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Abstract

A modified Brown algorithm for solving a class of singular nonlinear systegnis) = O, wherex, F € R", is
presented. This method is constructed by combining the discreted Brown algorithm with the space transforming
method. The second-order information Btx) at a point is not required calculating, which is different from the
tensor method and the Hoy's method. Thejuadratic convergence of this algorithm and some numerical examples
are given as well.
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1. Introduction
Consider the following nonlinear system:
F(x) =0, (1.1)
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wherex € R?, F(x) = (fi(x), fo(x),..., fn(x))T. We assume, throughout this paper, that there exists
a solutionx™ of (1.1), F’ is Lipschitzian around* and

{rank(F/(x*)) =n-—r, 1<r<n, (1.2)

Viix*) #£0 =12, ..., n.

There have been many publications dealing with nonlinear systems with rank defdctsiate the
1980s, see for instancl,,2,5-7,9-12,14]Some algorithms were designed for the case in wiiichas
rankn — 1, see forinstancé4,9,11,12,14,16]Hoy and Schwetlickl2] introduced an auxiliary function

_( Fw
= (det(F’(x))>

leading to construction of an algorithm for solving (1.1) with rank defect one, reading as follows.

Algorithm 1.1. Step0: Choose xg ~ x*,g ~ v, p ~ u, set k=0.
Stepl: Set By = F'(xx) + pq'.
Step2: Determine  d; from Bidy = F(xi), v from B,;rvk = p, ur from Bru;p =gq.
Step3: Set

1—q"ve — u] F” (xi)vidi

uy F" (xi) ve vk

Xkl =Xk — di —
End of Algorithm 1.1.

The sequencgx; } generated by this algorithm converges locglyquadratically to a solution of (1.1).
Werber and Wernefl8], and Yamamotd19] already proposed some methods constructing extended
equations before Hoy and Schwetlick, but their auxiliary functions are more complex and their corre-
sponding algorithms are not easy to perform. Kanzawa and QiShiproposed methods of interval
iteration, enlightened by the method due to Werber and Wdfrgdy Yamamoto[19] for dealing with
the auxiliary functions. The tensor model introduced by Schnabel and Fr@his a quadratic model of
F(x) formed by adding a second-order term to the linear model given by

My (xe +d) = F(xc) + Jed + 5T.dd,

where 7, ¢ RY*V*N s used to give the second-order information absiik.) aroundx.. 7. =

arg min||T¢| p | Tesesk = zk, k=1, 2, ..., p}, wheresy, z; are defined by Dan et §]. The goal of

the tensor model is to find € RV such thatd is a solution of Min gy | M7 (xe + d)|l2. Under the
assumptions thaf’(x*) is singular with only one zero singular value ambF” (x*)vv # 0, the se-
guence of iterations generated by the tensor method based on an ideal tensor model converges locally
and two-step2-superlinearly to the solution Wit@—order%, and the sequence of iterates generated by
the tensor method based on a practical tensor model converges locally and thr@esstgerlinearly

to the solution WithQ—order%. Tensor method is considered as a very good algorithm in solving sin-
gular nonlinear equations since 1984. It is extended to solving unconstrained optimization (1991, 1997)
and equality constrained optimization (1996). For the system with rank defects, Ge af#J8Xieon-
structed a modified ABS algorithm for solving problem (1.1) under the same conditions by combining
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the discreted ABS algorithm with the idea of Hoy and Schwefli. In this paper, a modified Brown
method is proposed for solving systems of nonlinear equations with(#iitk*)) =n —r, 1 <r <n and

the second-order information &f(x) is not required, see Algorithm 2.1 in Section 2. The new algorithm
convergeg)-quadratically toc*. We now recall the discrete Brown method, due to Bf8htfor solving
nonlinear systems af’ with full rank.

Algorithm 1.2. StepO: Choose hg, xg close enough to x*,set k=0,j=1.

