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Abstract

Convergence of truncation methods is obtained for a free boundary problem in R* with an absorption depending on
space and time. Error estimates are derived for the discretization, in space by a P;-finite element method and in time by
a backward Euler method. (© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the vineyard, the grapes are often attacked by a butterfly, the Eudémis which favoured the
development of a mushroom. This mushroom leads to alteration to the quality of the grapes; so
an effective struggle against this insect is essential. In order to protect environment, researchers of
INRA have settled a new method: The female emits an odorous substance (the pheromone) in a very
small quantity. This pheromone has been synthetised and it has been proved that the presence of this
substance causes interference to olfactory communications between the insects and then leads to a
decline of the eggs and so of the population. So it is important to know the quantity of pheromone
which is necessary to put in a field to lead to a significant drop of the population.

This substance is contained in small “diffusors” which are spread about the field, then it is diffused
and is absorded by the medium and it may be spread out by the wind.

So, the quantity ¢ of pheromone in a field is the solution of a free boundary problem of the
following form:
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Let Q be a bounded domain in R* with a smooth boundary I'; V is the velocity of the wind which
satisfies divV =0 (V is solution of Navier—Stokes equations); « is a diffusion coefficient (¢ > 0), f
is an absorption coefficient ( f >0);

¢ satisfies

¢ —aAc+div(Ve)=—f, xe€w(t), t>0, (L.1)

where w(t) = {x € Q/c(x,t) > 0} with the boundary conditions: ¢ =0 on I' X (0,T); ¢ =0dc/on=0
on dw(t) (n is the outer normal to dw) and the initial condition: c¢(x,0)=cy(x)=0,x € Q (co(x) > 0
on »(0) and w(0) is strictly included in ).

In this paper, we study a numerical method which is a generalization of the truncation method
proposed in [1]. These authors have proved the convergence of the method for a constant ab-
sorption when the domain is R and with finite difference methods under the stability condition:
(At/h*)< C™ (At is the time step and # is the space step).

Here, we use a truncation method for an absorption depending on space and time, a backward
Euler method in time and a P,-finite element method in ©, a bounded domain in R?. By using
the error estimates obtained in [8] in L°°(L) concerning parabolic problems, we obtain the error
estimates for the numerical method. Numerical results are presented in [6].

An outline of this paper is as follows:

e In Section 2, we present two numerical methods using truncations which have been used to
obtain a nonnegative solution. Since the proof of the convergence is obtained by comparing their
respective solutions, we need to study these two methods all together.

e In Section 3, we proceed with the study of the error due to the truncation only.

e In Section 4, we analyse the semi-discretization in time for these two truncation methods.

e Section 5, finally, is devoted to the analysis of the complete discretization in space and time.

2. Definition of the numerical method

We denote by A the maximal positive operator of domain D(4) = H*(Q) N H}(Q) defined by

Yu € D(4), Au= —oaAu+ div(Vu) (2.1)
and by a the function defined on R by
0 if s<0,
“”:{1 if 5> 0. (22)

By using these notations, problem (1.1) may be written
¢ +Ac=—fa(c) in Q,
c(0)=c¢y in Q.
This problem has a unique continuous solution if f € L>°(0,T; W'>(Q)), ¢, € W>>=(Q) [9].
If we use a backward Euler method to solve (2.3), we obtain the following scheme:

Given an approximation ¢" of c(t,), (¢, = nAt and At is the time step), ¢"*! is solution of the
problem:

(I + AtA)c"™ = " — Atf(ty)a(cnrr)- (2.4)

(2.3)
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In practice, this method cannot be used due to the term a(c"™'); if we linearize this method, we get
(I + AtA)" ' =" — Atf(t,)alc,), (2.5)

but this scheme does not guarantee the positiveness of ¢"™'. So we use a truncation method; several
techniques may be used:
In the first case, we compute an intermediate value u"™' solution of

(I + Atd)y = ¢ (2.6)
and ¢"™! is then defined by
" = Max(u" — Atf(t,:1),0). 2.7)

In the second method, we define u" by

u" = Max(c" — Atf(t,41),0) (2.8)
and ¢"™! is solution of

(I + AtA)" ' =" (2.9)

In the two cases, ¢"*! is a nonnegative function. The truncation may be used after k time steps
where & must be chosen in an optimal manner. Egs. (2.6), (2.9) are discretized by using a P;-finite
element method.

We shall prove the convergence of these methods all together, since the proof is obtained by
comparing their respective solutions. This convergence will be proved in three steps: First, we
estimate the error between the exact solution and the approximations obtained in replacing (/+A¢4)~!
by e~ (semi-group generated by A) in (2.6), (2.9). Then we compare these approximations to the
values of ¢ obtained in (2.7), (2.9); this will give us an optimal value of k. By using the monotonicity
of the operator (/+At4)~", we then prove that the truncation may be used at each time step. Finally,
we analyze the error due to the space discretization of (2.6), (2.9).

