=
etadata, citation and similar papers at core.ac.uk brought to you by )i COR

provided by Elsevier - Publisher Connect

Available online at www.sciencedirect.com

Topology
SCIENCE DIRECT?®*

: @ and its
ol Applications
ELSEVIER Topology and its Applications 150 (2005) 1-18

www.elsevier.com/locate/topol

Continua and theis -ideals

Riccardo Camerlo

Dipartimento di matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Received 4 September 2003; received in revised form 14 June 2004; accepted 7 October 2004

Abstract

Itis proved that a coanalytic invariasmtideal of continua of the plane is eith€¥ or it is complete
coanalytic. The structure of the complete lattice of invariaideals of continua is investigated.
0 2004 Elsevier B.V. All rights reserved.

MSC:03E15; 54F15

Keywords:o -ideal of continua; Coanalytic set

Introduction and notation

A continuunis a compact connected (hon-empty) metric spacenkisdegenerat it
contains more than one point. F&ra Polish space, l&f (X) be the set of albubcontinua
of X, that is all subspaces & that are continua. This is a closed subseKafX) (the
Polish space of all compact subsetsXfendowed with the Vietoris topology), so it is
a Polish space in its own right. Since every compact metric space can be embedded in
RN—actually in[0, 1]N—C (RY) (or € ([0, 1]V)) can be regarded as the Polish space of all
continua (up to homeomorphism) and provides the setting in which continuum theory is
usually performed.

Given a classF C C(X) of continua, one can investigate the descriptive set theoretic
complexity of F (see, for example, [3,6,2]). Knowing th&tis I"-complete for some class
I’ of sets in Polish spaces entails that the complexity of any definitidhisfbounded be-
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low by the complexity of". As a reference for these and other basic concepts of descriptive
set theory used in this paper, see [4].

In various mathematical contexts, one can formalize notionsnudlinessusing the
concept ofs-ideals. For continua this can be stated as follows.

Definition. Let@ # 7 C C(X). ThenZ is ac-ideal of continuaf:

(1) 7 is hereditary that isVC € Z VC' € C(X) (C' € C = C’ € T);
(2) itYneN C, e T andif|J, .y Cy is a continuum, thetJ, . Cn € 7.

In other words, a non-empty class of continua is-&deal if it is closed under sub-
continua and under countable unions that are continua. Examptesdefals of continua
often come from dimension theory (continua of dimension not greater than some: fixed
countable dimensional continua, continua whose non-degenerate subcontinua are infinite
dimensional, . .); other examples include Suslinian continua, continua contained in count-
able unions of homeomorphic copies of a given continuum, More examples will be
discussed later.

This paper investigates structural propertiessfadeals of continua in affine spacis,

2 < n < w, where form < n the spac®™ will always be thought of as naturally embedded
in R™.

In Section 1 a dichotomy result fer-ideals of continua is proved, along the lines of
Kechris, Louveau and Woodin dichotomy ferideals of compact sets [5] according to
which ac-ideal of compact sets in a Polish space is eitfigior complete coanalytic. To
state this, callF C C(X) invariantif it is closed under homeomorphism.

Theorem. LetZ be a coanalytic invariang -ideal of continua of the planR?. Then either
T is Gs oritis IIi-complete.

Corollary. LetZ € C(R"), 2 < n < w, be a coanalytic invariant class of continua. If
7 N C(R?) is ac-ideal of continua and it is noGs, thenZ is H%-complete.

The hypotheses abofitbeing invariant can be relaxed quite a bit, but they cannot just
be dropped.

Section 2 remarks that it is immaterial whether the study of invaraiteals of con-
tinua is undertaken in affine spade$ or the corresponding cub¢gg, 1)". The choice for
R" is made to have the affine structure of such spaces available, but same results hold in
[0, 1]".

The family of all invarianto-ideals of continua oRY is a complete lattice under in-
clusion, which will be denoted by. Indeed,£ has a least elemenf((RY), the set of all
singletons), a biggest elemexit(®")) and, given any non-empty famity € £, (G is an
invarianto -ideal of continua, so inf = () G; consequently also s@pexists and it is the
intersection of all invariant -ideals of continua containing) G.

Starting with Section 3 the structure gfis studied. It follows from the above that if
@ # F < C(RY) then there is a smallest invariamtideal of continuaF® containing.F;

F? is called theinvariant o-ideal of continua generated h¥. Since 77 is the closure
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of F under homeomorphism, subcontinua and i#faeary operation of countable unions
that are continua, one might expect that the constructiofA®ffrom F would require
transfinite induction up ta;. However this is not the case.

Theorem. Let @ # F € CRY) and let X € CRY). ThenX € F° if and only if X is
included in a countable union of continua each of which is homeomorphic to some member
of F.

Concerning the descriptive complexity 87, the following is proved.

Theorem. Let# # F < C(RY). Suppose thakl = {K € K(RY) | 3C € F (K is embed-
dable inC)} is a coanalytic subset df (RY). ThenF? e I} (CRY)).

As a consequence, it will follow that the invariantideal of continua generated by the
arcs isITi-complete.

In Section 4, as a consequence of the observation(th&t (RY)} has a biggest element
Z~ Which is complete coanalytic, a purely descriptive set theoretic argument shows the
non-existence of a universal continuum for non-universal continua (that is for continua not
containing Hilbert cubes). A countable chain of invariarideals of continua (which are
big in some sense) is given whose supremum is lessZhan

It is worth remarking here that several arguments in this paper are based on Baire
category theorem or the following simple consequence of X: i§ a non-degenerate con-
tinuum and ifXg, X1, ... are closed subsets &f that coverX, then there is: € N such
that X,, contains a non-degenerate continuum.

1. A dichotomy theorem
This section is devoted to prove the following theorem.

Theorem 1. Let C be a fixed non-degenerate continuum of the pRReSuppos€ is a
coanalytico-ideal of continua of the plane containing all continua which are obtainable
from C by an affine non-degenerate orientation preserving transformation. Then &ither
is G or it is II1-complete.

