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In this paper, we focus on the edit distance between two given strings where block-edit

operations are allowed and better fitting to the human natural edit behaviors. Previous

results showedthat thisproblemisNP-hardwhenblockmovesareallowed.Variousapprox-

imations to this problemhave been proposed in recent years. However, this problem can be

solved by the polynomial-time optimization algorithms if some reasonable restrictions are

applied. The restricted variationswhichwe consider involve character insertions, character

deletions, block copies and block deletions. In this paper, three problems are defined with

differentmeasuring functions, which are P(EIS, C), P(EI, L) and P(EI, N). Thenwe show that

with somepreprocessing, theminimumblock edit distances of these three problems can be

obtained by dynamic programming in O(nm), O(nm logm) and O(nm2) time, respectively,

where n andm are the lengths of the two input strings.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The similarity computation of two strings or sequences is one of the most important fundamental in the computer area.

Several various versions of this problem have been studied over the past three decades, such as edit distance, longest common

subsequence (LCS) [1,2,3,4,5,6,7,8] and Hamming distance [9]. The wide applications of this problem include finding similar

strings, documents, pictures and even proteinmolecular sequences. In this paper, we shall focus on the edit distance between

two given sequences. Wagner and Fischer [7] first proposed a dynamic programming method for solving this problem, with

time complexity O(nm), where n andm are the lengths of the two input subsequences. When a single character substitution

can be replaced by a composition of an insertion and a deletion, Freschi and Bogliolo [1] presented a simple formula to do the

transformation between the LCS lengths and edit distances. In addition to the original dynamic programmingmethod, some

more efficient algorithms have been proposed. Hirschberg [2] proposed methods with time complexity O(pn + n log n) and
O(p(m + 1 − p) log n) where p is the LCS length. Hunt and Szymanski [5] proposed a method with O((r + n) log n) time,

where r is thenumberofmatchesbetweenthe two input sequences. ThealgorithmgivenbyRick [6] requiresO(min{pm, p(n −
p)}) time and O(n) space. Yang and Lee solved the problem with the parallel systolic scheme [8].

Given two sequences X and Y , the edit distance is defined as the distance caused by the mismatches between them. In

otherwords, it can be regarded as theminimal cost to transform from X to Y by applying a series of valid operations on X . The

traditional edit distance is defined by three types of operations: insertions, deletions and replacements. The edit distance can

also be treated as a similaritymetric of two given text sequences. Since the only valid edit operation in theHamming distance

is replacement, we may note that edit distance is a more general similarity metric and it is closer to natural human edit

�
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behaviors on computers. In general, the costs of an insertion and a deletion may be different and the cost of a replacement

may not be equal to an insertion plus a deletion. The costs of these edit operations can be defined by a score matrix. In this

paper, we set one insertion or one deletion to be of a unit cost and a replacement operation is accomplished by one insertion

followed by one deletion. In fact, our results can be applied to more variant forms of edit costs.

If the edit operations can be applied on segments of subsequence rather than single characters, the number of required

operations may be drastically reduced. In another aspect, for better fitting to the human natural edit behaviors, we may

include the block-edit operations. Shapira and Storer [10] added the block-move operation to the traditional edit distance

problem and proved that this problem is NP-hard. They also proposed a GREEDY algorithm and claimed that it is a log n-

approximation. Chrobak et al. [11] showed that the claim is false by proving that the approximation lower bound of GREEDY

is Ω(n0.43). Kaplan and Shafrir [12] gave a tighter lower bound Ω(n0.46). Muthukrishnan and Sahinalp [13] proposed an

algorithm of Monte Carlo type for solving the problems involving block copies, block deletions, block moves and block

reversals, and the algorithm achieves O(log n log∗ n) approximation. Another algorithm, based on Lempel-Ziv-77 method,

which was proposed by Ergun et al. [14] achieve a factor of 12-approximation. Shapira and Storer [15] reduced the constant

factor to 3.5. Recently, Shapira and Storer proposed a revised version [16] of [10] and showed that the error can be corrected

if only a subclass of instances of the general problem is coped with.