3. Definition of the truncation methods

Let 7 be a fixed time step; this time step will correspond to the time interval between two
corrections of the solution by a truncation. If u is a function defined on 2, we denote

Mu = Max(u,0) (3.1)

and E(t) = e~ the semi-group operator associated to A.
We consider the following approximations of the solution c:
First approximation:

C](O) = Co,

(3.2)
ci((n+ 1)) = M[E(t)ci(nt) — tf((n+ 1)1)].
Second approximation:
2(0) = ¢, (3.3)

cx((n+ 1)1) = E(1)M(cx(nt) — of ((n + 1)1)).
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In the next lemmas, we compare these two approximations to ¢. The first approximation gives a lower
bound to the exact solution and the second approximation gives an upper bound to this quantity.
The L>°(Q)-norm is denoted by ||.||.

Lemma 3.1. For n>=1, we have the inequality
n—1
ex(nr)<e(me) + of (no) + 1) [I£GD) = £+ Dol (3.4)
j=1

Proof. Let us prove the result first in the case n = 1. We have the inequality

() SM(ex(t) — 1f (7)) + f (1) (3.5)
and since M(cy — 7/ (7))<co, by using (3.3), we get c,(7)<E(7)co.
Then, from (3.5), we obtain
(1) SM(E(t)eo — T/ (7)) + 1/ (7)

that is c;(7)<ci(7) + tf (7).

So, the result is proved for n = 1; we prove the general case recurrently.

Let us denote ¢y = M(cy — 7/ (7)) and c((nt; ) the solution obtained by the first approximation
with the initial data ¢;. We prove recurrently the following estimate:

n—1

M(cy(nt) — tf(n))<ci(nt; &)+ 1£GT) = £+ Do)l. (3.6)

J=1

For n =1, since c,(1) = E(1)¢y, we get immediately: M(c,(t) — 1/ (1)) = ¢1(7; Co).
We suppose that (3.6) is satisfied for j<n; from the inequality

M(cr(nt) — 1f((n + 1)1)) SM(co(nt) — 1/ (7)) + 7| f(n7) — f((n + D7),
we get

o((n+ D) <SE(0)M(cx(nt) — tf (n7)) + 7| f(n7) — f((n + D)

and by using the recurrence hypothesis, we obtain
c((n+ 1) <E(t)ei(nt; éo) + 7 Z 1/G™) = G+ Dl
j=1
It follows that
M(cx((n+1)1) —tf((n+ 1)) <ci((n+ 1)t; 6) + fzn; 1700 = £+ Do)l
=
and (3.6) is obtained at the step n + 1.
From the following inequalities:

a((n+ Dt)ysM(c((n+ D) —tf(n+ 1)1)) + tf((n + 1)1), and ¢ (nt; o) <ci(nt), we obtain
the result. O
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Lemma 3.2. For n=1,if Af € L>((0,T) x Q), we have the inequality

n—1
ci(nt)<c(nt) + Z /

j=0 YJT

(j+1)

1/(s) = £+ Dollds+ 7> |ASG)-
j=1

Proof. For n =1, we have

c(t)sM (E(r)co — /OT E(r—s)f(s)ds) +M </OT E(t—s)f(s)ds — Tf(l')).

Using the definition of @ in (2.2), we get

M (E(T)CO — /0T E(t— s)f(s)ds) <M (E(r)co — /0T E(t— s)a(c(s))f(s)ds) =c(7),
hence we obtain
c(t)<c(r)+ M </0t E(t—s)f(s)ds — ’L'f(’L')) .

We estimate now the second term of the right member of this inequality
M </ E(rs)f(s)dsrf(r))
0
<|[ Bc-906) - ronas

+ H/OT(E(T—S)—I)f(T)ds

and since E(t —s) — [ = — [; AE(¢)d¢&, we deduce

<7 4f (.

/ (E(—5)— D f(2)ds
We then obtain

M ( / " E(r— $)f(s)ds — rf(r)> </ 1) — F@lds + 2AF@))

and
=@+ | 1) = F@ ds + 2L

If n > 1, the proof is analogous. [J

Lemma 3.3. For n=1, if Af € L>((0,T) x Q), we have the inequality

n=l (e 2
) <emm)+ Y [ 1@ - fG+ DRl s+ 5 Y I4f Gl )
j=0 “J* j=1

Proof. For n =1, ¢ > 0, we define a function ¢ on [0, 7] by

t 2
&) = EM(co =t/ @)+ 2+ [ 1) = @) ds + 4@l (338)
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This function satisfies
(1) + A1) = B S M ey — /() + 10— )]+ A4,
c(0)=cy+e.

Besides, (0/0t)M(co — tf(7))= — f(7), hence we get
c(t)+4ét)= —(E@) — 1) f(1) = f(O) + 1|4/ (D)

and since, ||[(E(t) —I)f(7)||<t||Af(7)|| and a(¢) =1, it follows that
C(t) +Ac(t)= — f(t)a(c).