The case of main interest is whénis closed under homeomorphism. So it is worth
stating explicitly this particular case: a coanalytic invari@aritleal of continua in the plane
is eitherG; or IT1-complete.

Proof of Theorem 1. The proof is achieved establishing a sequence of propositions.

Proposition 2. Let K € K (R?) have cardinality at leas and letA, A’ be fixed distinct
points of K. Then there is a continuous functigig 4 4/ : (R%)? — K (R?) \ {#} such that,
whenP, P’ are distinct points oR2, thenK is homeomorphic withx 44/ (P, P’) via an
affine orientation preserving transformation of the plane which sentisP and A’ to P’.
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Proof. Let fxaa (P, P") =¥ t(K) wheregp, ¥, T : R?2 — R? are defined as follows:

e 7 is the rotation with centre the origi@ such thatr (A") — 7(A) is concordly parallel
to P’ — P (the identity if P = P’);

e v is defined byvz e R? ¢ (z) = '“litil‘l'z;

e ¢ is the translation sendingt (A) to P.

To see continuity offx 44, assume P,, P,) is a sequence of pairs of points converging
to (P, P'); let 7, ¢, ¢ be as above for constructinfx 44 (P, P’) and letz,, ¥, ¢, be
the corresponding functions used in producjixg o' (P, P,). If P # P’ theng, ¢, t,(K)
converges typy t(K) since the distancé (g, v, 7, (x), oyt (x)) converges uniformly to
Oforx e K. If P= P/, then lim,_, o diam(g, v, 7,(K)) = 0 and lim,_, o ¢, ¥, 7, (K) =
oYT(K) ={P}.

Finally, if P # P’ theng, ¥, T are non-degenerate affine orientation preserving trans-
formations of the plane anghyt(A) = P, oyt (A)=P'. O

Proposition 3. The following functions are continuaus

(1) G:K(R? \ {#} - R? assigning to each compact subspd¢ec R? the middle point
of the bottom basis of the smallest, possibly degenerate rect®idl@, with edges
parallel to the coordinate axes, containirg;

(2) G':K(R?) \ {#} - R? assigning tok € K (R?) \ {#} the middle point of the top basis
of R(K);

(3) w:K(R?)\ {#} — R{ assigning tok the width ofR(K).

Proof. Let 71, 72:R? — R be the projections onto the first and second coordinates, re-
spectively.
(1) Observe that

minm1(K) + maxmry(K)
2

moreover the minimum and maximum functioRSR) \ {#} — R are continuous since,
for H, H € K(R) \ {#}, IminH —minH’| < dy (H, H') and similarly for max. S is a
composition of continuous functions.

(2) Similar to (1), as

VK e K(RH)\ {4}, G(K)= < ,minnz(K)>;

min1(K) + maxr1(K)
2

(3) VK € K (R?) \ {#} w(K) = maxr1(K) — minzy(K). O

VK e K(R?)\ {4}, G'(K)= ( ,max:rg(K)).

Fix a non-degenerate continuut C R2 and A, A’ € C be such thatd(A, A’) =
diam(C). Define a functionF : K (R?) \ {#} — K (R?) \ {#} according to the following
cases.

Casel: C is not a segmenflo defineF (K) consider two subcases.
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Subcasela: G(K) # G'(K). Then let F(K) = o(fcaa(G(K), G'(K))), where
o :R?2 - R? has equations
_ (K)
X= 3waAA/EUG(K),G/(K)) (x = m1G(K)) + m1G(K),
Y=y.

SoF(K) is obtained by shrinking, or enlargings 44/ (G(K), G’ (K)) along the horizontal
direction, leaving the vertical line through(K) and G'(K) fixed, in such a way that
wF(K) =25,

Subcasdb: G(K) = G'(K). Letv be the unitary vector orthogonal #5 — A such that
(v, A’ — A) is positively oriented and the line throughA of direction; let A — av,
A + Bv be the end points of the orthogonal projection®fon r. Then let F(K) =
[71G(K) — a, 11G(K) + b] x {m2G(K)}, wherea, b € R{ are such thab + a = 2§
and, ifw(K) #0, (a, b) is proportional to(«, 8).

Case2: C is a segmenfThen letF (K) be the possibly degenerate segment with extrema
G(K),G'(K).

Proposition 4. The functionF is continuous.

Proof. Suppose firsiC is not a segment. IK is such thatG(K) # G'(K) (note that
theseK form an open set) the continuity @f in K follows using continuity of the co-
efficients ofo as functions ofK. If G(K) = G'(K), that is the convex hull oK is
a, possibly degenerate, horizontal segment centere@(iKi) with length w(K), then
F(K) is a, possibly degenerate, horizontal segment contai@ickj) with length %
If F(K) is not a point the pieces of (K) to the left and to the right of5(K) are
proportional to the extension of the corresponding part€ airound the line through
A, A'. Let K, be a sequence i (R?) \ {#} converging toK. Then lim,_, oo G(K,) =
lim, 00 G'(K,) = G(K), lim,_o w(K,) = w(K); since also the left-right proportions
are preserved, lim, o F(K,) = F(K).

If on the other hand is a segmentF (K) = fcaa (G(K), G'(K)). Again F is a con-
tinuous function. O

So F(K) is a continuum, homeomorphic 6 if R(K) is neither a segment nor a
point, such thatG(K) € F(K),G'(K) € F(K), R(F(K)) C R(K), the horizontal bases
of R(F(K)) lie on the corresponding basesRfK) andR(F (K)) is at leasts = %K) far
from the vertical edges a®(K).

Propasition 5. For every continuun®’ € R2, C' N F(C') # §.

Proof. If R(C’) is a segment or a point then(C’) € C’' N F(C’).