Stepl: Let yik) = x¢. Take orthogonal matrices Qi.k) for j=1,2,...,n. Do steps
2-4.
Step2: Compute

0

g _ L k) (% *)
I T | L0 h@57ep) = fi(vi)

£68 +m0Pen — ;089

Step3: Find an orthogonal matrix Pj(k) being of the form
w _ (lG-vxG-n 0
P- = A(k) .
J 0 P
J
such that P;k)ai.k) = S;k)ej, where sﬁ.k) = i||a§.k)||. (For example I?j(k) may be an

elementary Hermition.)

Step4: Compute Qﬁl = QE")P]@ and

(k) (k) (-1 (k)y A (k)
Yira=Y; =95 fj(yj‘ )Qj+1€j-

Step5: Let xpy1 = )’15/21’ k< k+1and go to step 1
End of Algorithm 1.2.

Note that Algorithm 1.2 is different from the (quasi-) Newton’s methods solving systems of nonlinear
equations directly. The process of its iteration contains a sub-iterate of an auxiliary variabMhich
one equation iry is solved by approximating a projection of the gradientfpf each time forj, see
steps 2—4.

In this paper, a new algorithm constructed by combining the discrete Brown algorithm with a space
transformation method is presented in Section 2. The modified Brown Algorithm avoids the case, which
a§"’ = 0, by using the space transformation method and still ensurgs-@sadratic rate convergence,
see Section 3. In the last section, some numerical experiments are given.
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2. The modified Brown algorithm

In this section, we assume that NulF’(x*)) = sparfu1, us, ...,u,}, Null (F/(x*)T) = span
{e1,e2,...,e,},N=(ug, up, ..., u,)andE=(eq, ez, ..., e,),whereluy, us, ..., u,}and{eq, ez, ..., e }
both are norm orthogonal vector sets. IRgtQ be then x r matrices with columns full rank an8™ N,
QTE are nonsingular. Itis can be obtained easily thaik*) + Q PT also is nonsingular and the solution
of the matrix equationsF’ (x*) + QPT)X = Q is N(PTN)~L. Moreover, let

N(PTN)™ = (1. v2. ... vp).
We assume that the set of vectors consisting of the row& @f*), indexed byiy, k=1,...,n —r,is

one of the largest linear independent set& @ *), wherei; <i» < --- <i,_,. The other rows of”’ (x*)
are indexed byj1 < j» < --- < j.. We can construct an auxiliary function as follows:

T(x) = (fiy (0, [ia (), - oy fin s )y F1r (0D, Fip ),y 3,007,
wherefj, (x) = f;, (G*x +b%),s =1,2,...,r,

G = vV (%)

DS eE = = GHx™ (2.1)

It is easy to see thdf (x*) = 0 andT’(x*) is nonsingular. A basic algorithm for solving (1.1) with (1.2)
can be given by applying the Brown methodrtar).

Leta; € R", i=1,..., j,Aj=(a1,...,aj) andH (ay, ..., a;)=AjA;.Clearly,H (ay, az, ..., a))is
positive semi-definite and1, ay, .. aj} is linearly mdependent if and onlyifdéi(ay, az, ..., a;) #
0. Let H* = H(V fi,(x¥), Vf,z(x*) o Vfi, (x%) denote the matrix consisting gfcolumn vectors
taken arbltrarlly fromF’(x*) and H(k) H(Vf,l(y(k)) Vf,z(y(k) s Vi (yjk))), Whereyj(.k) (j=

1,2,...,n)iscomputed bytheAIgorlthmZ 1.Let=min ¢ <n{detH; #0, 1<iz<iz<---<ij<n}

ande* <r*/2. One has that ip(.k) closes enough te*, then de(H(k))<s* iff det(H*) = 0. Also let
(.k) = (Vfi, 3, Vf,z(y(k) Vi (y(k))) if A(k) is of full rank, we adopt a set of the Householder

elementary matrlceBl , P(Zk), cees P( ) ®

orthogonal math]Jrl = ng) -k Pj , such that

to transformA into the upper triangular matrix. There is an

—(k)
S1

0 E(zk) * cee %
o o0 5y
—T (k) : : : .. :
Qi 1A = : : : - (2.2)
e o 0o o0 ... 3V
0 0 0 0
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whereP (1<z <j) is theith Householder transformation in the transformation process of m/aj'f
and is of the form