Then, for any ¢ > 0, we have &(¢)=>c(¢t), t € [0,7], in particular, we obtain: lim, .o ¢(7) =c(7), that
is

e+ [ 156) = @ ds+ SIS e

So, we have proved the estimate for n = 1.
For n > 1, the proof is analogous; we define a function ¢ on [nt,(n + 1)7] by

ct)y=E(t —nt)M(c(nt)—(t—nt)f(n+1)1))+¢
! (t — nt)?
[ 176) = £+ Dl ds + S p o+ Do)l
Then ¢ satisfies
¢+ A= —a(c)f (1),
é(nt)=c(nt)+¢
hence, lim, o c((n + 1)1)=c((n + 1)1), that is

E(DM(c(nt)—1f((n+1)1))+ /

T

(n+1)t 2
1£6) =/ Dl st 4/ (D) (1))
and recurrently, we get

(j+1)r 2 n+tl

o+ <+ D0+ Y [ 176 = £+ DDllds+ 53 lfGal - ©
j=1

j=0 “JT

From these lemmas, we easily deduce the following theorem:

Theorem 3.4. If f, Af, 0f/ot € L*°((0,T) x Q), there a positive constant C depending only on f
and T such that

lle(nt) — ci(nt)|| <Ct for i=1,2 and nt<T. (3.9)
4. Semi-discretization in time

In this part, we study the semi-discretization in time of the two previous approximations of ¢
obtained by using a backward Euler method.
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Let us denote by Af the time increment; the approximation of E(z,) with t, = nAt¢, using a
backward Euler method will be (/ + At4)™".

We note r(z) = (1 + z)~' and we suppose that T = kAt, k€ N. The approximations ¢’ of
ci(nt), 1<i<?2, at the time level t,; = nkAt = nt are defined by

C(l) = Cop,
o (4.1)
AR = M (A — f ((n + 1)1)),
C(Z) = Cp,
(4.2)

ST = R (AAM (™ — 1 f (n + 1)1)).

We estimate the errors between ¢ and ¢;(nt), 1<i<2, in L>°(Q), then by using theorem (3.4), we
obtain the error estimates between ¢/* and c(nkAt). In order to obtain error estimates, we shall use
the following convergence result for holomorphic semi-groups [4]: There exists a positive constant
C such that
C

|E(nAt) — r"(AtA) || oo (@)1 @) < o (4.3)
and the estimate for the backward Euler method [10]:

lF"(AtA)

Let us introduce the following notations: for u € L>°(Q), we define
Fy(u) = M(E(t)u — tf(n1)),

s, ) < 1. (4.4)

(4.5)

Fi(u) = M(F(Atd)u — o f (n7)),

Fy(u) = E(0)M(u — ©f(n1)), (4.6)

Fon () = r(AtA)M (u — o f (n7)) '
and the expressions of ¢;(nt) and ¢/ (i = 1,2) may be written:

ci(nt)=F"...Fl(cy), (4.7)

A" =Fl,...Flx(co). (4.8)
Lemma 4.1. For u,v € L>(Q), i = 1,2, we have the estimate

17 (u) — F7(0)]| < [ju —v]. (4.9)

Proof. We prove first the estimate for i = 1:

Fi(u) — Fi(v) = M(E(D)u — tf (n7)) — M(E(t)v — 1 f(n7))
hence, we get

17 () = F{ ()| <[[E(T)(u — v)|| < lu = v].
For i =2, we have

Fy(u) = Fy(v) = E(0)M(u — tf(n7)) — E(0)M (v — 1f(n1)),
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hence we get
|5 (u) = FY()[| <M —tf(nt)) =M@ —tf(n0))||<[lu—vf. O

Lemma 4.2. For u € L*(Q), n=0, i = 1,2, we have
[F7a ()| < [fuell- (4.10)

Proof. For i=1, since f is a positive function, we obtain ||F7,,(u)|| <|r(Atd)u| <|Ju||. For i =2,
we get [|F35, )| <[[M(u—f(n0)| <[lul. O

Lemma 4.3. For u € L*(Q), i = 1,2, we have
n n C
[Fia ) = F () <;|lu|\- (4.11)
Proof. For i =1, we have

Fip(u) = Fi(u) = M (Atd)u — tf (n7)) = M(E(t)u — 1 (n1)),

hence by using (4.3), we get |[Fi,(u) — F{()]| <||(H(Atd) — E(x))ul| <(C/)|lul.
For i =2, we obtain

C C
I3 () = Pl < L IMGu = tfGrepl| < . O
By using these three lemmas, we can estimate now the errors between ¢ and c;(n7) (i = 1,2).

Theorem 4.4. For n>=0, we have the estimate
et = o) <€ fleoll, 7 =1.2. (4.12)
Proof. From (4.7) and (4.8), we immediately obtain the equality
n—1

A —cnt)=Y _(F!...FI"'Fl\,...Fl\(co) = F]'...F/F}y, .Fl\(c0))
j=2

F(F]  FIFp(co) = F} L FIFNC0)) + (Fly - Fin (o) = FTFIR Fin (o).
By using lemma (4.1), we get

e} = cino)ll < D I1Fls, - Fiseo) = FIF) .. Fis(co)
j=2
+ |Fialco) = Fl(co)ll. O
Now, by using (4.10) and (4.11), we obtain

C < . C n
et = el <7 30 IFE - Fisteoll + leall <CHlloll
=
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By using this result together with theorem (3.4), we easily obtain the estimates between c¢* and
c(nt) for i =1,2.