Suppose otherwise and supp@3en F(C’) = #. Then there ig € |0, %[ such that the
opene-neighborhoodo, of F(C’) is disjoint fromC’. O, is connected, so it is arcwise
connected (see, for example, [9, Theorem 8.26]). SHEE’), G'(C’) € O,, this means
that there is an art € O, with an end point on each horizontal basisRg{C’) such thatL
is disjoint from the vertical edges &(C’) and R(C’) \ L has two connected components.
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SinceL N C’ =@, andC’ has points both on the left vertical edge and on the right vertical
edge ofR(C’), a contradiction is reached.c

Proposition 6. The following functions are continuaus

(1) t: KR\ {#} - K(R?)\ {#} defined by (K) = K U F(K);
(2) L:(K[R?)\ {#})?— K(R?)\ {#} defined byL (K, K') = fcaa (G(K), G(K')).

Moreover: maps continua to continua.

Proof. (1) By continuity of F and the union. (2) By continuity of and fc44/. The last
assertion follows from Proposition 5.0

Proposition 7. For K € K (K (R?) \ {#}) let

T(K) = {t(K)} g o
AK)=|L(K,K') | (K,K') € K?},

oK) = U T(K)U UA(IC).

Then®: K (K (R?) \ {#}) — K (R?) is continuous. IfC € C(R?) and K is not empty then
O(K) e C(R?).

Proof. IndeedT () and A(K) are compact, by the continuity ofand L, and compact
union of compact sets is compact. Moreover, union is continuous.

If K C C(R?),K +# @, note that each element 6f(K) is connected, as well as each
element ofA(K). Moreover, forK, K’ € I, the continuunL (K, K') links ¢ (K), t (K’) so
©®(K) is connected too. O

Now the proof is completed using above propositions and the basic idea of the proof of
the dichotomy of Kechris, Louveau and Woodin as in [4, Theorem 33.3].

AssumeZ is notG;. Then by [4, Theorem 21.18] there is a CantorBat C(R?) such
that 0 = E NZ is countable dense iA. MoreoverZ must contain some non-degenerate
continua. Fix such non-degenerate continufing Z and let®|g g\ (g : K(E) \ {J} —
C(RR?) be as above, for thi€. It is enough to establish

VK e K(E)\ {4} (O(K)eT < KC0),

sinceK (Q) is H%-complete. IfiC € O, then®(K) ¢ T asZ is ac-ideal of continua. So
suppose&C C Q. If 7 contains some segments (and so contains all of them) @tigh € 7
since® (K) is a continuum which is countable union of continudZinlf Z contains no
segments ther (K) is not a segment for ankX € K and again® (K) is a countable
union of elements ok and continua obtained froi@ by an affine orientation preserving
transformation. So agai@(K) € Z. O

Now think of R? as a subspace @&", for 2<n < .
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Corollary 8. Let C be a fixed non-degenerate continuum of the plRA@ndZ < C(R"),

2 < n < w, be a coanalytic class of continua containing all continua of the plane obtain-
able fromC by affine non-degenerate orientation preserving transformatiosni€ (R2)

is ac-ideal of continua and it is nos, thenZ is H%-complete.

Proof. By applying Theorem 1 and its proof on C(R?). O

A way to prove that a given subset of a Polish space i€i3as to show that it is meagre
and dense. Since the clagsof pseudo-arcs is denggs, Corollary 8 gives the following.

Corollary 9. LetZ € C(R"), 2 < n < w, be a coanalytic class of continua closed under
planar affine non-degenerate orientation preserving transformations of some fixed planar
continuumC. If Z N C(R?) is ao-ideal of continua dense i@ (R?) and does not contain
pseudo-arcs, thef is H%—complete.

Note that, since the clags of pseudo-arcs is the only comeagre homeomorphism class
in C(R"), 2< n < w, not containing pseudo-arcs is a necessary and sufficient condition
for an invariant class of continua for being meagre.

The main tool in the proof of Theorem 1 was the functi®r—actually its restriction
O :K(C([R?) \ {#} - C(R®»—depending on a fixed non-degenerate planar continuum
C € 7. To summarize its features, let me recall here the steps of its definition (restricted to
K (C(R?)\ {#}).

e G:C(R? — R? assigns ta’’ the midpoint of the bottom basis of the least (possibly
degenerate) rectanglyC"), with edges parallel to the coordinate axes, contaidihg

e F:C(R?% — C(R?) is a continuous function such that, (C’) is not a degenerate
rectangle F(C’) is the image ofC by a non-degenerate affine orientation preserving
transformationC’ N F(C") # @, G(C") € F(C") (if R(C’) is a degenerate rectangle,
thenF(C’) is either a segment or a singleton, containih@"));

e 1:C(R? — C(R?) is defined by (C') = C' U F(C');

e L:(C(R?%)2— C(R?) is a continuous function such that, @(C") # G(C"), then
L(C’,C") is image ofC by an affine non-degenerate orientation preserving trans-
formation andG(C"), G(C") € L(C’,C") (if G(C") = G(C"), thenL(C',C") =
{G(C));

o finally, ©(K) = Uerexc 1(C) U U v cmexcz LC'. C).

As in [5] for the original dichotomy, usin@ it is possible to generalize the argument
employed and get the following.

Theorem 10. Let Z be a coanalytic -ideal of continua ofR? satisfying the hypothesis
of Theoreml. Let B C 7 and By the class of continua obtained by applying the function
® to countable elements & (B) (thus Bg C 7). If there exists an analytic set with

By CACZ,thenthereis as setH withBC H C 7.
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Proof. Deny. Then we can apply [4, Theorem 21.22]@6R?) \ Z and B. This gives a
Cantor setF € B U (C(R?) \ Z) such thatF N B is homeomorphic witlf). Consider the
continuous functior = @ | (r)\(g) - K (F) \ {7} — C(R?). Then, forL € K (F) \ {#},

LCFNB+= O()e By« O(L)eT,

s0¢~X(Be) = ¢ 1(Z) = K(F N B) \ {#}, which isTI}-complete. Hence there cannot be
any analyticA satisfyingBe CACZ. O

Using the construction carried out in Propositions 2 through 7 the following is also
achieved.

