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a b s t r a c t

The edge Szeged and edge Wiener indices of graphs are new topological indices presented
very recently. It is not difficult to apply a modification of the well-known cut method to
compute the edge Szeged and edge Wiener indices of hexagonal systems. The aim of this
paper is to propose a method for computing these indices for general graphs under some
additional assumptions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A graph invariant is any function on a graph that does not depend on a labeling of its vertices. There are many examples
of graph invariants, especially those based on distances, which are applicable in chemistry. The Wiener index [1], defined
as the sum of all distances between pairs of vertices in a graph, is probably the first and most studied such graph invariant,
from both a theoretical and a practical point of view; see [2,3] for details.

Besides the Wiener index, we will consider several related indices; to define them, we first introduce some notation.
Throughout the paper, we only consider simple connected graphs. For a graph G, V (G) and E(G) denote the vertex and edge
set, respectively. The line graph L(G) is a graph with V (L(G)) = E(G) and two vertices of L(G) are adjacent if and only if they
have a common vertex in G. If H is another graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G) then we say that H is a subgraph
of G, H ≤ G. For two vertices u, v ∈ V (G), the distance dG(u, v) (d(u, v) for short) is defined as the length of a shortest
path connecting them. Suppose f = ab and g = uv are arbitrary edges of G. Define de(u, ab) = Min{dG(u, a), dG(u, b)}
and DG(f , g) = Min{de(u, f ), de(v, f )} = Min{de(b, g), de(a, g)}. A path P of length l is called an e-shortest path connecting
edges f and g if l = D(f , g) and pendants of P are end vertices of f and g . It is easily seen that DG(e, f ) = dL(G)(e, f ) − 1,
where L(G) denotes the line graph of G.

Set Mu(v) = {f ∈ E(G) | de(u, f ) > de(v, f )}, Nu(v) = {xÎV (G) | d(u, x) < d(v, x)}, mu(v) = |Mu(v)| and
nu(v) = |Nu(v)|, where u, v ∈ V (G). The edge f = ab is said to be parallel with g = uv and we write f ‖ g if
de(u, f ) = de(v, f ). It is clear that the parallelism is not generally symmetric or transitive. Define

We(G) =

−
{f ,g}⊆E(G)

DG(f , g) (1)

Sze(G) =

−
f=uv∈E(G)

mu(v)mv(u) (2)

Ple(G) =

−
f=uv∈E(G)

[mu(v) + mv(u)] (3)
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Szev(G) = 1/2
−

e=uv∈E(G)

[nu(v)mv(u) + nv(u) + mu(v)]. (4)

Eqs. (1) and (2) are recently defined graph invariants, named the edge Wiener [4,5] and the edge Szeged index [6,7],
respectively. Eq. (3) defines the Padmakar–Ivan (PI) index of a graph G. The PI index is a more interesting graph invariant
studied by verymany researchers andwe refer the readers to the papers [8–16] related to the PI index and its vertex version.

Throughout this paper our notation is standard and mainly taken from the standard book on graph theory. For the graph
notation applicable in chemistry we refer the readers to the famous book of Trinajstic [17].

2. Results and discussion

Suppose G is a graph and H ≤ G. The subgraph H is called convex if it contains all shortest paths for pairs of vertices in G
already in H and H is said to be isometric, H ≪ G, if for each pair of vertices u; v ∈ V (H), dG(u; v) = dH(u; v). For a subset
X of V (G), ⟨X⟩G denotes the subgraph of G induced by X , namely V (⟨X⟩G) = X and E(⟨X⟩G) = {uv ∈ E(G) | u, v ∈ X}. The
neighborhood of a vertex v ∈ V (G), NG(v), is the set of vertices of G at distance 1 from v. A vertex v in a subgraph H of G is
called a boundary vertex of H if |NG(v)| − |NH(v)| > 0. The set of all boundary vertices of H is denoted by ∂H .

The aim of this section is to present a newmethod for the calculation of edgeWiener and edge Szeged indices of graphs.
We encourage interested readers to consult the papers [18–22] for background material as well as basic computational
techniques. For the sake of completeness we state the following results which are crucial throughout the paper.

Theorem 1 ([18]). Suppose H = ⟨V (H)⟩G and there exists a convex subgraph I of G such that ∂H ⊆ V (I) ⊆ V (H). Then H is a
convex subgraph of G.