Theorem 4.5. If f,Af,(0f/dt) € L>((0,T) x Q), there is a positive constant C depending on
co, f, T such that

| — c(nt)|| <C (r + Z) for nt<T. (4.13)

It is now possible to choose 7 (or k) in such a manner that this error is minimal. Since nt =
nkAt <T, estimate (4.13) may be written

| — c(nt)|| <C, <kAt + szt) .
Then this quantity is minimal for k = O(Az=??) and we get an error of order O(Az'?):
[} = e(n)| <CAL, i=1,2, nt<T. (4.14)

Remark 4.6. The operator 4 is a maximal sectorial operator: There is some constant 6, (0 <0, <7m/2)
depending on || V|| such that Vu € D(A),(Au,u) € Sy,,(Sy, = {z € C/|arg(z)| < 0o}). So we may
use a strongly A(6) — stable method (0 > 6,) to discretize E(¢). In this case, if r(z) is a rational
approximation of e?, we have not estimate (4.4), but ||7"(At4)|| ¢u2@).120)) <1 and if the method
is of order p, we have the estimate ||E(nAt) — r"(AtA)| vu2a)12(0) < C/n? [5]. Then by choosing
k = O(At=%(rt2)), we obtain the error estimate in L*(Q): ||c/¥ — c(nt)|| g20) < CAP/(P2),

In practice, the truncation is done at each time step; we shall prove now that we keep the same
error estimate in that case, if we use a backward Euler approximation of E£(¢). This will be done by
using the fact that the operator r(Azd) = (I + Atd)™" satisfies a positiveness property

u=0 = r(Atdu=0 (4.15)

(this is not the case for the other classical methods) and by comparing the solutions obtained by
the two truncation methods.
Let us introduce some notations: if 1 =kAt¢ and u € L*>°(Q), we define

Fiat; D)u = M(F*(Atd)u — t£(1)), (4.16)
Fopnt; Tu = r*(AtAM (u — t£(1)). (4.17)

We shall compare the approximations of ¢ obtained by using the truncation at each time step or
at each & step only.

Lemma 4.7. If u=0, u € L>*(Q), 1,=k|At, 1,=kyAt, Af € L=((0,T)xQ), (0f/0t) € L>=((0,T)x
), we have the inequalities

Fiadty + 12511 + 1)u<Fia 11 + 725 T)F 1272 T2))u + C11172, (4.18)

Fon(ti 4+ 125 1) Fon(T2; T2 )u <Fop(t1 + 125110 + T2)u + C11 72, (4.19)

where Cy is a positive constant depending only on f.
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Proof. From (4.16), we have the inequality
Fiadty + 125110 + 1)u < M (At (At — 1,1 (15)) — 11 f (11 + 12))
+ LM (AMA) f(12) — f(11 + 12))
and by using the positiveness property of the backward Euler method, we obtain
Fiati + 125110 + 12)u < Fiadt + 125 1) F1a(2; 12)u
+ )" (A) = Df ()] + ol f(12) = f(1 + ).

Besides, we have the equality

k—1 by —1
(A — 1= F(AA)r(AA) — 1) = —At Y r'(Atd)A.
=0 =0

Hence, we deduce

I (Atd) = D) f ()| Sk At A f ()], (4.20)
it follows that

Fia(ty + 1511 + 2)u < Fiat + 125 1) F1a(T25 T2)u

0
+n[4f(n)| + 1t 67]:

Lo(0.1)x2)
For the second method, we have the equality

Fond(T1 4 25 7)) Fond(T2; T )u = r* (AtAM (F(AtAM (u — 1, £ (15)) — 11 f (11 + T2)).
Since

M@u =t f(n2)) SM(u— (11 + ) f(11 + 12)) + M((11 + ©2) f (11 + 72) — 12/ (12)),
we easily get by using (4.15)

Foad(t1 + 125 T1)Fon(T2, 12)u

<AR(AMM (u — (11 4 1) (11 + 1))
+ 1 (AAM (P (AADM (11 + 1) f (11 + 1) — 12/ (12) — T f (11 + 1))

It follows that

Foad(ti + 125 10)Fana (T2, 12)u < Foa(Ti + 12571 + T2)u

[ (AM (1) + 1) f (11 4+ 1) — 22 (12)) — 1 f (11 + )|

Then by using (4.4) and (4.20), we obtain that the second part of this inequality is bounded by

ol f(11+ 1) = f()| + unlldf (1 + ).
Estimate (4.19) follows immediately. O

Lemma 4.8. Under the hypothesis of lemma (4.7), for 1 = kAt, we have the inequality
Fiadt; Du<Fon(t;0)u + T AL (1)) (4.21)
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Proof. From (4.16), by using the positiveness of the operator r(AtA4) and the inequality u <M (u —
() +1f(¢), we get

Fiadt; Du <M (AtOM (u — o f (1)) + 1(7(Atd) — 1) £ (1)),
then, by using (4.21), it follows that

Fisdt; Qu<Foa(t; Du+ 2df 0. O

From these lemmas, we deduce the following theorem:

Theorem 4.9. If Af and 0f/ot € L>=((0,T) x Q), there a positive constant K depending only on
f such that, if v =kAt:

Fialt; 1) SFialt ADF (kK — DAL At) ... Fiad At; At)ey + KT (4.22)

Fialt; ADF A ((k — DAL At)... Fia(At; At)eo
K Font; At) ... Fon (AL At)cy + KAt (4.23)

Fond(t; At) ... Fon(At; At)co < Fon,(T57)co + K12 (4.24)

Proof. We prove first inequality (4.22) by using (4.18)
Fialt; 1)co SFiadt ADF a((k — DAL (k — DA)eo + Ci(k — DA

whence, by repeated application,
k—1
Fiadt; 1)co SFiad(t; ADF1a((k — DAL AL) ... FiaAt; At)eo + C Z]Afz,
=1

that is
C
Fiadt; t)co S Fialt; At) ... FiaAt; At)ey + jl(k — DkAP.