Theorem 11. LetZ be an analytier-ideal of continua oRR? satisfying the closure hypoth-
esis of Theorert. ThenZ is actuallyGs.

Proof. This is similar to the proof of [5, Section 1, Theorem 11]. Insteak@t) use
C(R?) and the functior® instead of union. Note that Saint Raymond’s Lemma 10 used
and stated there for a compact metric spaAc&orks for any Polish space (embed it in its
compactification). O

Remark. Unlike the dichotomy of Kechris, Louveau and Woodin éciideals of compact

sets, there cannot be a similar general dichotomy faeals of continua, so it is necessary

to require some closure hypotheses, like the ones stated in Theorems 1 and 11. Indeed the
set of all continua included i x {0} is aEg—compIetea—ideaI of continua of the plane.

It actually consists of degenerate continua; for a less trivial counterexample take the
ideal of continuaZ < C(R?) formed by all vertical segments of the plane having rational
abscissae and their points. $& Eg(C(RZ)) since, forX € C(R?),

Xel<= m(X)e i(R) Aminm1(X) €Q

(where F1(R) is the family of singletons of the real line) Whilég-hardness of is wit-
nessed by the functioR — C(R?), x — {(x, 0)}.

2. Invariant o-idealsin cubes

This paper studies-ideals of continua in Euclidean spadg$ or RY. This allows to
use the affine structure of such spaces, which is not available in fitig$ or the Hilbert
cube[0, 1]V, where the study of continua is usually performed. Note however that, dealing
with invarianto -ideals of continua, this is not restrictive at all. Indeed the following holds.

Proposition 12. Let2 < n < w. For 7 C C(R"), denote byfF], € C(R") the saturation
of F with respect to the relation of homeomorphism. Then

(1) If Z is an invariant class of continua iR"” thenZ N C([0, 1]") is an invariant class
of continua in[0, 11" andZ = [Z N C([0, 11")],,. MoreoverZ andZ N C([0, 1]") are
Wadge bireducible as subsets®@fR"), C ([0, 1]"), respectively. If in additio is a
o-ideal of continua, the@ N C([0, 1]") is ao-ideal of continua.
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(2) If J is an invariant class of continua if0, 1] then[ 7], is an invariant class of con-
tinuainR” and7 = [J1, N C([0, 1]"). Moreover.7 and[.7], are Wadge bireducible
as subsets af ([0, 1]"), C(R"), respectively. If in additio/ is ao-ideal of continua,
then[ 7], is ac-ideal of continua.

Proof. (1) Z N C([0, 1]") is closed under homeomorphismdi([0, 1]") since bothZ and
C ([0, 11™) are.

Letg:R — ]0, 1] be a homeomorphism and ket R” — 10, 1[" be then-fold Cartesian
product ofg. If X € Z, theny (X) C [0, 1]" and X, y (X) are homeomorphic. Sp(X) €
INC(0,1]") andX € [Z N C([0, 1])],. Conversely, ifX € [Z N C([0, 1]")],, thenX is
homeomorphic to som&’ € 7N C ([0, 11"), thusX € Z.

The functionX € C(R") —~ y(X) € C([0, 1]*) and the natural inclusion map witness
thatZ andZ N C([0, 1]*) are Wadge bireducible.

If 7 is ao-ideal of continua, then such N C ([0, 1]"), being the intersection af-
ideals of continua.

(2) Closure under homeomorphismi[gf], is granted by definition.

Now note that7 is both included if.7], andC([0, 1]*). Conversely, leX € [J], N
C ([0, 1]"). Then there existX’ € J such thatX, X’ are homeomorphic. Consequently
XedJ.

The natural inclusion map and the functiche C(R") — y(X) € C([0,1]") grant
Wadge bireducibility of7 and[7],,.

Suppose now thay is ao-ideal of continua. Closure under subcontinug &, is
granted by this same property of. Suppose/m € N X,, € [ ], and thatl J, .y X« is a
continuum. Thery (Uen Xi) = Uken ¥ (X1) € J and thud Jy oy Xk € [T 1. O

As an illustration one can state the dichotomy theorem for an invasiddeal 7 of
continua in some cube. Note that if suclyacontains a planar non-degenerate continuum,
then (thinking of[0, 1]2 as naturally embedded i, 1]" or [0, 1]Y) 7 N C([0, 1]?) is
dense inC ([0, 1]%) since each homeomorphism class of (planar) non-degenerate continua
is dense (among planar continua).

Corollary 13. Let 7 € C([0, 11", 2 < n < w, be a coanalytic invariant-ideal of con-
tinua. If 7 N C([0, 1) is notGs (for example, if7 contains some non-degenerate planar
continua but the pseudoarc is notn), then7 is H%-complete.

Proof. Since7 is coanalytic, by Proposition 12 one has thd,, is coanalytic too. On the
other hand.71, NC(R?) is notG, as7 NC ([0, 1]?) is notGs by the hypothesis. It follows
from Corollary 8 tha{ 7], is H%—complete and thug is H%—complete by Proposition 12
again. O

3. Generating families

For @ # F € C(RY) defineF° as the smallesi-ideal of continua containing as a
subset and invariant under homeomorphism. It will be calledrariant o -ideal of con-
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tinua generated byF; it is the intersection of all invariant-ideals of continua containing
F.If F={X}, write X° for {X}° and call it thethe invariantly principalo-ideal of con-
tinua generated byx. Also, let 71 be the family of all continuaZ € C(RY) such that
Z° N F° is the set of singletons; again, this is denoket whenF = {X}.