However, the problems which involve block-edit operations can still be solved by the polynomial-time optimization

algorithms if some restrictions are applied. Muthukrishnan and Sahinalp [13] considered the problem which only consists

of character replacements and block reversals and proposed an algorithm with O(n log3 n) time. Shapira and Storer [15]

considered the problem which consists of character insertions, block deletions and character moves. Their algorithm finds

the optimal solutions by merging character insertions and character deletions to character moves in any optimal path of the

traditional edit distance. Rather than matching the blocks exactly, Lopresti and Tomkins [17] showed a model in which the

matched blocks can be further edited with character operations. They showed that some variations are NP-hard and gave

polynomial-time algorithms for others.

Ukkonen [18] defined a restricted block-edit problem in which the block replacement operations are extended from the

character replacement operations and the edit operations must be in a restricted order. With this proposed restriction,

Ukkonen showed that this restricted variation can be solved by a dynamic programming (DP) algorithm. Although his

algorithm is correct conceptually, the DP formula and the time complexity of his algorithm may be incorrect. He claimed

that the time complexity is O(s · min(m, n)), where s denotes the edit distance, however, we think that the correct algorithm

based on his idea requires O(s2 · min(m2, n2)) time. This is because, in the worst case, O(s · min(m, n)) possible block

replacementsmay be considered for each iteration, but his algorithm considers only one possible block replacement for each

iteration greedily.

In this paper, we follow the same restriction defined by Ukkonen [18] and define some restricted variations which involve

character insertions, character deletions, block copies and block deletions. The block-edit operations can be attached with

some attributes, such as the copy behaviors and costmeasures. The formal definitions of the attributes and the preliminaries

are given in Section2. In Section3, threeproblems are definedwithdifferentmeasuring functions,which are P(EIS, C), P(EI, L)
and P(EI, N). Then we show that with some preprocessing, the minimum block edit distances of these three problems can

be obtained by dynamic programming in O(nm), O(nm logm) and O(nm2) time, respectively, where n andm are the lengths

of the two input strings. Finally, the conclusion is given in Section 4.

2. Definitions and preliminaries

We denote the input strings (sequences) X = x1x2 · · · xn and Y = y1y2 · · · ym as the initial string and final string, re-

spectively, where xi ∈ Σ , 1� i � n, and yj ∈ Σ , 1� j �m. A substring Xi...j of X is defined as Xi...j = xixi+1xi+2 · · · xj , where

1� i � j � n. For easy representation, the prefix X1...i of X is simply denoted as Xi. A reverse string XR of X is defined as

XR = xnxn−1 · · · x1.While processing the edit operations, the intermediate strings are denoted by a series of working strings

{W1, W2, . . . , WK},whereWi denotes theworking string after the ith edit operation.Generally,X andY are regardedasW0 and

WK+1, respectively. The traditional edit distance betweenX and Y with character-edit operations are denoted as dtra(X, Y). The
local edit distance [19,20] between X and Y , denoted as dlocal(X, Y), is defined as min{dtra(Xi...n, Y)|1� i � n}. The recurrence

formulas for determining dtra(X, Y) and dlocal(X, Y) are given in Fig. 1 [20]. The substring edit distance dsub(X, Y) between X

and Y is defined as the minimal number of character-edit operations to transform any substring of X to Y , and the formal

definition is given as min{dtra(Xi...j , Y)|1� i � j � n}. It is easy to see that dsub(X, Y) is equal to min{dlocal(Xk, Y)|1� k � n}.
In this paper, we assume that the edit operations which transform X to Y form a restricted editing sequence defined by

Ukkonen [18]. Let Wi = UiVi denote the ith intermediate string, where Wi is divided into two parts, inactive part Ui and

active part Vi. Let A → B be an edit operation which transforms a prefix A of Vi to a string B in one step, that is, Vi can be

written as AV ′
i for some (possibly empty) strings V ′

i , A and B. After the edit operation A → B is performed, we can get the

next intermediate string Wi+1 = Ui+1Vi+1, where the inactive part Ui+1 = UiB and the active part Vi+1 = V ′
i . There exists

a restricted editing sequence from X to Y if one can produce Y = WK+1 from X = W0 in such a way. Note that even if there is

a match, i.e. A = B, the active part should be shortened and the inactive part should be extended.

Initially, the active part is the whole string X and the inactive part is an empty string. After the last edit operation is

performed, the active part becomes an empty string and the inactive part becomes the string Y . It derives that the block
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Fig. 1. The recurrence formulas for determining dtra(X, Y) and dlocal(X, Y).