We deduce (4.22) with K = C,/2.
The proof of (4.24) is analogous by using (4.19) and (4.23) is obtained from (4.21). O

By using these inequalities, we may now compare the solutions obtained by a truncation at each
time step or every k steps.

We denote ¢/, (i = 1,2) the solutions obtained at the time level t; = jAt by the two different
methods, using the truncation at each time step, that is

~0
¢y = Co,

= M(r(AtA)E — Atf((j + 1AD)),

~0
¢y = Co,

M = H(AAM(E — Atf((G + 1AD)).
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Theorem 4.10. If f, Af and (0f/0t) € L>=°((0,T) x Q), if Acy € L>°(Q), we have the estimate:
&/ — c(jAD|<CA?, i=1,2, (4.25)
where C is a constant depending only on f, co, T.

Proof. From inequalities (4.22)—(4.24), we get ¢t <& +Kk* A2, & <& + KkAP, & <& + Kk AP,
whence, by repeated application, we obtain at the time level ¢ = nkAt, ¢ SE'fk + Ktk At, 5’fk <c~§k +

KtAt, & <ci* + Ktk At, and we deduce

™ — e(nkAt) — Ktk At <&* — c(nkAt)
<&F — c(nkAt) + KtAt <™ — c(nkAt) + K(k + 1)tAt.

Hence by using (4.13), we get

&% — c(nkAn)||<C (kAt - ktAt> +K(k+ )tAn, i=1,2
and the optimal result is obtained for kK = O(A¢=%3), which gives the estimate
&% — c(nkAn)|| = O(AP), i=1,2.
Now, if Acy € L*=(L), the following estimates hold:
e = *lI<Cr, 0<j<hks fle(ukAr) = e((nk + HAD|<Cr. 0<j<ks

and estimate (4.25) follows immediately. [J

5. Complete discretization

For the discretization of the problem in space, we use a P;-finite element method.

5.1. Notations

If Q is a convex bounded domain, we consider a family of regular quasi-uniform triangulations
I> (h > 0) of subdomains €, of Q: Q, = Uy, K.

For any K € 7, we set W(K) = diameter of K, h(K)<h.

Let us denote by V), the finite dimensional subspace of H,(£2) defined by

Vi ={v, € C*(Q)/VK € T, vy € P, vyyr =0} (5.1)

(P is the space of polynoms of degree <1).
A, is the operator of #(V,, V) defined by

Yu,, v, € Vi,  (Apuy,v) = /(oc grad u,,. grad v, +V grad u;, v,)dx (5.2)
Q
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If ve CQ) N H,(Q), its Lagrange interpolate denoted by m,v is defined by

v € V), and m,0(S) = v(S) for any interior vertex of 7. (5.3)
The standard L2-projection onto V}, is denoted by P, and defined by

Yo e L}(Q), PweV, and (Pyw,v;)=(v,05), Vv, € Vp, (5.4)

where (.,.) denotes the L*-inner product.
The elliptic or Ritz projection H,(Q2) — V), is denoted by r;, and defined by Vu € H(Q), ru €V,
and

(Apryu,vp) = /(oc grad u;,. grad v, +V.grad u, v,)dx, Vv, € V. (5.5)
Q

Besides, we have the equality

Ay Py =A™ (5.6)

In order to define the approximations of ¢, we shall use the discrete operator: r(Atd,) = (I +

AtA,)~! and we shall need the positiveness of this operator which impose some hypothesis on the
triangulation.
Lemma 5.1. We suppose that all the angles Ox of the triangulation are acute and satisfy

@<%<g (5.7)

and

sin 6,

" + 2Ath| V| < aAt cotan 0. (5.8)

Then, if w, € V;, and u, =0, we have the inequality
r(Atd))u,(x) =0, Vx e Q (5.9)
and for u, €V, we have

[[r(Atdy Yy || < |- (5.10)

Proof. It is analogous to the proof made in [10]. Let {¢;}Y, a basis of V}, (N is the number
of interior vertices of 7,). We note v, = r(Atd;)u;; v, and wu, admit the representations: u;, =
Z;V:l Ui, vy = Z;V:l vp; with u; = u(a;),v; = v(a;) (a;(1<j<N) are the vertices of 7).

By using matrix notations, the equality v, = r(Atd,)u;, may be written: (M + AtB)V = MU
where 7 and U are the vectors of RY of components (v;);_1 ,(#;);—1.v and M and B the matrices:
M = (mj)i<ijen> my= (@), 9:)s B=(bij)i<ij<n> bij = (4n@j> @)

The matrix M + AtB is a positive-definite symmetric matrix; hence, we get V =(M + AtB)~'MU
and denoting C = (M + AtB)~'M, we may write: V = CU.