Lemmal4. LetX, X', Y € KRY). AssumeX C Y and suppos&, X’ are homeomorphic.
Then there i’ € K (RY) such thatx’ C Y’ andY, ¥’ are homeomorphic.

Proof. Let [],cnl@n, bal, [ 1,enlcn, dn] be Hilbert cubes inRN such thatY is con-
tained in the pseudo-interidr],cylan, bal Of [],cnlan, bn] and X’ is included in the
pseudo-interiof [, .xlcn. dnl Of [ [,cnlen, dnl. Let f 1 X — X’ be a homeomorphism. Us-
ing [11, Theorem 6.3.4]f can be extended to a homeomorphi;gml_[neN[an, b,] —
[enlens dnl. LetY = f(v). O

If ¥ £ F < C(RY), thenF° is the smallest subclass B closed under homeomor-
phism, subcontinua and countable unions that are continua. A typical manner to generate
such a class is to start with and use a transfinite process to close it successively under
the three required conditions. For example,

7= Fe
aEW]
where Fy is the class of all continua homeomorphic to some subcontinuum of members
of F and, fora > 0, F, is obtained by taking all those countable unions of members of
Ugea Fp that happen to be continua and all subcontinua of such unions. This way, clo-
sure under subcontinua and countable unions that are continua is granted by the inductive
construction, so it is enough to see thdf.,, Fe is invariant and, in turn, it is enough to
establish by induction that eack, is closed under homeomorphism. Invariancefgfis
required by definition. So let > 0, let X € F, andY € C(RY) be homeomorphic t&.
There areXo, X1, ... € Uge, Fp such that J, .y X» is a continuum and& € (U, ey Xn-
By Lemma 14, letZ € C(RY) be homeomorphic with J,. X, and such that < Z.
Then there are subcontingg, Z1, ... of Z, with Z,, X,, homeomorphic for each € N,
suchthatZ = |,y Z- By inductive hypothesisin € N Z,, € g, Fp and thust € 7.
However it turns out that this inductive process stops very early.

Theorem 15. Let@ # F € C(RY). ThenF° = Fi.

Proof. It will be shownF, C Fi. Fix X € F>. There areXg, X1, ... € F1 such thatX C
Upen Xn (@ndJ,,cn X» is a continuum, but this will not be used). So, for eackh N
there areX,,0, X,1, ... € Fo such thatX,, C |J,,cx Xnm- It is then enough to show that,
wheneverX C | J, oy Y With Yo, Y1, ... € Fo (and it can be assumsth e N X NY, # 0),
thenX < U, ey Zn WhereZo, Zy, ... € Fo and moreovet J, .y Z, a continuum. By the
invariance under homeomorphism it can be further assumed(th_zlt%, %]N. FixheN
and setk, = X N Y;,. For eachx € K, let Jag, bo[ x Jay, b1 x --- x lay,, by [ x [0, 11N 3

x be an open subset ¢, 1]V with diameter less thara(thl) wherea;, b; € [3, 31. By
compactness extract a finite subcovering. .., Vi, of K, where eaclV; is of the form
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Tl v][x -+~ xTuf,, vl [x [0, 1V let Wy = [u], v]1 x - x [uf,, v/,1x [0, 11V, R; = K, N
W/’,' So theRj are compact and covek;,. Finally, let Q; = [u{ — &, v{ +e]l x -0 x
[uf, — e, v}, + ] x [0, 1], wheree € R* is such that eackp; is still included in[0, 1]
and has diameter less th%. Now note that each® ; is a product of closed intervals,
it is homeomorphic to the Hilbert cube and it contaiRs in its pseudo-interior; using
[11, Theorem 6.3.4], there is an embedding/gfinto Q; (let Z;; be its range) which is
identity onR ;. Note moreover that each point 8f; is less that,%l apart from some point

of K, € X (since actually diar¥y,) < 717). Do this for eacth € N. So X € U, ; Za;

and eact;; is in Fo. Itremains to show that), ; Z; is compact. Lek, be a sequence in
Uh’j Zy;, by thinning it can be assumed that converges ir0, 11N to somex. If Xp € Zyj
for infinitely many p, thenx € Z;;. Otherwise it can be assumed that eaghbelongs to a
differentZy;; in this case li_.oc d(x), X) =0and sor e X € |, ; Zy;. O

This allows to state another synthetic descriptiodr6f

Corollary 16. Let# # F < C(RN) and letX € C(RY). ThenX € F? if and only if X is
included in a countable union of contingso without requiring this union to be compact
each of which is homeomorphic to some membef.of

Proof. The proof of Theorem 15 established théate 7 if and only if X C (J, oy Ya
where eacly,, is embeddable in somg, € F. Using Lemma 14, replace eagh in the
union with a continuun,, homeomorphic wittz,,. O

Corollary 17. Let X be a continuum such that each non-empty open subsétohtains
a continuum homeomorphic witt. Let F € C(RY) and suppos& € F?. ThenX e Fo.

Proof. By Corollary 16,X C (J,,cy Y», With eachY,, homeomorphic to an element from
F.Letn € N be such thak NY,, contains an open non-empty sub&edf X. SinceU con-
tains a homeomorphic copy &f, it turns out thatX is embeddable i, s0X € Fo. O

The following is also achieved.

Theorem 18. Lety £ F < C(RY). Suppose that = {K € K(RY) | 3C € F (K is embed-
dable inC)} is a coanalytic subset df (RY). ThenF° e I} (CRNY)).

Proof. By the proof of Theorem 15F7 is the set of continua contained in some count-
able union of continua embeddable in elementsFofThus ¢ = C(RY) N H, where

H < K@RY) is the set of compact set& such that there ar&o, K1,... € K with

K € U, ey Kn- To conclude, lefU,},cn be an open basis fak"N. Using an argument
from [1] note that, for eactk € K (RY), K € H if and only if for every compact non-
empty K’ € K there isn € N such thatU, N K’ # ¢ and U, N K’ € K. This gives a
coanalytic definition fof{ and thus for7°. 0O
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To see an application of Theorem 18, consider the invariantly prineipdkal gener-
ated by the arc.