Lemma 1 ([18]). Suppose {Fi}ri=1 is a partition of E(G) such that G \ Fi is a two-component graph with convex components G1
i

and G2
i . Then there exists a set R of shortest paths of G such that for each pair u, v of vertices of G, the following conditions hold:

(a) If PG(u, v) ∈ R and {u, v} is contained in exactly one of V (G1
i ) and V (G2

i ) then |E(PG(u, v)) ∩ Fi| = 0.
(b) If u ∈ V (G1

i ), v ∈ V (G1
i ) and PG(u, v) ∈ R then |E(PG(u, v)) ∩ Fi| = 1.

Theorem 2 ([23]). Suppose {Fi}ri=1 is a partition of the edges such that G\ Fi is a two-component graph with convex components.
Then G is bipartite.

Theorem 3. Suppose {Fi}ri=1 is a partition of E(G) such that G \ Fi is a two-component graph with convex components Gi
1 and

Gi
2. Then We(G) =

∑n
i=1 |E(Gi

1)||E(Gi
2)|.

Proof. Let R be a multi-set of e-shortest paths of G such that for each edge f , g ∈ E(G), there exists exactly one e-shortest
path in R. Notice that it is possible for a path P to be an e-shortest path for different pairs of edges of G. Also, all vertices of
degree > 1 are elements of R of length 0. For an edge f ∈ E(G), nR(f ) denotes the number of elements of R containing f .
Therefore,

We(G) =

−
{f ,g}⊆E(G)

D(f , g) =

−
f∈E(G)

nR(f ). (5)

We claim that if G satisfies the conditions of our theorem, e, f ∈ E(G) and PG(e, f ) ∈ R, then the following equality holds:

|PG(e, f ) ∩ Fi| =


0 e, f ∈ Gi

1 or e, f ∈ Gi
2 (i)

0 e, f ∈ Fi (ii)
0 e ∈ Fi & (f ∈ Gi

1 or f ∈ Gi
1) (iii)

1 e ∈ Gi
2 & f ∈ Gi

1. (iv)

(6)

The cases Eq. (6)(i) and (iv) are immediate consequences of Lemma 1. We prove Eq. (6)(ii). To do this, we assume that
e1 = a1b1 and e2 = a2b2 are edges of Fi. Since components of G − Fi are convex, a1 and b1, as well as a2 and b2 do not
belong to one component of G − Fi. Suppose that a shortest path in R connecting e1 and e2 trails from Fi, and a1, a2 are in a
component ofG−Fi and b1, b2 are in another component ofG−Fi.We nowprove thatD(e1, e2) = min{d(a1, a2), d(b1, b2)} <
min{d(a1, b2), d(a2, b1)}. To do this, we assume that min{d(a1, a2), d(b1, b2)} = d(a1, a2) = min{d(a1, b2), d(a2, b1)} =

d(a1, b2). This shows that G has an add cycle, which is impossible by Theorem 2. If d(a1, a2) > d(b1, b2) then we can find a
shortest path of length ≤ d(a1, a2) connecting a1 and a2 which is not totally contained in a component containing a1 and
a2, contradicting the convexity of the components of G − Fi.

Finally, to prove Eq. (6)(iii), we assume that e1 = a1b1 ∈ Fi, e2 = a2b2 ∈ Gi
1 and a1 ∈ V (Gi

1). If D(e1, e2) = deG(e2, b1)
then G is not bipartite and if D(e1, e2) > deG(e2, b1) then Gi

1 cannot be convex; these are impossible. This implies that
D(e1, e2) < deG(e2, b1). Since {Fi}ki=1 is a partition of E(G) and G − Fi is disconnected,

∑
e∈Fi

nR(e) = |E(Gi
1)||E(Gi

1)|, which
completes the proof. �
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Corollary 1. Suppose {Fi}ki=1 is a partition of E(G) such that G − Fi is a graph with convex components Gi
1 and Gi

2. Then

W (L(G)) =
∑k

i=1 |E(Gi
1)||E(Gi

2)| +


|E(G)|

2


.

Proof. Since DG(e, f ) = dL(G)(e, f ) − 1,W (L(G)) = We(G) +


|E(G)|

2


, proving the result. �

Theorem 4. Suppose {Fi}ri=1 is a partition of E(G) such that G \ Fi is a two-component graph with convex components Gi
1 and

Gi
2. Then Sze(G) =

∑n
i=1 |Fi||E(Gi

1)||E(Gi
2)|.