0 _ <I(i—1)><(i—1) 0 >
;= 50 ) -
l 0 P

Therefore, de(tH(k))_det(A(k)TA(k))_ ’ 1E,(ff)z_det(H(k)l)s(k)z In consequence,iﬁﬁ."_)1 is of full
rank, thenA(k) is of full rank iff E(k) # 0.
Moreover one has

()T (k) —(k)—=)T

- k k - &K =ET
Qi1 AV =PV £u(31)). Py 03

Vi3 ), .. P} 0] Vﬁ,(,@)). (2.3)

By steps 2-3 of Algorithm 2. 1?;@ (1<m<j) is the discretion on Vf,m (y(k)) From (2.2) and
(2.3), it is obvious that the(k) in Step 2 of Algorithm 2.1, obtained by performing the Householder
transformation t(ﬂ,(n), is naturally the approximation of th*éf) obtained by using the Householder

transformation th Vﬁm (y(k)) From the continuity of elementary transformation on matrix, we can
get that for a fixek, one has

lim s(k) = s(k) 1<m<j.
hr—0

Consequently, we can estimate d€ k)) bysj(.k) instead OfEE.k) .Additionally, let the columns of matrix
A® (x) bea}k)(x), j=1,...,n, where

(k)T fi(x 4+ hrer) — fj(x) fi(x + hren) — fj(x)
(x) = ; - .
k k

A modified Brown algorithm for solving a class of singular nonlinear systems is defined by the following
steps.

Algorithm 2.1. Givenhg, ¢ > 0 small enoughxg close sufficiently toc* and setd = @, jmin=0,k=0.
Step0: If  ||F(xp)|l < e, then stop

Stepl:Let 0" be an orthogonal matrix W =, s =410, B =1, D® =1,
j=1.
Step2: Compute a(k) (k)(y§k)),
0
1 0
a® = = k k k
= | 0P mePen - 10 9

£i680 + th(’”en) — £i65)

and s = x|z ||, E® = p®519).
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If E® <e*and j<n— jmin+ 1,
then {jmin < jmin + 1, exchange the positions
between f;(x)and f,_j.,+1(x)in F(x),
aj(x) and a,_j+1(x) in A® ().
go to the beginning of Step 2 }

DW = E®,
Step3: Find a Householder transformation matrix Pj(k) being of the form
Ii—1yx(j— 0
(k) T G=Dx(=1)
P. :I— uu — —~ .
j p ( 0 P;k))

k)—(k)y _ (k) k) _ 4 =)
such that Pj a;’ =s; ej, where S —:|:||aj Il.

Step4: Compute 047, = 0% P and

(k) (k) (k)—1 (k) &)
Yira=Y; =95 fj(yj )Qj+1€j-
Set j <« j+1.If j<n— jmin+1then go to step 2.
If j=n+1,then go to Step 7.
Stepb:If  j=n— jmin+1,then let Ak:(aik), ag‘),...,a,ik))T, r = jmin, by the pivoting
Gauss eliminating method, compute Ny such that
(A +QPHNe=0, where Ne= @ o) ... o),

where matrices Q, P € R"*" are generated by a random function.
Step6:Set s=j —n+r,let

(k) ()T
GoT _ Us 4 (2.5)
s ®) 12 .
1a®
compute % = (1 - G®)x;, and set f;.(k)(x) = f{(GPx + b0 — £ (x), (2.6)
go to Step 2.

Step7: Let xpy1= yfl'fgl, hi+1=O(|F(xk+1) ), k < k+1land go to Step O
End of Algorithm 2.1.

Remark. (1) Note that if E®) < ¢* in Step 2, therv f;; (yj(.k)) is regarded as a linear combination of

Vi My, m=1,2,...,j—1.
(2) We will prove theA; + QO PT in Step 5 is nonsingular later.

3. Convergence analysis

In this section, the local convergence is investigated @nguadratic convergence is demonstrated.
In the following, | x|| denotes the Euclidean norm fere R" and||A|| denotes the Frobenius norm for
A € R™". To begin with, the following assumptions are needed.
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Basic assumptions

(A) There exist two positive constants >0 and Ko > 0, such that for anyk, y € B(x*, rg), j =
1 2,...,n,

I F'(x) — F' ()|l < Kollx — yll. (3.1)
(B)
rank(F'(x*) =n —r, 1<r<n,
Vfi(x*) £0, =12, ..., n.
(C) The rows ofJ(x*) = F'(x*), indexed byi; <iz» <--- <i,_,, form a largest linearly independent
set, and the subscripts of the rest are denotef by, . . ., Jj,.