Fig. 2. Two examples to transform X to Y . (a) The recursive copies are allowed. (b) A restricted editing sequence defined by Ukkonen [18], where the white

and gray cells represent the active and inactive parts, respectively.

operationscannotoverlapandaseriesofeditoperationsareperformed fromleft to righton theactivepartsof the intermediate

strings. The inactive parts are fixed and cannot be changed any more. In fact, the active parts are always some suffixes of X

and the inactive parts are always some prefixes of Y . Fig. 2 shows an example of the restricted editing sequences. If there

is no restriction, the source string X = ab can be transformed to the destination string Y = abbbbaaabbbb with only three

edit operations, as shown in Fig. 2(a). Fig. 2(b) shows how the destination string Y is formed by five edit operations with a

restricted editing sequence. It can be seen that after the second edit operation is performed, the active parts of the following

intermediate strings become empty.

The edit operations we consider in this paper are character-insert, character-delete, block-copy and block-delete. To specify

the source where the blocks can be copied from, two models can be chosen, external and internal. As introduced in [14], the

external copy indicates that the source of the block is the original string X and the internal copy indicates that the source of

the block is the previous working string Wi−1. When the block-copy operations are combined with shift operations, one of

the block linear-transformations shown in [13], the block edit distances would be more useful for many applications, such

as searching on music databases. Here we denote Z = z1z2 · · · zn as a shift string of X = x1x2 · · · xn if Jxi − Jzi = Jxj − Jzj for

each i, j ∈ [1, n], where Jxi denotes the encoded index (in an arbitrarily given order) of character xi in the alphabet Σ . One

can apply this method to find out two identical melodies but with different pitches.

We adopt a set of attributes which can be composed and applied on block-edit operations to construct different versions

of edit problems. For each edit problem, there are two kinds of attributes, one is for copy behaviors and the other is for cost

measures. We denote an edit problem as P(o, c), where o denotes a composition of copy operations and c denotes the class

of cost measures. The attributes are listed as follows:

Copy/Deletion Operations

External Copy (E): Wi+1 is constructed out of copying a substring of X and inserting it into a valid position of the active part

ofWi.

Internal Copy (I): Wi+1 is constructed out of copying a substring of the inactive part of Wi and inserting it into a valid

position of the active part ofWi.

Shifted Copy (S): Wi+1 is constructed out of copying the shifted string S′ of a given string S and inserting S′ into a valid

position of the active part ofWi. This attribute should be attached to the External and/or Internal attribute.

Deletion: Wi+1 is constructed out of deleting a valid substring of the active part ofWi.
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Fig. 3. The recurrence formula for solving P(EIS, C).

Cost Measures

Constant Cost (C): All copy (or deletion) operations are of the same cost pcopy (pdelete) as shown in [18].

Linear Cost (L): The cost of copying (or deleting) a string is ps + ipe, where ps and pe are constant parameters for the starting

and extension penalties, respectively, and i denotes the length of copied (deleted) string. This cost is similar to the affine

gap penalty [21].

Nested Cost (N): All deletion operations are of the same cost pdelete, but the copied strings can be further edited with

character-edit operations. Let s1 denote the copied string and s2 denote the string after editing, the cost of this copy

operation is pcopy + dtra(s1, s2), as shown in [17].

With the combination of these attributes, one can easily define the class of block-edit problems. For example, P(E, C)
represents the problem that only external copies are allowed and all block-copy operations are with the same cost. As

another example, in P(EI, L), both external copies and internal copies are allowed and the cost of a block-copy operation

depends linearly on the copied length. For two given strings X and Y , we use d(X, Y)to denote the block edit distance (cost)

between them in various versions of edit problems.

3. Problems and algorithms

In this section, we introduce some problems with the attributes shown in the previous section and propose the corre-

sponding algorithms.

3.1. Problem 1 – P(EIS, C)

Here we consider P(EIS, C) in which all three copy operations (External, Internal and Shifted) are allowed and their costs

are constant. We first propose a straightforward dynamic programming (DP) algorithm to solve this problem. The recurrence

formula is given in Fig. 3. When calculating the value of d(Xi, Yj), we choose the minimum among d1(Xi, Yj), d2(Xi, Yj), . . . ,
d6(Xi, Yj), where d1(Xi, Yj) denotes the minimal cost which ends with a character-edit operation, and the others denote the

minimal costs which ends with different block-edit operations, respectively.