Proof. Suppose ab ∈ Fi. Clearly, vertices a and b are in different components of G − Fi. If a ∈ Gi
1 then we show that for

each v ∈ Gi
1, d(a, v) < d(b, v). If not, d(a, v) = d(b, v) or d(a, v) > d(b, v). In the first case, there exists an odd cycle

in G, which contradicts Theorem 2. In the second case, one can find a shortest path P(a, v) in G such that Gi
1 does not

contain P(a, v), which is impossible. So, for every v ∈ Gi
1 and ab ∈ Fi, d(a, v) < d(b, v), where a ∈ Gi

1. Thus for each
e ∈ Gi

1, d
e
G(a, e) < deG(b, e). By a similar argument, for each e ∈ Gi

2, d
e
G(b, e) < deG(a, e). We now assume that uv ∈ Fi and

d(a, u) = d(b, u) + k. If k = 0 then G is not bipartite, which contradicts Theorem 2. If k < 0 or k > 2 then Gi
1 or Gi

2 is not
convex, respectively. Therefore, d(b, v) = d(a, v) + 1, ab ‖ uv and uv ‖ bv.

On the other hand, {Fi, E(Gi
1), E(Gi

2)} constitutes a partition for E(G) and so if uv ∈ Fi and u ∈ Gi
1 then Mu(v) = E(Gi

2)

andMv(u) = E(Gi
1). Thusmu(v)mv(u) = |E(Gi

1)||E(Gi
2)| and we have

Sze(G) =

−
uv∈E(G)

mu(v)mv(u)

=

k−
i=1

−
uv∈Fi

|E(Gi
1)||E(Gi

2)|

=

k−
i=1

|Fi||E(Gi
1)||E(Gi

2)|,

which completes our proof. �

Corollary 2. With the conditions of Theorem 4, PIe(G) = |E(G)|2 −
∑k

i=1 |Fi|2.

Proof. In the proof of Theorem 4, we show that if uv ∈ Fi, u ∈ Gi
1, then mu(v) = |E(Gi

2)| and mv(u) = |E(Gi
1)|. Since

E(G) = Fi ∪ E(Gi
1) ∪ E(Gi

2),

PIe(G) =

−
uv∈E(G)

[mu(v) + mv(u)] =

k−
i=1

−
e∈Fi

(|E(G)| − |Fi|)

=

k−
i=1

|Fi||E(G)| −

k−
i=1

|Fi|2 = |E(G)|2 −

k−
i=1

|Fi|2,

proving the result. �

Corollary 3. If T is an n-vertex tree then We(T ) = Sze(T ).

Proof. By removing an edge of T , we obtain a two-component graph and both of the components are convex. To prove the
result, it is enough to apply Theorems 3 and 4. �

Corollary 4. Suppose {Fi}ri=1 is a partition of E(G) such that G \ Fi is a two-component graph with convex components Gi
1 and

Gi
2. Then

Szev(G) =

k−
i=1

(|V (Gi
1)||E(Gi

2)| + |E(Gi
1)||V (Gi

2)|).

Proof. Apply the proof of Theorem 4. �

In what follows, we apply our results to compute the Wiener and edge Wiener index of the graph Yn depicted in Fig. 1.
We now consider the coronene/circumcoronene homologous series Xk, k ≥ 0. The first terms of this series are X0 =

benzene, X1 = coronene, X2 = circumcoronene and X3 = circumcircumcoronene; see Fig. 2 where X4 is shown.
It is clear that Yn is isomorphic to the line graph of Xn. The edges seem to be geometrically parallel, constituting the

partition {Fi} of E(G). By removing Fi from Xn, a graph is obtained in which one of the components, say M(n, k), is depicted
as in Fig. 3.
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Fig. 1. The graph Y2 .

Fig. 2. The graph X4 .

Apply Theorem 3 and Corollary 1 to deduce that

W (yn) = W (L(Xn)) = We(Xn) +


|E(Xn)|

2


= 6

n−
i=1

(|E(M(2n − i, n − i))|)(|E(Xn)| − |Fi| − |E(M(2n − i, n − i))|)

+ 3|E(M(2n, n))|2 +


|E(Xn)|

2


. (7)

On the other hand, |E(M(n, k))| = 3nk + 2n + 5/2k − 3/2k2 + 2, |E(Xn)| = 9n2
+ 15n + 6 and |Fi| = 2(n + i) − i,

0 ≤ i ≤ n. By substituting these values in Eq. (7), we obtain

W (L(Xn)) = 27 + 831/5n + 825/2n2
+ 507n3

+ 615/2n4
+ 369/5n5.

The quantities PIe, Sze and Szev can also be calculated from the above calculations.
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Fig. 3. The graph M(9, 4).
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