The coefficients m;; (1<i, j<N) are nonnegative; the diagonal coefficients of M + AtB are pos-
itive; then if the nondiagonal coefficients of M + AtB satisfy m;; + Atb; <0 (i # j), the matrix C
is positive (¢; =0, 1<i, j<N).
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We have the equalities

1
mi; = Z [{(P,‘(Pj dx and /K(/),‘(pj dx = Emes(K) if a,a; S K,

Keg,

b, = Z /K(oc grad ¢, grad @; +V grad @; ¢;) dx

Ke,
and
Oix 0k
rad ¢, grad ¢; dx = — cos 0;; =2
/Kg PrEme e ¥ % 4 mes(K )
where 0, is the angle of K at the vertex opposite to a;a;; dx is the length of the side of K opposite

to a;.
s

Besides, we have the estimate: | [, V grad ¢; ¢; dx|<|V[dj.
Then, the contribution of the triangle K to the coefficient m;; + Atb;; is given by

1 0ix0;
—mes(K) — oAt cos O —5 4 Ath|V|

12 4mes(K)

and since mes(K) = %&K@K sin0;x, this quantity is bounded by
. At
22 5in 0o — o cotan 0y + Ath|V|.

A sufficient condition to obtain m;; + Atb; <0 is then

hz
ﬁsin 0o + 2hAt| V| <alt cotan 6.

(This condition will be realized if #*<CAt, C depending on 0, and h<h,, hy depending on |V|, «
and 6,.)

The second part of the proof of the theorem is analogous to the proof in [10]; it is easy to obtain
Yiiep<l,i=1,...,N. O

In order to obtain the error estimates, we use the following convergence result for holomorphic
semi-groups (cf. [8]): There exists C > 0 and a > 0 such that

Inh
|E(t,) — r"(Atd,)Py &,”(L‘X’(Q),LOC(Q))<C| p | (5.11)
provided that At satisfies
At=ah*|lnhf and h<e . (5.12)

We prove now an estimate which will be useful in the proof of several lemmas.

Lemma 5.13. There exists a positive constant C such that if Ag € L>(Q), the following estimate
holds:

[ (Atdy)mrg — g|| < C(R*[Inh| + kAL ||g ]2, 0,0- (5.13)
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Proof. We have
1P (Atdy) g — gll <[P (Aedn) (i — ri)gll + [|(F(Aedy) — Drgll + [ — Dyl

It has been proved [3] that (7, — 73)g|| < Ch*|In k|| |g||2.00.0, Vg € W*°°(Q), hence from (5.10), we
get ||FF(At4,)(m, — r1)g|| < CR?|In k|| |g]|2.00.0- In the same manner as for (4.20), we get ||(#F(At4,) —
Dirgl| <kAt||4yryg| and from (5.6), we obtain [|(#(Atd,) — Drig|| <kAt||PyAg|| < CkAt||g]|2.00.05
since ||Pyu|| < Cl|ul|.

Since, the following estimate holds [3,7] ||(r, — I)g|| < Ch*|In h||g||2.00.0» We deduce

I (Atd)mg — gl <CH k| + kAD)|glhcco. O

5.2. Definition of the numerical approximation

We define two approximations of ¢ in an analogous manner to (4.1), (4.2): the approximations
eV, (i=1,2) of ¢ at the time level nkAt are defined by

C(l)h = TtyCo,

1k h e (5.14)
ci = mM@E (Atd,)ey, — tf (n + 1)),
CO = Tt;Co,

2 (5.15)

SE = bR (AtA)TM (% — 2 f ((n + 1)1)).

It has been necessary to introduce the interpolate operator 7, since the positive part of a function
of V}, is not in Vj,.

In order to estimate the errors between ¢ and c(nkAt), we use an analogous method as for the
discretization in time.

Let us denote

Yu, € Vi, Fla,(uy) = mpM(r*(Atd,)u, — tf (n1)), (5.16)
Yu € L=(Q),  Fiy,(u) = r"(Atd,)mM (u — tf (n1)). (5.17)

Lemma 5.3. For u, € V,, we have

[ ()| < [[uan]]- (5.18)
For u € L>(Q),

[ F 5 ()] < el (5.19)

Proof. From (5.16), we get immediately ||F7y,(uy)|| <||M(r*(Atd,)u, — f(n7))||; and since f is
positive, we get |[Fa,(w)|| < [[r (At || < [[us]-
In the same manner, we obtain ||F4, ()| <||[mMu — tf(n7))|| <|jul|. O
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Lemma 5.4. There exists C > 0 and a > 0 such that, for u, € V), f €L>(0,T; W>(Q)), we have
the estimate

u . Inh h
Itauton) = PRl < (B 2l + e e (520

if At satisfies (5.12).