The time and space complexities of the straightforward DP algorithm are analyzed as follows. O(nm) space is needed

to store the values of d(Xi, Yj) for each i and j. To calculate d2(Xi, Yj), O(n) time is needed by linear minimum searching. To

calculate d3(Xi, Yj), for each suffix of Yj , one can test if it is a substring of X inO(n + m) time by the KMPalgorithm [22]. So, the

testing of all suffixes needsO(m(n + m)) time. Then, we have to decidewhich length is the best one to be copied in theO(m)
candidates. The time needed for d3(Xi, Yj) is O(m(n + m)). In the equation of d4(Xi, Yj), by using the same strategy to solve

d3(Xi, Yj), each suffix Yk...j of Yj can be easily tested if it is a substring of Yk−1. The time needed for d4(Xi, Yj) is O(m2). In the

equations of d5(Xi, Yj) and d6(Xi, Yj), for a given biasβ , by using the same strategy for solving d3(Xi, Yj) and d4(Xi, Yj), the best

string to be copied can be found in O(m(n + m)) and O(m2) time, respectively. After the testing all possible O(|Σ|) biases,
the time needed for d5(Xi, Yj) and d6(Xi, Yj) are O(m(n + m)|Σ|) and O(m2|Σ|) time, respectively. Finally, we conclude that

the time complexity of the above straightforward DP algorithm is O(nm2(n + m)|Σ|).
Next, we propose a more efficient algorithm to solve this problem. For d2(Xi, Yj), since the deletion operations are of the

same constant cost pdelete, the formula can bemodified as d2(Xi, Yj) = min{d(Xk−1, Yj) | 1� k � i} + pdelete. This is to say that

we are finding the minimum of the elements {d(X0, Yj), d(X1, Yj), . . . , d(Xi−1, Yj)}. By preserving the current minimum for

the next iteration, it needs onlyO(1) time to find the newminimum for each iteration. Note that, if there are several locations

of the same minimal value, they are all valid prefixes to achieve the optimal solution, and we can choose any of them.

For d3(Xi, Yj), the following two steps are involved:

Step 1: Find the longest suffix Yl...j of Yj that matches a substring of X .

Step 2: Find the best starting position k in Yl...j so that the substring of X is copied to Yk...j .
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Fig. 4. The LCA of YR
j and XR

h . Xg...h is the longest substring of X that matches a suffix of Yj .
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Fig. 5. A data structure for the range minimum query on compact integer data. (a) Finding the range minimum for calculating d3(Xi, Y19). (b) Updating the

data structure for calculating d3(Xi, Y20).

In Step 1, we will find the position l such that Yl...j is a substring of X , but Yl−1...j is not, for 1� l � j �m, and l can be found

in O(1) time after the following preprocessing. First, a suffix tree [23] T
(
XR#YR$

)
is built, where {#, $} are two dummy

symbols which do not appear in Σ . On each internal node of the suffix tree, a flag is used to preserve the information where

its descendant leaf nodes came from ({XR, YR, or both}). Trace the path bottom-up from the leaf node YR
j to the root and

find the first (deepest) internal node whose subtree contains some leaf nodes in XR. This internal node is the lowest common

ancestor (LCA) of YR
j and some XR

h , and our aim is to get the longest common prefix (LCP) LCP
(
YR
j , X

R
h

)
. However, this LCA

cannot be found in constant time by the LCA querymethod shown in [24] because the leaf node XR
h remains unknown before

tracing the path from YR
j to the root. As shown in Fig. 4, the reverse string of LCP

(
YR
j , X

R
h

)
is exactly the longest suffix of

Yj that matches in X and it can be copied from X . To reduce the time spent by each query j ∈ [1, m], one can record the

location of LCA to those internal nodes on the searching path. In another query j′ ∈ [1, m], if there exists an internal node

that has been set by previous queries on the searching path, it can return the LCA information immediately, instead of the

redundant searching. In summary, the preprocessing time for Step 1 can be done in O(n + m) time, and then one can answer

the position l in O(1) time when Yj is given.