Therefore, wherk is large enough, the nonlinear equations and its approximatjoto Jacobian
matrixJ (x*)=F'(x*) are rearranged as followB(x)=(fi; (x), fi,(x), ..., fi,_, (X), fj;(x), fi(xX), ...,

0, (ks (k). (k N 0, s k), 0, (k
£ 0T, Ar = @ 01, al 05N, -l 520, a i), a) o), - al ()T, where
yt(lk), y,(zk), o y,(rk) are some elements amoyg), yg‘), . yl.(f_)r.

Lemma 3.1(Ortego and Rheinboljit Assume thaf3.1) holds, then for any, y € B(x*, rg), one has
IF(y) = F(x) = J(0)(y = 0l < Kolly — xII%

Lemma3.2. LetT (x)=(fi, (X), fiy(X), -+, fir, (¥)s [0 (X), f1(xX), ..., f;,(x))T. ThenT (x*)=0and
T'(x*) is of full rank

The lemma given above can be proved from (B) and (C) of the basic assumptions at the beginning of
this section and Lemma 3.1 can be obtained directly from (3.1).

Lemma 3.3. If r2(r2 < rp) is small enoughthen there exisi > 0andL > Osuch thatifc, y € B(x*, r2),
one has that

LT =T GON<LIx—x*ll, ITO)—T ) =T ") (y—0)I<Llly—x[max{[lx—x*[|, ly—x*};
2. Jlx = x| <SNT" ) THIHNT @) -

Proof. From (2.1) and (3.1), it is easy to see that conclusion (1) of this Lemma holds. By virfug)of
in Lemma 3.2, one has

T =T ()N T (2) — T(x%)
1
= T/(x*)_lf T (x* 4+ t(z — x™)(z — x™)dt
0
1
=(z—x"+T'x"? / (T'(x* +1(z — x*) = T'(x*))(z — x*) dr.
0

There existd. such that

lz = x* = L/2IT" (5 Hllz = x* 1< T ) T @)
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according to conclusion (1) of this Lemma. Litt = 1 — (L/2)rol|T’(x*)"1|(5~1 < 1). The value on
the right-hand side of the formula above, ibel, is greater than zero whean is small enough. It leads
to the second conclusion.[]

Lemma 3.4. If r2 is small enoughthen|| T (x)|| < K1llx —x*||, x € B(x*, ry), K1=0.5Lr, +||IT'(x®)]||.

From Step 7 of Algorithm 2.1, it follows that there exists a real numkiger- 0 such thati| <
Ko|IT (xi)|-

Lemma 3.5. Under the basic assumptions and Algorithm,2tfere exists a real numbeg satisfying
0 < r3 < rp, and a constant; such that for anyL < j <n — r, we have the conclusion thatif;| < r3 and

k k k k T
Iy1” — x*lI<rs hold, then||y9; — x*|I<eallyf” — x*| and|s | > 1721 T 1)),

Remark. The difference between Lemma 3.5 and Lemmas 6 and 3] dies in that the latter is given
based on the condition that matrix is of full rank, $8p

Lemma 3.6. Under Assumptiofd), if 3 is small enougfthen there exists1 > 0 such that ifyik) =xi €
B(x*, r3), then one has

1. [a® = V ;") < Laflxe — x*[, 1< <n,
2. Ak = TGO <Ll = x°1,
3. 2V £ a1V £1()1/2.

Proof. LetL1=/nKo(c1+ K1K?2), wherers < (c1+ K1K>2) 1r1<ro. It can be verified that for any,
mei{l,2....,n—r}onehasd + hie; € B(x*, rp) € B(x*, ro). From Lemmas 3.4 and 3.5, one has

n
k
lal? =V £, P = D1 OL + heed) = fi, GOSN/ i = V £, () e 2
i=1
<nKEUy® — x*|| + 1hi])?
<nKj(c1+ K1K2)?|| (xx — x™)||%.