Proof. From (4.5) and (5.18), we get immediately
1F Y () = Fy ()| < || (FF(Atd )y, — 1 (n7)) — M (E(2)uy, — < f (n7))
+ [|(my — DM E(Duy, — tf (n70))].
Besides,
17 (M (r(Atdy)uy, — o f (n7)) = M(E(@)u — Tf (no)|| < [|(rF(Atdy) — E(2))us|

and from (5.11), there exists C > 0 and a > 0 such that

Inh
I ) — E@ul<¢ (1)

Further, we have [2]
[(mty — DM (E(t)uy, — ©f (n0)|| < Chl|E(T)uy — 1/ (n7)]1,00,0

< Ch <Hu\/h%|| + ’CHf(I’l’L')H],OO,Q) .
We deduce
It — P <€ (B8 4+ L)l + el o
v Vi =

Lemma 5.5. There exists C > 0 and a > 0 such that for uc€ Wt>°(Q), f € L>(0,T; W>°(Q)), we
have the estimate

Inh
13000 F30l <€ (U5 ull + €l + R 700 (5.21)

if At satisfies (5.12).
Proof. From (5.17) and (4.6), we get

1F5am(u) = Fy )] <[|(7F(Atdy) — E(@)mM (u — f (n0))|| + [|E(2)(m, — DM (u — o f (n7))]|-
If At satisfies (5.12), we have from (5.11):

Inh
I )~ E@)mM— o] <¢ (1) ul

and

1E(D)(my — DM (u = f(n0)|| < ||y — DM (u — < f (1)) | < Chlu — T (n7) 1,500,
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hence we get

Inh
|F2an() — Fi()|| <C (’ |

)l + Gl o+ CHRAA S0

From these two lemmas, we obtain the following theorem.

Theorem 5.6. There exists C > 0 and a > 0 such that, for ¢, € W->(Q), f € L>=(0,T; W">=(Q)),

the estimate
h Inh
et — el < —

(kAr)3? * kAt

) leol + Chllullcia + CHlF o rmnions 1= 1.2

(5.22)
holds, provided that the time step satisfies (5.12) and nkAt<T.

Proof. We have the equality
n—1
ey — )= (FY o F{ Flag o Fiaa(ch) = FL o FIF] g Flau(cl))

j=2
+F{1Ath . 'FllAth(C(l)h) - F{1F;£t}z e 'FllAzh(c(l)h)
+F?"'F12F11Ath(c?h) _Fr---Ff(C?h)

+FLFl(c}) — Fr . Fl(co).
By using (4.9), we obtain

n
||C}17/1§ — ()] < Z ||F1]Ath"‘FllAth(c(l)h) —FlijEtlh---FlAth(C?h)||
j=2

+IF anenn) = Fi(e)| + lleo = mico

and from (5.20) and (5.18), we get
n|ln Al nh

k (kAt)' 2
Since, nkAt<T, we deduce
In A h
At (kAt)?
For the case i =2, we use the equality

cfh — e(no)|| <C ( ) llcoll + CrkAth]| £ 1| 0.7:m1. (@) + Chl|col]1,00.0-

ey = ei(no)|| <C ( ) [coll + Chll f |, w1 (@)) + Chllcoll1.00.0-

n—1
A —ex(nt) =Y (Fing - FIxpFS .. F3(co) — Fongy - FingFy . F3 (o))
j=2

+FY . F) (o) — Fin,F3 " .. F)(co)
+F2nAth .- -FzzAthzl (co) — F;Ath . -leAth(co)

+F;Ath .- 'FZIAzh(cgh) - F;Ath .- 'FZIAzh(cO)-
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Besides for u,v € L>=°(Q), we have
[ F5am() = Fopg ()| < [|mM (u — o f (n7)) — ;M (v — f (n7))|| < [Ju — 0],

hence we get
e = ex(O)ll < Y NIF3 ... Fy(eo) = FangFs - Fa(co)
j=2

HIFS . Fy(co) = FiagFs ™" - Fa(co)ll + [leo — eyl
Then by using (5.21), we obtain

" /|Inh . " -
et — estml < € 3 () g Rl + €n S 1R Bl o)
=2

J=2

Inh
+ Okl o <can + C e 4 el
Besides, if u € L®(Q), ||F3(u)|| .~ < (C/VOIM(u — t£ ()| < (C/VEAD||ul.
We deduce immediately
n|ln A| nh
k VAt

We obtain immediately the error estimates between ¢ and c(nkAt). [

etk — ex(mr)| <C ( ) lcoll + CrkALh| flli~o.rav1.~cay + Chllcoll 1.0

Theorem 5.7. For i=1,2, if ¢co € W'>(Q) and f,Af,(0f/0t) € L>(0,T x Q), the following estimate
holds:

Inh h
et — e(nt)|| < C (kAt + Lmi + (kAt)m) (5.23)

if At satisfies (5.12), nkAt<T.
This estimate proceeds immediately from (5.22), (3.9).

We can choose £ in order that this error is minimal. We obtain easily: if there exists b > 0 such
that A% |In h|~' <At, we can choose k = O(A¢=?3|In4|'?) and we get

e — c(n)|| S CALP I )2,
If At is chosen such that Ar<bh®S|Inh|~!, we can choose k = O(h*’Ar~") and we get
lefy — ci(nt)|| <Ch>. (5.24)

For the complete discretization, we prove also that we obtain the same error estimate if the truncation
is done at each time step.
We introduce the following notations:

Fran(t; Duy = 1M (rF(Atdy)uy, — 1/ (1)), (5.25)

Fona(t; Du = r*(Atdy)mM (u — 1 (1)) (5.26)

and we prove lemmas analogous to lemmas (4.7), (4.8).
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Lemma 5.8. If 1, =k At, 1, =khAt, if Af(1;) € L>=(0,T x Q),(0f/0t) € L(0,T x Q), we have
Fiao(ti + 12511 + 02)up <Fian(t1 4 25 72)Fiam(t2; 12)uy + Ci(1172 + rzhzllnh]), (5.27)

Foaa(T1 + 125 1) Faan(t2; 1)U < Faan(Ti + 12571 + T2)u + Citi(t2 + A |In k), (5.28)

where C, is a positive constant depending on f.