In Step 2, we have to findmin {d(Xi, Yk−1) +pcopy|l � k � q} that Yk...j is copied from X . This is to find theminimal value in

the range from d(Xi, Yl−1) to d(Xi, Yj−1) in the DP lattice and then add it to pcopy. Here we assume that the values of pcopy and

pdelete are both integers, so the values in the searching range are also integers. For pcopy and pdelete of floating-point values, we

will solve it with the strategy shown in the next section. This searching can be done by a special data structure shown in Fig.

5 which maintains the integer values of the current row (i.e. d(Xi, Y1) through d(Xi, Ym)) in the DP lattice. This data structure

is composed of an array of pointers and a set of double linked lists. Note that the difference of d(Xi, Yj) and d(Xi, Yj−1) must

be in {−1, 0, 1}. Therefore, the values stored in this data structure are compact. This data structure can guarantee that each

insertion, deletion or range minimum query can be achieved in O(1) time.
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Fig. 6. Choosing the blocks for internal copy. (a) A valid copy of the longest matched suffix Yl...j from Yl′...j′ . (b) The longest valid suffix that can be copied is

Yj′+1...j due to the overlapping region on the working string.

Fig. 5(a) shows the way of computing the value of d3(Xi, Y19), where the searching range is assumed to be among

d(Xi, Y13), d(Xi, Y14), . . . , d(Xi, Y18). The indices from 13 to 18 are stored in the linked lists corresponding to their values.

For example, the index 15 is stored in the list of row 3 since d(Xi, Y15) = 3. Note that the indices stored in each linked list

are sorted since the indices are stored incrementally. A pointer Rangemin points to the first element of the linked list which

contains theminimal value. Therefore, thequerycanbeeasily answered inO(1) time.Assuming thatpcopy is 2andd3(Xi, Y19) is
the best cost among d1(Xi, Y19), d2(Xi, Y19), . . . , d6(Xi, Y19), we can obtain that d(Xi, Y19) = d3(Xi, Y19) = d(Xi, Y14) + 2 = 4.

After d(Xi, Y19) is obtained, the index 19 is stored at the end of the linked list in row 4 since its value is 4. When the iteration

d3(Xi, Y20) begins, the indices 13 and 14 which are outside the range for the new minimum searching will be removed, as

shown in Fig. 5(b). Both the storing and the removing operation can be done in O(1) time since the element to be removed is

in the front of the linked list and the new element is to be stored at the end of the linked list. Note that the pointer Rangemin

must be updated when the current minimum is removed or a smaller value with its index is inserted. Take Fig. 5(b) as an

example, the pointer Rangemin is not changed when the index 13 is removed, but when the index 14 is removed, Rangemin

is updated to point to the new minimum, the index 15. The maintenance of the pointer Rangemin on the data structure can

be done in O(1) time for each store and each removal. Note that there are at most m storing operations and m removing

operations for computing the row {d3(Xi, Y1), d3(Xi, Y2), . . . , d3(Xi, Ym)}, therefore, one can answer the best starting position

k to be copied for Step 2 and computes d3(Xi, Yj) in O(1) amortized time for each iteration.

For d4(Xi, Yj), similar to d3(Xi, Yj), there are two steps involved:

Step 1: Find the longest suffix Yl...j of Yj that matches a substring of Yl−1.

Step 2: Find the best starting position k in Yl...j so that the substring of Yl−1 is copied to Yk...j .

In Step 1, we will find the position l ∈ [1, j], such that Yl...j is a substring of Yl−1, but Yl−1...j is not a substring of Yl−2.

Note that in the equation of d4(Xi, Yj), when the dynamic programming is used to find the best suffix that can be copied, the

overlapping regions must be avoided. As shown in Fig. 6(a), the longest suffix Yl...j is valid and Yk...j is a candidate block to

be copied for each k ∈ [l, j]. But in Fig. 6(b), we cannot produce Yl...j by the internal copy from the working string due to the

overlapping region. Therefore, the longest valid suffix that can be copied is Yj′+1...j , other suffixes longer than Yj′+1...j will be

invalid. This query can be answered in O(1) time after the following preprocessing. First, a suffix tree T(YR) is built, and on

each internal node of the suffix tree, there is an extra pointer to the leaf node which has the smallest index in Y among all its

descendant leaf nodes, as shown in Fig. 7. If two ormore substrings of Y can be copied to Yl...j , the onewith the smaller index

is always better because it will make the overlapping region smaller. To find the longest valid suffix Yl...j that can be copied,

we should consider the internal nodes on the path from the root to the leaf node YR
j . Let V = {v1, v2, . . . , vp} denote the set

of internal nodes on the path and
{
YR
j1
, YR

j2
, . . . , YR

jp

}
denote the set of corresponding leaf nodes pointed by {v1, v2, . . . , vp}. It

can be seen that the candidate blocks in Yj to be copied begin with the locations j1, j2, . . . , jp, respectively. Considering an

internal node vq ∈ V and its corresponding copying location Yjq , if there exists no overlapping region,
∣∣∣LCP