Theorem 19. If A € RN is an arc, then the invariantly principat-ideal A” is a complete
coanalytic subset af (RY).

Note that once coanalyticity is established, completeness follows from Corollary 9. By
Theorem 18, it is then enough to find a coanalytic characterization of compact subsets of
arcs (note that this will entail that compact subsets of arcs actually form a Borel set, since
such a class is analytic). The following characterization will do.

Theorem 20. Let K be a compact metric space. Th&nis homeomorphic to a subset of
[0, 1] if and only if the following hold

(1) each connected componentiofis either a point or an arc
(2) if L is a connected componentkfandL is an arc with end points, y, thenL \ {x, y}
isopenink.

Note that these conditions define indeed a coanalytic subsgt(&f"), since, after
fixing an open basisU, },cn for RY, they can equivalently (though less transparently) be
expressed by the conjunction of the following:

(@) if C e C(RY), thenC C K implies thatC is either a point or an arc;
(b) for all P, Q € C(RY), x e RY, if P, Q are non-degenerate subcontinuafbfand
PN Q={x},thenthereiz e Nsuchthatt e U,,U, N K C P U Q.

Recall here that classes of homeomorphism are Borel subs€i&Rd).
It remains only to establish Theorem 20. This may well be a folklore result, however |
was not able to find a reference in the literature.

Proof of Theorem 20. Any compact subset @b, 1] satisfies the conditions. To prove the
converse, lek be a (non-empty) compact metric space fulfilling (1) and (2) in the state-
ment of the theorem and notice first that the family of connected componeiitstiadt
are arcs is a null collection: for adl e R™ there are only finitely many of them of diam-
eter greater than. Let K = {x € K | ord(x, K) < 1}, E = {x € K | ord(x, K) = 1}; so

K is obtained by removing all points & that are interior of connected components of
K that are arcs. To ease notation, jetE — E assign to each end point of a connected
component ofK that is an arc the other end point. Note thatis a zero-dimensional
compact subset o and, by enlargingl, it may be assumed thaf is perfect. SoK is
homeomorphic to the middle third Cantor €&t/3 < [0, 11; the idea is to build carefully

a homeomorphism : K — Cy/3 in such a way that, ik, y € E, p(x) =y, then the open
interval Jmin(e(x), ¢()), max(e(x), ¢(y))[ is disjoint fromCy/3, so that finally the seg-
ment betweem (x), ¢(y) can be restored. To this aim a suitable Cantor schigfpigc o<

on K will be constructed.
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Let {Y1,...,Y;} be a partition ofK in finitely many clopen non-empty subsets of di-
ameter less thas.

Claim. For any clopeny < K, thesefxeY |xeEA p(x) ¢ Y}is finite.

Proof. Deny and pick a sequence of distinct poinjse Y N E such thavm € N p(x,,) ¢
Y. By thinning, assume ligp, oo x;, = x. S0 x € Y. Moreover, since the family of
connected components & that are arcs is null, ligp.~ p(x,;) = x, SO eventually
pxp)eY. O

Using the claim it is possible to refine the partition in such a way that each member
contains at most one pointe £ without containing the correspondingx) too. Suppose
indeed thatyy, ..., x,, are the distinct elements ¢k € Y; N E | p(x) ¢ Y;}. LetY; be
the decomposition space obtained frafnby identifying « each»c p(x) whenever both are
inY; NE and letr :Y; — Y be the natural map. Thejq is compact zero-dimensional:
it is homeomorphlc to the upper semicontinuous decomposition determined by the con-
nected components of the space obtained fignby restoring the original arc between
every pair of pointst, p(x) € Y; N E. SoY; admits a partition into clopen sets such that
w(x1),...,m(x,) are in different elements of the partition. Consider the preimages under
7 of these sets.

So nowK has been partitioned into seXy, ..., X, such that:

(1) eachX; is clopen non-empty;
(2) eachX; has diameter less tha}n
(3) for everyi there is at most ong € E N X; such thatp(x;) ¢ X;.

A clopen subsef of K such that there is exactly one elemewt E N Z with p(z) ¢ Z will

be calledspeciaj the pointz will be called thecharacterizingooint of Z. Modulo reindex-
ing, it can be assumed thatky, ..., X, the special sets are listed first (s#y, ..., X)

and in such a way that if1, ..., xy are the corresponding characterizing points, then
plxzj—1) =xg; for 1< j <k. LetCpy=X;y1for0<i <n —1andCqp-1 = X,. Set
alsoCy = X;y1U---UX, for 0<i <n — 1. Moreover, the pointsy, x3, ..., x—1 get

a labelleft and the pointso, x4, . .., x¢ get a labelight. This will be retained throughout
the construction and will indicate that, at subsequent partitionings, if a clopen set of the
splitting containsy;, for i < 2k odd, as its (unique) already labeled element, then it will be
listed last; if it containst; for i < 2k even, it will be listed first (so it will appear, in the
Cantor scheme, in the leftmost or rightmost position, respectively).

The next step will consist in repeating the process within gg¢lsplitting it in clopen
non-empty subsets of diameter less tléataking care that at each stage of the construction
the pointsxy;_1, x2; are kept adjacent, as well as for any other pair of end points of the
connected components @&f that are arcs that at some stage gets separated. So suppose
thatk stages of the construction have already been performed. The indices of the part of
the Cantor scheme built so far form a finite binary tree; the terminal nodes are associated to
finitely many clopen non-empty subsetsiofof diameter less tha@h forming a partition

of K. For each suclt le t € 2<¢ be such that, = Z. Moreover, each suci contains at
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most one elemente E with p(z) ¢ Z and, in this case; has got a labelight or left. Let
{Z1, ..., Z;} be a partition ofZ in clopen subsets of diameter less tllgé{z and such that
eachZ, contains at most one elemegnte E with p(z,) ¢ Z,. The only thing still needed
is to decide the order in which the above &, . .., Z; is given, for making the next step
in the construction of the Cantor scheme. There are three cases to consider.

