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Abstract—In this paper, the Leray-Schauder nonlinear alternative is used to investigate the
existence of solutions to first-order impulsive initial value problems for functional differential equations
in Banach spaces. © 2001 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

This paper is concerned with the existence of solutions for the initial value problem for functional
differential equations with impulsive effects as

v =flty),  teJ=[0T), t#t, k=1,...m, (1)
Aylemr, =L (y (7)), k=1,...,m, (2)
y(t) = o(t), t € [~r,0], (3)

where f : J x C([-r,0], E) — E is a given function, ¢ € C([--r,0},E), (0 <r < 00), 0 =t5 <
< <ty <tpmyr =T, Iy € C(E,E) (k=1,2,...,m), are bounded, Ayl,—;, = y(t,f)—y(t;),
y(ty), and y(t:) represent the left and right limits of y(t) at t = t, respectively, and E a real
Banach space with norm |- |.
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For any continuous function y defined on the interval [—r, T and any ¢ € J, we denote by y,
the element of C{[—r,0], E) defined by

y(0) =y(t+6), 8¢ [-r0.

Here y;(-) represents the history of the state from time ¢t — r, up to the present time ¢.

Impulsive differential equations have become more iinportant in recent years in some math-
ematical models of real world phenomena, especially in the biological or medical domain (see
the monographs of Bainov and Simeonov [1], Lakshmikantham, Bainov and Simeonov [2], and
Samoilenko and Perestyuk [3], and the papers of Agur, Cojocaru, Mazur, Anderson and Danon [4],
Goldbeter, Li and Dupont [5]).

Very recently, an extension to functional differential equations with impulsive effects has been
done by Yujun [6] by using the coincidence degree theory. For other results on functional differ-
ential equations, we refer the interested reader to the monograph of Erbe, Kong and Zhang 7,
Hale (8], Henderson [9], and the survey paper of Ntouyas [10].

The fundamental tools used in the existence proofs of all above-mentioned works are essentially
fixed-point arguments, nonlinear alternative, topological transversality [11], topological degree
theory [12], or the monotone method combined with upper and lower solutions [13].

In this paper, we shall generalize the results of Frigon and O’Regan [14], which they consid-
ered for scalar impulsive differential equations. Our approach is based on the Leray-Schauder
alternative [11].

This paper will be divided into three sections. In Section 2, we will recall briefly some basic
definitions and preliminary facts which will be used throughout Section 3. In Sectiown 3, we shall
establish an existence theorem for (1)—(3).

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.
C([-r,0], E) is the Banach space of all continuous functions from [—r,0] into E with the norm

lell = sup{l(0)] : —r < 6 <0}
By C(J, E), we denote the Banach space of all continuous functions from J into F with the norm
Ilylls = sup{ly(t)] - t € J}.

A measurable function y : J — E is Bochner integrable if and only if |y| is Lebesgue integrable.
(For properties of the Bochner integral, see for instance, [15].)

L'(J, E) denotes the Banach space of functions y : J — E which are Bochner integrable
normed by

T
lyllLr = / [y ()] dt, for all y € L'(J, E).
Jo
In order to define the solution of (1)-(3), we shall consider the following spaces:

Q={y:[-rT) — FE:y, € C(Jy,E), k=0,....m, and there exist
y(tr) andy (65), k=1,....m with y (t7) =y (tx), y(t) = ¢(t), Vt € [-r, 0]},

which is a Banach space with the norm
Iyl = max{|lyells. & =0,..., m},

where yy is the restriction of y to Jy = [tx,tg+1l, £ =0,...,m.
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We shall also consider the set
Q' ={y:J— E:y. € W' (Ji,E), k=0,...,m, and there exist
y(tp) andy (t5), k=1,....m with y (t) = y(ti)} .

where WI1(J,., E) is the Sobolev class of absolutely continuous functions y : J, — E.

The set Q! is a Banach space with the norm

lyller = max{|lyxlwr1 (), k=0,...,m}.
DEFINITION 2.1. A map f:J x C([-r,0], E) — E is said to be an L*-Carathéodory if
(i) t —— f(t,u) is measurable for each u € C{[—r,0], E);

(ii) w+— f(t,u) is continuous for almost all t € J;
(iii) for each k > 0, there exists g, € L'(J,R) such that

LF(t,w)| < gu(t), for all ||ul] < k and for almost allt € J.