(
YR
jq
, YR

j

)∣∣∣ is the
length of the block that can be copied. On the other hand, if there exists an overlapping region, the length of the block that

can be copied is (j − jq), as shown in Fig. 6(b). In the worst case, the length of the path is O(m), however, Fayolle and Ward

[25] shown that the expected depth of the suffix tree T(YR) is O(logm). For a given j ∈ [1, m], one can find the longest valid

suffix of Yj that can be copied in O(m) time in the worst case and O(logm) time on average. Thus, the preprocessing time

becomes O(m2) time in the worst case and O(m logm) time on average.

In Step 2, one can answer the best starting position k to be copied, by using the same strategy to solve d3(Xi, Yj), in O(1)
amortized time. The overall amortized answering time for the equation of d4(Xi, Yj) is O(1) per iteration.

To find the string that can be copied with a shift operation, we can first compute the differential strings X′ and Y ′ of X
and Y which are defined as X′ = x′

1x
′
2 · · · x′

n−1 and Y ′ = y′
1y

′
2 · · · y′

m−1, respectively, where x′
i = Jxi+1

− Jxi , 1� i � n − 1 and

y′
j = Jyj+1

− Jyj , 1� j �m − 1. For d5(Xi, Yj), the strategy for solving d3(Xi, Yj) can be applied similarly by preprocessing the

suffix tree T
(
X′R#Y ′R$

)
, rather than T

(
XR#YR$

)
. Then the preprocessing time is stillO(n + m) and the amortized answering
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Fig. 7. The suffix tree T(Yj) for finding the longest valid suffix Yl...j to be copied.

Fig. 8. The recurrence formula for solving P(EI, L).

time is still O(1) per iteration. For d6(Xi, Yj), the strategy for solving d4(Xi, Yj) can be applied similarly by preprocessing the

suffix tree T(Y ′R) rather than T(YR).
As a summary, we have the following theorem.

Theorem 1. P(EIS, C) can be solved by a dynamic programming algorithm in O(nm) time with O(n + m2) preprocessing time in

the worst cast and O(n + m logm) preprocessing time on average.

3.2. Problem 2 – P(EI, L)

Fig. 8 shows the recurrence formula for solving P(EI, L). A straightforward implementation, similar to that for P(EIS, C),
can solve this problem in O(nm2(n + m)) time.

To solve this problem, we may use a strategy similar to which solves P(EIS, C). Note that this problem cannot be solved

by the algorithm for P(EIS, C) directly because of two key differences. First, in general, pe is less than the unit cost, which is

the cost for a single character insertion. The data structure shown in Fig. 5 is not workable for floating-point values because

we cannot point to the linked list of a given value in O(1) time. A balanced binary search tree can be used as an alternate,

which can perform one insertion, deletion or query in O(logm) time. Second, in P(EIS, C), the values stored in the searching

range are never changed, but in P(EI, L), once the iteration d(Xi, Yj) passes to the next iteration d(Xi, Yj+1), all the values in

the searching range are increased with the cost pe except the newly inserted element d(Xi, Yj). To avoid updating all values

stored in the balanced binary search tree, we subtract the corresponding amount of pe from the newly inserted element,

rather than add pe to all the stored elements. The remaining part of the algorithm for P(EIS, C), such as the preprocessing on

suffix trees, is still workable for this problem.

The time required by this algorithm is analyzed as follows. For d2(Xi, Yj), finding the best suffix of Xi to be deleted can still

be done in O(1) time by preserving the current minimumwhich adds the corresponding amount of pe for the next iteration.

For d3(Xi, Yj) and d4(Xi, Yj), the preprocessing for constructing the suffix trees and finding the longest valid suffixes that

can be copied to still requires O(n + m) and O(m2) time, respectively. However, the amortized time needed for answering

d3(Xi, Yj) and d4(Xi, Yj) is both increased to O(logm) per iteration because the values in the searching range are stored in a

balanced binary search tree.