Casel: Z is not special.In this case proceed as at the first stage. List first, as
Z1, ..., Zy, the special sets of the partition in such a way that it . ., z, are the corre-
sponding characterizing pointg(z1) = z2, p(z3) =24, ..., p(22¢—1) = z24. Assign label
leftto z1, z3, ..., z24—1 and laberight to zo, z4, . . ., z24.

Case2: Z is special and its characterizing pointas got label leftNote that now there
is an odd number of special sets in the partitioriZofit may be thus assumed that these
areZi, 2o, ..., 72y, Z; and, ifzy, ..., z4, z; are their characterizing points, therizi) =
22, P(23) =24, ..., p(224—1) = 224, 21 = 2. GiV€z1, 23, ..., 2241 labelleft, z2, za, . . ., 224
labelright (z; = z retains its labeleft).

Case3: Z is special and its characterizing pointhas got label right Again there is
an odd number of special sets in the partitionZofThe listing is now arranged in such
a way thatZy, Zo, Z3, ..., Zo,41 are these special sets andzif zo, ..., z0,4+1 are the
corresponding characterizing points, then= z, p(z2) = z3, p(z4) = z5, ..., p(z2g) =
22¢+1. The pointszp, z4, ..., z24 get labelleft, while z3, zs, ..., 22441 are markedight
(andz1 = z keeps its labelight).

In any of the three cases 1€}~ = Z, (1 for 0<r <! — 1 and letC,~y-1 = Z;. Set
alsoCi~g = Zy41U---UZ for0O<r <1 — 1.

This way, each point of. gets labeled in the course of the construction.

Notice thatva € 2 (M), oy Cal, iS @ singletonx, } and this defines a homeomorphism
K—2N xya. Composing this with the usual homeomorphisi-2 Cy/3 viaternary
expansion, one gets the homeomorphisnk — C13<[0,1].

Now letx € E. Suppose got labelleft during the construction (same argument if it got
labelright). Then note thap(x) got labelright at the same stage. Letu’ € 2<* be such
thatC,, C,, were the special sets appearing in the construction at the stagexavhén)
got their labels and having, p(x) as their respective characterizing points. Then either
u=1"1u =101 for somer € 2<® oru =t"1,u’ =+t"0 for somer € 2<% (this case
happens when the two special sets are the last ones listed in the corresponding partition).
In both casesy = xy, p(x) = xo Wherea =710, o’ =701, Thusep(x) < ¢(x)
and no points of inp = Cy/3 are between them, sap(x), p(x) are the extrema of one of
the intervals that get deleted in the construction of the Cantar'set For each such pair
x, p(x) restore the interval between them, thus getting

T=CyU | J[min(p). ¢p(x)), max(p(x). ¢p(x))].

xeE

Matching each connected componentifthat is an arc with end points, p(x) with
the correspondingmin(¢(x), p(x)), max(p(x), ¢p(x))], the homeomorphism can be
extended to an embedding: K — [0, 1] (whose range i§). O
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A somewhat similar construction, involving the building of a specific embedding of a
zero-dimensional separable metric space into the Cantor space, is in [7].
The following easy fact will be employed in the sequel.

Lemma 21. If X is a connected Polish space withrd X) > 1 andY is a closed, zero-
dimensional subspace &f, thenY is nowhere dense iX.

Proof. If not, let U be a non-empty open subsetXfwith U C Y. There is ther¥ non-
empty clopen inY such thatV € U (note thatV # X sinceY # X). As V is closed in
Y, it is closed inX too; moreover, being’ open inY, it is open inU and so open irX,
contradicting connectedness®f O

Corollary 22. Let H be a non-degenerate continuum and, for emch N, let K, be closed
in H. Supposé! = J,,.yy Kn- Then, for someé € N, H N K;; contains a non-degenerate
continuum.

Proof. Otherwise eachH N K,, would be zero-dimensional and thus, by Lemma 21,
nowhere dense i, contradicting Baire category theorem

Lemma 23. Let@ £ F < C(RY) and letY € F° be a non-degenerate continuum. Then
every open non-empty subsefto€ontains a non-degenerate continuum homeomorphic to
a subcontinuum of some elementfaf

Proof. By Corollary 16,Y < |, . ¥» Where eacly, is homeomorphic to some element
X, € F.LetU C Y be open non-empty and I£tbe a non-degenerate subcontinuund/of
By Corollary 22, there i& € N such thatZ N Y,, contains a non-degenerate continum
which is thus homeomorphic to a subcontinuunkgf 0O

Lemma 24. LetZ € C(RY), ¥ £ F c C(RY). ThenZ € F* if and only if, for all X e F,
the continuaX, Z do not have commofup to homeomorphismmon-degenerate subcon-
tinua.

Proof. If Y is a non-degenerate continuum embeddable bothamd in some continuum
XeF,theny e Z°NX° CZ°NF°.

Conversely, letr € Z° N F° be a non-degenerate continuum. By LemmaR23on-
tains a non-degenerate subcontinubfrembeddable irZ. SinceW € F°, by Lemma 23
againW contains a non-degenerate subcontinuimmbeddable in som& € F (and in
Z t00). O

Theorem 25. Let# # F < C(RY). Then
(1) F* is aninvarianto -ideal of continua

(2) F < F++ (consequentlyF® € FH-L) and AL = F+;
@3) if F e 2HC®RY)) thenF+ is coanalytic.
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Proof. (1) If Z € F+ andY is a subcontinuum of, thenY® N F° does not contain
non-degenerate continua, ce F.