So let us start by defining what we mean by a solution of problem (1)-(3).
DEFINITION 2.2. A functiony € QNQ! is said to be a solution of (1)-(3) if y satisfies the equation
y'(t) = f(t,y) ae. onJ —{t1,...,t,,} and the conditions Ayl—, = Ie(y(ty)), k=1,...,m.
Our main result is based on the following.
LEMMA 2.3. NONLINEAR ALTERNATIVE. (See [11].) Let X be a Banach space with C C X

closed and convex. Assume U is a relatively open subset of C with0 e U and G : U — C is a
compact map. Then either,
(i) G has a fixed point in U; or
(ii) there is a point v € OU and A € (0,1) with u = AG(u).
REMARK 2.4. By U and dU, we denote the closure of U and the boundary of U, respectively.
Let us introduce the following hypotheses which are assumed hereafter:
(H1) f:J x C([-r,0],E) — E is an L'-Carathéodory map;
(H2) there exists a continuous nondecreasing function ¢ : [0,00) — (0,00) and p € L'(J,Ry)

such that
It )] < pt)yw(lull), for a.e. t € .J and each u € C([-r,0], E)

tr o0 d
/ p(s)d5</ ————u——, E=1,...,m+1.
th_y Ny ‘/"(“’)

Here Ny = ||¢}i and for k = 2,...,m + 1, we have

with

th o1
N1 = sup M1 ()] + Mo, M _o = F;_ll (/ p(s) ds>
yE[—[\/Ik_g,]\[k,g] 2
with .
Ii(2) /“ du > N, le{l m+ 1}
<) = N\ Z 2 iV, 4 yoney 11 3
N, () '

(H3) for each bounded B C C([—r,T],E) and t € J the set

i
{¢(0)+/0 fs,ys)ds+ > Ik(y(tk)):yeB}

o<ty <t
is relatively compact in E.
We have the following auxiliary result. In what follows, we will use the notation >, _, _ [y(t})—

y{tx)] to mean 0, when £ = 0 and 0 < ¢ < ¢;, and to mean Zi":l{y(t:?) — y(tr)], when & > 1 and
tk <t S tk+1.
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LEMMA 2.5, Ify € O, then

y(t) = y(0) + / s)ds + Z —y(t)], fort e J. (4)

O<tp <t

Proor. Assume that t; <t < ;4 (here tg =0, £,y =T). Then

y(t1) —y(0) / $)ds,

[}

y(t2) / y'(s)ds,
y(te) =y (t ) = / J/(s) ds.

y(t) —y () y'(s)ds.

!

Adding these togéether, we get

) =0 = 3 [y (64) = yle)] = [ v,

1=1

P

i.c., cquation (4) holds.

3. MAIN RESULT

TueoreM 3.1. A priori BOUNDS ON SOLUTIONS. There exist constants My, . .., M, such that,
if y € Qb is a solution of (1)—(3). then

sup{ly(t) 1 t € [tho1,te]} < My, k=1,...,m+ 1.
Proor. Let y be a (possible) solution to (1)—(3). Then y|[_, ) is a solution to

y'(8) = flt, ), for a.e. t € (0,t),
y(t) = (1), te[-r0.

Then for each t € {0, ¢)]

y(t) — 3(0) = /0 Flsvps)ds.

WOl < ol + /0 p(s)(

We consider the function ;. defined by

From (H2), we get

ys|l) ds, t € [0,t]).

p(t) =sup{ly(s) : —r <s<t},  0<t <t

Let t* € [—r.t] be such that p(t) = [y(t*)]. If t* € [0,#,], by combining ||y,|| < g(t), for t € [0,#,]
with the previous inequality, we have for + € [0,¢]

ot B
u(t) < 1ol + /0 Pyl s)) ds

If t* e [—, 0], then wu{t) = ||¢|l and the previous inequality holds.
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Let us take the right-hand side of the above inequality as v(t), then we have
c=v(0) = ||¢], w(t) < wft), t€[0,ty]

and

O'(t) = p(t)(u(t),  tel0ty]

Using the nondecreasing character of ¢, we get

v (t) < p(t)v(v(t)), te[0,t,].