As a summary, we have the following theorem.

Theorem 2. P(EI, L) can be solved by a dynamic programming algorithm in O(nm logm) time with O(n + m2) preprocessing

time.
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Fig. 9. The recurrence formula for solving P(EI, N).
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Fig. 10. The DP lattice for finding the substring edit distances dsub(X, Y3...3), dsub(X, Y3...4), dsub(X, Y3...5) and dsub(X, Y3...6).

3.3. Problem 3 – P(EI, N)

The recurrence formula for solving P(EI, N) is given in Fig. 9. A straightforward implementation requires O(n2m3) time.

We propose a more efficient algorithm as follows.

For d2(Xi, Yj), pdelete is a constant, and the strategy for P(EIS, C) can be applied similarly, thus it can be done in O(1)
time per iteration. For d3(Xi, Yj), we want to find out the position k such that d(Xi, Yk) + dsub(X, Yk...j) is minimal, and

this requires all the substring edit distance dsub(X, Yk...j), 1� k � j �m. This can be done by preparing the DP lattice of X

and Yk...m for each k ∈ [1, m], and hence m DP lattices are generated. For example, Fig. 10 shows a DP lattice of X and

Yk...m, where k = 3 and m = 6. By computing the minimum value of column k′, one can get the substring edit distance

dsub(X, Yk...k′). The construction of the m DP lattices needs O(nm2) preprocessing time. Then, we need to find out k such

that d(Xi, Yk−1) + dsub(X, Yk...j) is minimal, which needs O(m) time per iteration. For d4(Xi, Yj), each substring edit distance

dsub(Yk−1, Yk...j) is required, 1� k � j �m. Similarly, this can be done by preparing the DP lattice of Yk−1 and Yk...m for each

k ∈ [1, m]. The construction of them DP lattices needs O(m3) preprocessing time. Then, we can find out the position k such

that d(Xi, Yk−1) + dsub(Yk−1, Yk...j) is minimal, which needs O(m) time per iteration.

As a summary, we have the following theorem.

Theorem 3. P(EI, N) can be solved by a dynamic programming algorithm in O(nm2) time with O((n + m)m2) preprocessing

time.

4. Conclusion

Most previous research on the block-edit operations focused on approximations rather than optimal solutions because of

the NP-completeness. In this paper, we show that by applying some slight and reasonable restrictions, the optimal solutions

can be obtained and it is very practical. For example, we solve the P(EIS, C) problem in O(nm) time, and it is useful when it

is compared to the traditional edit distances with character-edit operations. Besides, we introduce the concept of attaching

the attributes to form various problems which are suitable for different scenarios. The remaining problems are solved as

follows. For P(EI, L), the time complexity is increased toO(nm logm) because of the floating-point cost. The P(EI, N) problem
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Table 1

Summary of the three problems and our methods.

Straightforward DP Our methods

Modified DP Preprocessing Total

P(EIS, C) O(nm2(n + m)|Σ|) O(nm) O(n + m2) in worst case O(nm + m2)
O(n + m logm) in average case

P(EI, L) O(nm2(n + m)) O(nm logm) O(n + m2) in worst case O(nm logm + m2)
O(n + m logm) in average case

P(EI, N) O(n2m3) O(nm2) O((n + m)m2) O((n + m)m2)

is better fitted to the human natural edit behavior, and it can be solved in O(nm2) time. The summary of the three problems

and our methods is shown in Table 1.

As shown in Section 3.1, the problems which are attached with shifted copies of constant cost can be solved easily by

preprocessing the differential strings and the suffix trees. This strategy can also be applied when the shifted copies are of

linear cost. However, it becomes troublesome when the copied strings can be further edited with character-edit operations,

i.e. nested cost. The preprocessing of the differential strings and the suffix trees is not sufficient to cope with the nested cost

behavior. These are why the shift operation is included in neither Problem 2 nor Problem 3, because they are either too easy

or too difficult, respectively.

In the future, we are interested in how to solve the P(EIS, N) problem which includes shift operation with the same time

complexity of the P(EI, N) problem. We are also interested in whether the P(EI, N) problem can be solved by more efficient

algorithms to make it more practical.
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