Similarly, we can prove that foj # i1, i2, ..., in—r,
k
lal) = V ;M IP<nKEer + K1K2) )| (o — x )12,

The argument given above implies that the three conclusions are vajigsiEmall enough. O

Lemma 3.7. If r3 is small enoughthen there exisk3 > 0 and K4 > 0 such that if|x; — x*|| <rs3, one
hasAx + QP is nonsingular and

(1) INe — N(PTN)"Y < K3llxi — x*||, whereN; is defined in Algorithn2.1,
2) 1G: = G < Kallx — x*|I.
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Proof. Conclusion (1) can be obtained by Step 5 of Algorithm 2.1 and Lemma 3.6. By Lemma 3.6, we
have

vik)aﬁf)T v;“ijI(x*)
*y2 T(y) 2
la; 12 IV £, Gl

k
Uaf 121V £ s = o)

1G{ - Gl =

<
= k
eSO NIV £ e*))12
T
IV ) = a$OT)

T
+ 0V LGNSO TIZ = 1V T I

<=5 CK3IIV L )| + 40} 1D llxe — x|
IV £ G912 8 !

= Kgllxx — x¥| L.
Lemma 3.8. Under the basic assumptions given at the beginning of this sedtfoilows from Lemmas
3.6 and 3.7%hat there exista(rq < r3), L3, L4, such that for and<s<r andx, y € B(x*, rg), one has
that
(1) IVAD@*) = V fi, M < Lallx® — x*],
@) 1700 = FP0) = VN @ = »I<Lallx — yllmaxly — x* |, lx — x*[I} + [lxe — x*[])
Js Js
Proof. Firstly, one has
1GPx +b® — x| = |GPx + b® — GFx* — b
<l = x* [+ 1GPIx = x* 1 + 1GP I — x|
<A+ GS Il + Karg) maxX{||xx — x* I, [lx — x|} (3.2)

Evidently, if r4 is small enough and, x; € B(x*, r4), then we have?ﬁk)x + b§k) € B(x™, rp). Conse-
quently, from (3.2) we have

IV A2 = Vil = G TV £, GPx* + b®) — (GHTV £, ()]
<GP = GV £, ) + Kol GP |l lxk — x*[1)
+ Kol GPIIGH | xe — x*II < Lallxg — x*]I.
Since
170 = FP0) = VAP0 = ») <Kol G012 )1x — vl max(]ly — x|, lx — x*|I}
<Lallx — ylmax(ly — x*[I, lx — x*[|},
we have
170 = FP0) = Vi, = )< Lallx =yl max(fly — x*|| + [lx — x*|}
+ Lallxi — x*[llx — yll
<Lallx — yllmaxlly — x*|l, llx — x* 1} + [lxe — x*ID),
whereL4 = max{L», L3}. The demonstration is completed.]
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In order to simplify the following discussion, we give the notations below

Fn@) = fi, ), m=1,2....n—r,
fm(x)zf}s(x), m=n—r+1....,n s=m—n-+r. (3.3)

Lemma 3.9. Under the assumption of Lemr&B,if r4 (r4 < r3) is small enoughthere exists, c4, such
that for anyl< j <n andhj <rs, one has

k k k
(D) 1 1yg = x* I <ran .y — x* ) <ra, then|ly{) — x*|<ealx® — x*,
(@) 171 = x| <eall — x| and (71> 1/(2) T2 (*) ), whereJ (x*) = T'(x*).