This implies for each t € [0, ;] that

v(t) di t
/ J . < / p(s)ds.
v(0) 'W( U’) 0

In view of (H2), we obtain

oA
lo(t*)] <TT (/ p(s)a’s) = M.
Jo

Since for every t € [0,t1], |y(t)| < u(t) < v(t), we have

sup |y(t)| < M.
te(0,t1]

Now, yli, 1, is a solution to

y'(t) = f(t,ye), for a.e. t € (t1,t2),

y (t7) = Li(y(ty)) + y(ty). (©)
Note that
w(thH < sup L)+ sup |yt
wE[=Mo .+ Mo] 1E€[0.11]
< sup |11 ()| + My := Ny
yE[— Mo+ ML)
Then, for each t € [ty 5] [
y(t) -y (t7) = /, fls,ys) ds.
From (H2), we get f
< s [ atuilnlyds, re .l
We consider the function uy defined by
pa(t) = sup{|y(s)| : t1 < s < t}, <t <ty
Let t* € [t1.t2] be such that u(t) = |y(t*)|. By combining |ly|| < ju1(t), for t € [ty t,] with the

previous inequality, we have for t € [ty, 5]

]
1 (t) < Ny + / p{s)P(pr(s)) ds.

Jt
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Let us take the right-hand side of the above inequality as v (), then we have
¢ =v1(0) = Ny, p1(t) < v(t), t€ [ty,ta],

and
vi(t) =p)(ui(t)),  te [t ta]

Using the nondecreasing character of ¢, we get
vi(t) Sp)(vi(t)),  te [t ta

This implies for each ¢ € [t1, t2] that

In view of (H2), we obtain

jor ()] < T; ( / p(s)ds) =My,

Since for every t € {t1, 2], [y(t)] < uy(t) < wq(t), we have

sup |y(t)| < M.
t€[£1.t2]

We continue this process and taking into account that y|,, 7 is a solution to the problem

y'(t) = flt,ye),  forae. t e (ty,T),

0 (£5) = Ln(y(tn)) + yltm): @

We obtain that there exists a constant A,,, such that

T
sup |y(t)] <T;L; </ p(s)ds) = M,,.
ton

teft,, T
Consequently, for each possible solution y to (1)—(3), we have

My ik=1,...,m+1} :=b.

1¥lla < max{[|¢

Now, we are in position to state and prove our main result.

THEOREM 3.2. Suppose that Hypotheses (H1)-(H3) are satisfied. Then the impulsive initial
value problem (1)-(3) has at least one solution on [—r,T].

Proor. Transform the problem into a fixed-point problem. Consider the map, G : @ —
defined by
te[-r0],

o(t),
(GO =1 40+ /Ot floy)ds + 3 Tuly(te), te.

O<ti<t
REMARK 3.3. Clearly, from Lemma 2.5, the fixed points of G are solutions to (1)-(3).
We shall show that G satisfies the assumptions of Lemma 2.3. The proof will be given in
several steps.
STEP 1. G maps bounded sets into bounded sets in C([—r, T, E).
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Indeed, it is enough to show that there exists a positive constant ¢ such that for each y € B, =
{y € C(=r. TLE) : |ylloe < g} one has | Gylloc < .
Let y € B,, then for each t € J, we have

(@) = 90) + [ Ssds+ 3 Tutult))

O<t <t

By (H1), we have for each t € J

G0l < ol + [ Fsalds+ 3 It

m

< ¢l + | |9¢()lds + > sup{|Le([yD)] : [[yllo < a}-
0 K

=1

Thus,
m

ds+ 3 sup{Zu(ly)! : [9lleo < a} = £,
k=1

T
1Gyllee < ] + / 19a(5)

STEP 2. G maps bounded set into equicontinuous sets of C([-r,T], E).

Let 71,70 € J, 11 < 19, and B, = {y € C({-r.T].E) : {Iyllc < ¢} be a bounded set of
C([-rT),E). Let y € B,. Then

(@)~ @0 < [ lalds+ ST e

! 0<t, <ro—ry

As ry — 71, the right-hand side of the above inequality tends to zero.

The equicontinuity for the cases ry <rpg <Oandr; <0<ryis obvious.
Step 3. G:C([-r,T],E) — C([-7.T}, E) is continuous.

Let {y,} be a sequence such that y, — y in C([—r, T], E). Then there is an integer g such
that {|yn]lee < ¢ for all n € N and ||y|lco < ¢, 50 yn € By and y € By

We have then, by the dominated convergence theorem,

||Gyn—Gy|\oo§71€1'1]> UO'lf(s,yns)ﬁf(s«ys)IdH > Hiynte) = Le(y(t))l| — 0.

o<t <t

Thus, G is continuous.
Set,
U={yeQ:lyla<b+1},

where b is defined in the proof of Theorem 3.1.

As a consequence of Step 2, Step 3, and (H3) together with the Ascoli-Arzela theorem, we can
conclude that the map G : U — § is compact.

From the choice of U there is no y € AU such that y = AGy for any A € (0,1).

As a consequence of Lemma 2.3, we deduce that G has a fixed point y € U which is a solution
of (1)-(3).
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