Assumevn e N Z, € 71 be such thaZ = |,y Z is a continuum and suppose there
is a non-degenerate subcontinudh Z that is embeddable in son¥¢ e F. By Corol-
lary 22, for some: € N, Y N Z,, must contain a non-degenerate subcontindyrwhich is
thus embeddable i, contradictingz, € F+. By Lemma 247 € F+.

Invariance under homeomorphism follows from Lemma 24 (or directly from the defin-
ition).

(2) By Lemma 24.

(31\)1 By Lemma 24 and the fact that homeomorphism is an analytic relation on
CRY). O

Corollary 26. If 7 < C(RY) is an analytic class of continua having a member containing
a pseudo-arc but there is a non-degenerate planar contingusuch that no element of
F contains a subcontinuum homeomorphic to a non-degenerate subcontinuintheh
FLis a complete coanalytic subset@{R").

Proof. By Theorem 25, Corollary 9 and Lemma 243

The result in the particular case whénhas the pseudo-arc as its unique element has
been already obtained in [10].

Corollary 27. Let NHI € C(RY) be the set of continua containing no hereditarily inde-
composable subcontinuum. Then NHﬂ%—compIete.

Proof. By Corollary 26 applied to the familyr of hereditarily indecomposable continua,
which is aGs subset ofC (RY) (see [8]). O

4, Themaximal invariant ¢ -ideal of continua

Forn > 1 let
I, = {X e C(RY) | [0, 1]" does not embed int# }
and let

Ioo = {X € C(RY) | [0, 1]V does not embed int& }.

ThenZ; C 7o C 73 C --- € Zo. Using the fact that, for ¥ n < oo, each open non-empty
subset 0of[0, 1]" contains a subcontinuum homeomorphic[@1]" and applying Baire
category theorem, it turns out that eathis an invarianto-ideal of continua and it is
coanalytic by direct computation on the definition. Observe moreover thatfor ¥ oo,
T, is big, in the sense that its orthogorg} is just the class of singletong, (RY) (this
follows from the fact thaf0, 1] contains subcontinua in whidb, 1]” does not embed).

If Z is an invarianio-ideal of continua that does not coincide with the entr@"),
thenZ C 7. S0Z is the maximal invariang -ideal of continua. In [6] it is proved that
T~ is complete coanalytic.
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Let F be an invariant hereditary class of continua ahdbe a continuum. The is
universalfor F if, for any continuumy’,

Y € F <Y can be continuously embeddedXn

(in particular,X € F). For example, the Hilbert cube, as well as any continuum containing
a Hilbert cube, is universal for the class of all continua.

Proposition 28. There is no universal continuum for the class of non-universal continua.

Proof. For X a continuum{Y € C(RY) | X contains a homeomorphic copy B is an-
alytic. SinceZ, is the family of non-universal continua, the result follows frdiii-
completeness df,,. O

Proposition 28 can be restated by saying that the preorder of embeddability among
continua, which has a biggest element, namely the (biembeddability equivalence class of
the) Hilbert cube, does not have a second higgest element. This implies also that if the
continuumX does not contain a Hilbert cube, then there is a contindiustrictly between
X and[0, 1]V in the preorder of embeddability. Indeed, by Proposition 28 there is a non-
universalZ not embeddable int&. Let Y ba a non-disjoint union ok andZ.

In £ the chainZ; Cc Z, Cc Z3 C --- is not enough to approach the maximal invariant
o-idealZo,.

Theorem 29. supZ,},>1 # Zoo-

Proof. For eactn > 1. € N, let p,, :[0, 1] — [0, 1]" be a;;-map. Moreover leQ N
10, 1[ = {gnn | n > 1, h € N} with eachQ,, = {g.n}nen dense inQ N 10, 1[. Consider the
upper semi-continuous decomposititshof [0, 1]2 whose elements are:

o the setdgu} x p,t({a}), forn > 1,h € N,a € [0, 1]";
o the singletong(z, x)} fort ¢ Q N0, 1[, x € [0, 1].

Let 7 : [0, 1] — M be the quotient map and defiMec [0, 1] M; = = ({t} x [0, 1]). So

o forn>1heN, M, isann-cell,
e fors ¢ Q N1J0, 1, M, is an arc.

Now it remains to show tha¥/ € Zo, \ SURZ, } > 1.

Claim. If a continuumX is such that every non-empty open subset contaiitzlls for
unbounded values of, thenX ¢ supZ,},>1.

Proof. Let F = Js2 ;1 Zy, SO that sufi,},>1 = F°. If X € 77, by Corollary 16,X C
U,en X0, WherevVn € N X, € F. Baire category theorem implies the existence ef N
such thatX N X, contains an open non-empty subseXoéind som-cells for unbounded
values ofm, contrary toX, e . O
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Claim. Every non-empty open subgétof M contains cells of unbounded dimension.

Proof. Let V = z~1(U). ThenV is a non-empty open subset ff, 1], invariant with
respect to the equivalence relation associated with the decompositiom, et € [0, 1]

be such that: < v, [u, v] x {y} C V. For anyn > 1 there ish € N such thalg,, € Ju, v[.
Thusn (({gan} x [0, 1]) N V) (which is contained it/) is an open non-empty subset of the
n-cell r ({g,n} x [0, 1]) and therefore contains ancell. O

Having established that ¢ supZ,},>1, the proof will be completed by the following
claim.

Claim. No subcontinuum o/ is homeomorphic to the Hilbert cube.

Proof. Let Q € M be homeomorphic to the Hilbert cube. Sinfecannot be contained
in M, for anyt € [0, 1], the set oft € [0, 1] such thatQ N M; # ¢ is an intervalla, b]. If
t € la, b[\Q thenM; is an arc and) N M, separate®), which is impossible. O

Concerning Theorem 29 and the remark preceding it, it would be interesting to know
the cofinality ofZ, in L.
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