Proof. Firstly, by lemma 3.6, if X j <n — r, conclusions (1) and (2) obviously hold.df—r < j <n,
denoteJ = J(x*). Simplicity, keep andj fixed, and letL = (/,, ,), where

TJQ(/szleq, 1<g<p<n, j<p<g<n,
lpa =17 sy, 1<p=4qg<,
0 otherwise

Suppose < j. By Lemma 3.1 and the structure@g‘) (Step 2 of Algorithm 2.1), one has

1@OT —eTT(®) W)y <Kohe/2, g=p.p+1,....n—r. (3.4)

If ¢ >n —r, then lets = ¢ — n + r. Firstly, by the assumption of induction and (3.2), one has that if
ra(rq < r3) is small enough ang:l},k) € B(x*, ra), thenng)y;k) + bf.k) € B(x*, rp). Furthermore, if any

x € B(x*, rg), we also havef}ﬁk)x + bﬁk) € B(x*, rp). Hence, from Lemma 3.3, Lemma 3.9 (2) and the
assumptions, we have that for aqyn — r + 1<qg <n,

1@PT =TT 0 egl = afTey — V£, (3T 0We, |

1 ~
<= W |f~(k)(y(k) + th(k)e ) — f(k)(y(k) ~ Vi (x*)T Q;,k)eqhk|

HI(Vfi, ") = V5,00 ToWe, |
<La(lly® = x* ||+ hiel + llxe = x*|) + LIy —
<Lsmax([lys? — x*[|, x® — x*|I}. (3.5)

X

Therefore, from (3.4) and (3.5), forapy< j, g =p,p+1,...,n, we have

1@OT — T T8 0W)ey | < Lemax(ly® — x|, lx® — x*|}. (3.6)

We can prove that there exist9# > 0 such that|L — JQ( 1 < M'ra, which is similar to the proof of
[3, Lemma 6] Therefore, ifr4 is small enough, we have

151> ~11 :
2|1
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By Algorithm 2.1, one ha$yj(~k+)1 — x*|| <c3llx® — x*|. Similarly, by [3, Lemma 3.7] one has that
conclusion (2) holds. Now we establish the main result, the convergence theorem.

Theorem 3.1(Convergence theordmSuppose assumptiots), (B) and(C) are valid Then there exists
a constant > 0 such that for anyg € B(x*, ) the sequencgr;} generated by the algorithm converges
Q-quadratically tox™*.

Proof. Firstly, takey(k) =x; € B(x*, r5), wherers < rq. If 1 <j <n, then from Lemma 3.4, Lemma 3.9
and (3.3) one has

- ok
17 < eallze — 7). (3.7)
According to the proof of3, Lemma 3.7]there exists a constaty such that for any, 1< j <n, we have
k
158 — e T(x*) 0L sl < sl — x|

k) _

So there exists a constarg, such thalns T.JN(y](k))Q(He] | <csllxk — x*||. Therefore,

- (& ¥ 0y -17F . (k TooHy—
7505 = e] T O, 0 031 < 2cace | T () 7 e — x*)12.

By the definition Ofy i+1) one has

7508 = e] TN G = v 1< 2cacell T ™Ml — x*)12, (3.8)
Thus, from (3.8) and Lemma 3.4, we have

17500 1<Ballxe — x* 12 + LYy — y 1% (3.9)

||yj(~]21 — y](~k)||2 is of the order @||x; — x*||2), we have

708Dl <eslla — x| (3.10)

Now we estimatgj (y,(l'fﬁl) — 7j (yj(.’fﬁl). By virtue of Steps 2—4 of Algorithm 2.1 and the constitution of

Qg.k), we have

N (9] 7 K (k) (k) (k)
|fj(yn+]_) - f/(yj+1 |ij n+1 (yn+1 yj+1)|

= |VF @ )T s O L 609) 0% e
= (VT gy — 0ai )Tz _ st 1fm(y(k))Q(k) Leml. (3.11)

__]m

From the proof of Lemma 3.9, there exists a constarsch that
70000 = T DI <collxe — x*)12.
Also, from (3.10) and (3.11), we have

17,00 D1< (cg + collxe — x*]12. (3.12)
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By virtue of (3.12), there exists a constavit- 0 such thaf|7 (xx41) || <N ||lxx — x*||. It follows from
(2) in Lemma 3.4 that

o1 — X SON T () 7| [l — x|, (3.13)

If « is small enoughs < min{re, (5|7’ (x*)"1|N)~1} and|lxo — x*| <, then by induction, it can be
proved from (3.13) that for alt > 0 andxg € B (x*, 7) one has