Proof. For i =1, we have the equality

Fian(ty 4 12511 + 12wy = mM (P (Atdy uy, — (11 + 1) f (11 + 1))
From the inequality,

(At yuy ST M (At )y, — 1./ (1)) + T f (1),
we get

Fiam(ty + 12511 + t2)up < Fras(ti + 125 1) F1am(T25 T2)uy
+ M (M (Atd,, S (12) — f(1 + 12)).
Let us bound the last term of this inequality

| tamM (K (Atd)m f(12) — (11 + )| < wllff (Atd)mf (1) — f()]]
+ 0 f(w2) = (11 + )|
and by using (5.13), we get
TzHﬂhM(’”kl(AfAh)nhf(Tz) — f(ti + 1))

<Co(B |k + )| f(2)]ax.0 + TiT2

ot

L50(0,Tx Q) '
In the second case, from (5.28), we get
Faona(t1 + 123 T)Fanm(T2; T2 )u = r° (AtA) )M (Foan(T2; ©)u — 11 f () + 12))
= M (Atd) M (At M (u — o f (12)) — 11 f (11 + 1))
Moreover, we have the inequality
M (u— T f (1)) <M — (11 + 12) f (11 + 12)) + mM((1) + 12) (11 + 12) — 12/ (12)).
We deduce
Fona(t1 + 125 11 )Foam(T2; T2 )u
<A (A)TM (1 — (T + 1) f(T1 + T2))
+ ||”kz(AfAh)7ThM((T1 + ) f(11 +12) — 2 f(12) — um f(1 + 1)
It remains to bound the second term of the right member
Hrkz(AtAh)nhM((r] + ) f(11 + 1) — 2 f(12)) — um f(11 + )
< Hrkz(AtAh)[nhM((Tl +0)f (11 + 1) — 12 (12)) — um f (T + )]l
+11[|(F(Atdy) — Dy f(t1 + 12)|)-
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The first term of this inequality is bounded by
B f(t1 + 1) — ()]

In the same manner as in the first case, we obtain that the second term is bounded by
C(H|Inh| + kA f |2 00.0-
Hence we get

Fona(T1 + 125 1) Fana(t2; 1)U < Faaa(t1 + 12511 + T2)u + C(1172 + 1142 In A)). U

Lemma 5.9. If f € L>=(0,T; W>>(Q)),(0f/ot) € L=(0,T x Q), we have the inequality
Fian(t; Dun < Fonu(t; Dy, + Cr(t + B Inh))|| £(1)]]2,00.0- (5.29)

Proof. From (5.25), we get: Fian(t; t)u, = mM(r*(Atd,)u, — t£(¢)) and by using the inequality:
w, <M (uy, — ©f (1)) + tmf(¢), we obtain Fyan(t; T)u, < Fonn(t; Ty, + t||mnM (X (Atd;)m, f(¢) —
f(8))]]. Inequality (5.29) follows immediately from lemma (5.2). O

By using these inequalities, we may compare the solutions obtained by a truncation at each time
step or every k steps in the same manner as for the semi-discretization in time.

We denote &), (i = 1,2) the solutions obtained at the time level ¢, = jAt by the three different
methods using the truncation at each time step, that is

5?h = Ty,Co, i= 1,2,
e = mM(r(Atd,)E], — Atf((j + DAD)), (5.30)

= H( At TM (&, — Atf((j + 1)AL)) (5.31)

and we easily obtained the following theorem analogous to theorem (4.12):

Theorem 5.10. For i = 1,2, if Aco € L=(R2) and f,Af,(0f/0t)€L>(0,T x Q), we obtain the
estimate:

1), — ci(GAD| < CAMP|In A + #F) i=1,2, (5.32)

provided the time step satisfies: ah®|lnh|* <At, where C is a constant depending on f,co,T.

This estimate proceeds of the optimal choice of k in (5.23). In this inequality, the second term
|In h|/k*At is the error due to the approximation of the operator E(kAt) by the operator r(Atd,)
which is repeated n times. This term will give an error of O(A¢'?|Ink|) with an optimal choice
of k. The third term of (5.23) h/(kAt)*? is due to the interpolation error: since the positive part
of a function of V, is not in that space, it is necessary to interpolate the solution obtained after a
truncature; with an optimal choice of k, this term will give an error of O(h*°).

In the two following figures, we represent the concentrations of pheromone obtained with a small
diffusor situated in the centre of a rectangular field with a W—E wind and a constant absorption at
the time ¢t =1 and 10 (see Figs. 1 and 2).
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Fig. 1. Concentration at # = 1.
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Fig. 3. Comparison between the two truncature methods.

The Fig. 3 represents the results obtained along the W—E median line of the rectangular field by
the two truncature methods at the same time level: there is very little difference between these two
methods and we may verify that the first approximation is always below the second.
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