of a word $u \in B_{n+1}$. Then $C(u)$ has a form

$$
C(u)=\Delta^{k} A,
$$

where $k \in \mathbb{Z}$, and A a positive S-irreducible word in a_{i} 's. Let us prove that $A \neq \Delta A_{1}$ in B_{n+1} for every positive word A_{1}. It would give that $C(u)$ is the Garside normal form for u.

We can switch to the semigroup B_{n+1}^{+}since this semigroup is a subsemigroup in B_{n+1} (see, for example, Corollary 3.2). Note that we have no generator Δ in B_{n+1}^{+}, it is just the word in the Artin generators. According to Bokut et al. (2003), the set S_{1} of (1.1) and (1.2) is a GröbnerShirshov basis of B_{n+1}^{+}. Then A is an S_{1}-irreducible word.

Suppose to the contrary that in B_{n+1}^{+}we have

$$
A=\Delta A_{1},
$$

where A_{1} is a positive word. We may assume that A_{1} is also an S_{1}-irreducible word. Then

$$
A=a_{1} \cdot a_{2} a_{1} \cdots a_{n} \ldots a_{1} A_{1}
$$

in the semigroup B_{n+1}^{+}. Let us prove that

$$
A=C\left(a_{1} \cdot a_{2} a_{1} \cdots a_{n} \ldots a_{1} A_{1}\right)=\Lambda_{1} V_{1} \ldots \Lambda_{n-1} V_{n-1} \Lambda_{n} V,
$$

where $=$ is the graphical equality, $V_{i}=V(1, i), 1 \leq i \leq n-1$, and $C(D)$ is the irreducible normal form of D in B_{n+1}^{+}. It would contradict the S-irreducibility of A.

More generally, let us prove that

$$
C\left(\Lambda_{1} W_{1} \ldots \Lambda_{n-1} W_{n-1} \Lambda_{n} W_{n}\right)=\Lambda_{1} V_{1} \ldots \Lambda_{n-1} V_{n-1} \Lambda_{n} V_{n},
$$

where $W_{i}=W_{i}(1, i), V_{i}=V_{i}(1, i), 1 \leq i \leq n$. If

$$
B=\Lambda_{1} W_{1} \ldots \Lambda_{n-1} W_{n-1} \Lambda_{n} W_{n}
$$

is an irreducible word, than we are done. Suppose, B contains the left part of a relation (1.1) and (1.2). If this word is a subword of $W_{i}, 1 \leq i \leq n$, then the situation is clear: we can apply the relation to get a smaller word of the same form, and then we can use induction. Let the word be a subword of $\Lambda_{k} W_{k}, 1 \leq k \leq n$, but not W_{k}. It may only be the left part of (1.1), $k \geq i+1$. Then we have

$$
\begin{aligned}
\Lambda_{k} W_{k} & =a_{k i+2} a_{i+1} a_{i} a_{i-1} \ldots a_{1} V(1, i-1) W(j, i) a_{i+1 j} T_{k} \\
& \equiv a_{k i+2} a_{i} a_{i+1} a_{i} a_{i-1} \ldots a_{1} V(1, i-1) a_{i j} W^{\prime} T_{k} \equiv a_{i} \Lambda_{k} W_{k 1},
\end{aligned}
$$

where $T_{k}=T_{k}(1, k), W_{k 1}=W_{k 1}(1, k)$. Substituting this expression of $\Lambda_{k} W_{k}$ in B, we obtain a positive word D which is smaller than B and has the same form. By induction, we are done.

As a result, we have the following
Corollary 3.1. The S-irreducible normal form of each word of B_{n+1} coincides with the Garside normal form of the word.

Proof. Recall (Garside, 1969) that Garside normal form $G(u)$ of $u \in B_{n+1}$ is

$$
G(u)=\Delta^{k} A,
$$

where $u=G(u)$ in $B_{n+1}, k \in \mathbb{Z}$, and A is a positive word in $a_{i}, A \neq \Delta A_{1}$ for every positive word A_{1}, and A is the minimal word with these properties. We have proved that the S-irreducible normal form $C(u)$ has these properties.

Corollary 3.2 (Garside (1969)). The semigroup of positive braids B_{n+1}^{+}can be embedded into a group.

Proof. From Bokut et al. (2003) and Theorem 1.1, it follows immediately that two positive braid words are equal in the group B_{n+1} iff they are equal in the semigroup B_{n+1}^{+}. It means that B_{n+1}^{+} is the subsemigroup of B_{n+1}.

Acknowledgements

I thank the referee of this paper for his valuable remarks.
I was supported by the Russian Fund of Basic Research, the Integration Grant of the SB RAS, 1.9, and the NNSF of China (No. 10771077).

References

Artin, E., 1947. Theory of braids. Ann. Math. 48, 101-126.
Bokut, L.A., 1972. Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras. Izv. Akad. Nauk SSSR Ser. Mat. 36, 1173-1219.
Bokut, L.A., 1976. Imbeddings into simple associative algebras. Algebra Logika 15, 117-142, 245.
Bokut, L., Chainikov, V., Shum, K.P., 2007. Markov and Artin normal form theorem for braid groups. Comm. Algebra 35, 2105-2115.
Bokut, L., Fong, Y., Ke, W.-F., Shiao, L-S., 2003. Gröbner-Shirshov basis for the braid semigroup. In: Shum, K.-P. (Ed.), Advances in Algebra and Related Topics. Proceedings of the ICM2002 Satellite Conference on Algebra, Hong Kong. World Scientific, River Edge, pp. 14-25.
Garside, A.F., 1969. The braid group and other groups. Q. J. Math. Oxford 20, 235-254.
Markov, A.A., 1945. An introduction to the algebraical theory of braids. In: Proceedings of the Steklov Mast. Ins. RAS, vol. 16 (in Russian).
Shirshov, A.I., 1962. Certain algorithmic problems for Lie algebras. Sibirsk. Mat. Zh. 3, 292-296. (English translation in ACM SIGSAM Bull. 33, 2, (1999), 3-6).