1 e BG*, re)
ks — x* [ <SOTN(IT () Ml — x . (3.14)
whereB(-, -) denotes an open ball. Taking the limit of the second line of (3.14), one has

lim x; =x*.
k—o00

Summarizing the statement given above, it follows from (3.13) that generated by the algorithm
convergeg)-quadratically toc*. O

4. Numerical experiments

We take some examples frobb], satisfying (B) of the basic assumptions in Section 3 {ade J).
Using the formulation

Fx)=F(x) — F (x)A(ATA) 1A (x — x%) (4.1)

due to Dan et al. (1993), one has that (4.1) is of the rank one defect if takirg (1, 1, .. ., 1), of the
rank two defect if taking

AT — 11 1 1 - 1
1 -1 1 -1 .- (=)’
In what follows, some computation results are given via the algorithm presented in Section 2, and related

comparison of the results obtained by Algorithm 2.1 with the ones given by other authors, in the case that
the same choices of matricAsnentioned above are used, are listedlbples 2—4

Table 1
The start points of the test functions

Functions Start points
Bigg exp 6 (1,10, 1)

Box 3D (1.5,105,1.5)
Broyden banded -1 -1,..., -1
Rosenbrock (-1.2,1)

Powell singular 3,-1,0,1

Brown alm G.3 )

.....
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Table 2

Results on the nonsingular cases by the tensor method and the modified Brown method

Function n k ™ x*? k MBM x*?
Bigg exp 6 6 70 0.13-12 Y 19 0.86-17 Y
Box 3D 3 3 0.10-11 Y 3 0.14-21 Y
Broyden banded 30 4 0.12-11 Y 5 0.29-17 Y
Rosenbrock 4 7 0.14-20 Y 3 0.23-24 Y
Powell singular 4 3 0.25-15 Y 16 0.72-15 Y
Brown alm 10 7 0.38-11 Y 7 0.92-25 Y
Table 3

Results on the first singular test set with rafK (x4) =n — 1)

Function n k ™ x*? k MBM x*?
Bigg exp 6 6 150 00 N 7 0.19-16 Y
Box 3D 3 5 0.57-15 6 0.38-22 Y
Broyden banded 30 4 0.12-11 6 0.98-26 Y
Rosenbrock 4 3 0.47-14 3 0.37-24 Y
Powell singular 4 3 0.25-15 16 0.72-15 Y
Brown alm 10 4 0.41-7 4 0.21-20 Y
Table 4

Results on the second singular test set with réiKx,) =n — 2)

Function n k ™ x*? MBM x*?
Bigg exp 6 6 150 00 N 5 0.18-09 Y
Brown alm 10 4 0.9-13 N 3 0.27-23 Y
Box 3D 10 11 0.2-12 N 19 0.39-15 Y

In Tables 2—4the two columns labelled*?, contain “Y(yes)” if the method converged to the singular
points, “N(no)” otherwise; the results in the two columns labelled TM and MBM are the values of
%||F(xk)||§; n denotes the number of variabldsdenotes the number of iterations; “0.13-12" means
0.13 x 10~1% TM denotes the tensor method and MBM denotes the modified Brown method.

Remark. MatricesQ andP are generated by a random function using MATLAB 6.1 language. In the

process of iteration, we select = min{c|| F (x) ||, 10~8}, where 0< ¢ < 0.0001.

4.1. Comparison

(1) The comparison of calculating amouffiensor method is needed to calculate accurate Jacobian
Matrix per iterative step, but it is difficult and more complicated than the nonlinear equations. The total
cost of solving the tensor model is abc%,n3 + n?p + O(n?) multiplications and additions in the dense
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case. My method need not calculate accurate Jacobian Méitix). We use an approximate matrit,
to substituteF”’ (x;), henceN?/2 + O(n) function evaluation is necessary. The total cost of the method
proposed in this paper is® + n2/2r + O(n).

(2) Evaluation from the numerical experiment§e can derive the conclusion that the approximate
solution obtained by using MBM is far more accurate than ones of TM frabte 3 In Table 4 we find
that the approximate solution obtained by using MBM convergence to the singular point while the ones
of TM do not converge to the singular point at all.

It can be seen from the comparisons given above that the modified Brown method is highly efficient
and locallyQ-quadratic convergent under the rank defect conditions(af.
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