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Abstract

A modified Brown algorithm for solving a class of singular nonlinear systems,F(x) = 0, wherex, F ∈ Rn, is
presented. This method is constructed by combining the discreted Brown algorithm with the space transforming
method. The second-order information ofF(x) at a point is not required calculating, which is different from the
tensor method and the Hoy’s method. TheQ-quadratic convergence of this algorithm and some numerical examples
are given as well.
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1. Introduction

Consider the following nonlinear system:

F(x)= 0, (1.1)
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wherex ∈ Rn, F(x)= (f1(x), f2(x), . . . , fn(x))T. We assume, throughout this paper, that there exists
a solutionx∗ of (1.1),F ′ is Lipschitzian aroundx∗ and{

rank(F ′(x∗))= n− r, 1�r>n,
∇fi(x∗) �= 0 i = 1,2, . . . , n.

(1.2)

There have been many publications dealing with nonlinear systems with rank defects ofF ′ since the
1980s, see for instance,[1,2,5–7,9–12,14]. Some algorithms were designed for the case in whichF ′ has
rankn−1, see for instance,[4,9,11,12,14,16]. Hoy and Schwetlick[12] introduced an auxiliary function

T (x)=
(

F(x)

det(F ′(x))

)

leading to construction of an algorithm for solving (1.1) with rank defect one, reading as follows.

Algorithm 1.1. Step0:Choose x0 ≈ x∗, q ≈ v, p ≈ u, set k = 0.
Step1:Set Bk = F ′(xk)+ pqT.
Step2:Determine dk from Bkdk = F(xk), vk from BT

k vk = p, uk from Bkuk = q.
Step3:Set

xk+1= xk − dk − 1− qTvk − uTk F ′′(xk)vkdk
uTk F

′′(xk)vkvk
.

End of Algorithm 1.1.

The sequence{xk} generated by this algorithm converges locallyQ-quadratically to a solution of (1.1).
Werber and Werner[18], and Yamamoto[19] already proposed some methods constructing extended
equations before Hoy and Schwetlick, but their auxiliary functions are more complex and their corre-
sponding algorithms are not easy to perform. Kanzawa and Oishi[13] proposed methods of interval
iteration, enlightened by the method due to Werber and Werner[18], Yamamoto[19] for dealing with
the auxiliary functions. The tensor model introduced by Schnabel and Frank[17] is a quadratic model of
F(x) formed by adding a second-order term to the linear model given by

MT (xc + d)= F(xc)+ Jcd + 1
2Tcdd,

whereTc ∈ RN×N×N is used to give the second-order information aboutF(xc) aroundxc. Tc =
arg min{‖T̂c‖F | T̂csksk = zk, k = 1,2, . . . , p}, wheresk, zk are defined by Dan et al.[4]. The goal of
the tensor model is to findd ∈ RN such thatd is a solution of mind∈RN ‖MT (xc + d)‖2. Under the
assumptions thatF ′(x∗) is singular with only one zero singular value anduTF ′′(x∗)vv �= 0, the se-
quence of iterations generated by the tensor method based on an ideal tensor model converges locally
and two-stepQ-superlinearly to the solution withQ-order 32, and the sequence of iterates generated by
the tensor method based on a practical tensor model converges locally and three-stepQ-superlinearly
to the solution withQ-order 32. Tensor method is considered as a very good algorithm in solving sin-
gular nonlinear equations since 1984. It is extended to solving unconstrained optimization (1991, 1997)
and equality constrained optimization (1996). For the system with rank defects, Ge and Xia[7,8] con-
structed a modified ABS algorithm for solving problem (1.1) under the same conditions by combining
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the discreted ABS algorithm with the idea of Hoy and Schwetlick[12]. In this paper, a modified Brown
method is proposed for solving systems of nonlinear equations with rank(F ′(x∗))=n− r, 1<r>n and
the second-order information ofF(x) is not required, seeAlgorithm 2.1 in Section 2. The new algorithm
convergesQ-quadratically tox∗. We now recall the discrete Brown method, due to Brent[3], for solving
nonlinear systems ofF with full rank.

Algorithm 1.2. Step0:Choose h0, x0 close enough to x∗, set k = 0, j = 1.
Step1: Let y

(k)
1 = xk. Take orthogonal matrices Q

(k)
j for j = 1,2, . . . , n. Do steps

2–4.
Step2:Compute

a
(k)
j =

1

hk




0
...

0
fj (y

(k)
j + hkQ(k)

j ej )− fj (y(k)j )

...

fj (y
(k)
j + hkQ(k)

j en)− fj (y(k)j )



.

Step3: Find an orthogonal matrix P
(k)
j being of the form

P
(k)
j =

(
I(j−1)×(j−1) 0

0 P̂
(k)
j

)
.

such that P
(k)
j a

(k)
j = s

(k)
j ej , where s

(k)
j = ±‖a(k)j ‖. (For example , P̂ (k)

j may be an
elementary Hermition.)
Step4:Compute Q(k)

j+1=Q(k)
j P

(k)
j and

y
(k)
j+1= y(k)j − s(k)−1j fj (y

(k)
j )Q

(k)
j+1ej .

Step5: Let xk+1= y(k)n+1, k← k + 1 and go to step 1 .
End of Algorithm 1.2.

Note that Algorithm 1.2 is different from the (quasi-) Newton’s methods solving systems of nonlinear
equations directly. The process of its iteration contains a sub-iterate of an auxiliary variabley in which
one equation iny is solved by approximating a projection of the gradient offj , each time forj , see
steps 2–4.
In this paper, a new algorithm constructed by combining the discrete Brown algorithm with a space

transformation method is presented in Section 2. The modified Brown Algorithm avoids the case, which
a
(k)
j = 0, by using the space transformation method and still ensures itsQ-quadratic rate convergence,

see Section 3. In the last section, some numerical experiments are given.
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2. The modified Brown algorithm

In this section, we assume that Null(F ′(x∗)) = span{u1, u2, . . . , ur}, Null (F ′(x∗)T) = span
{e1, e2, . . . , er},N=(u1, u2, . . . , ur)andE=(e1, e2, . . . , er),where{u1, u2, . . . , ur}and{e1, e2, . . . , er}
both are norm orthogonal vector sets. LetP ,Q be then× r matrices with columns full rank andP TN ,
QTE are nonsingular. It is can be obtained easily thatF ′(x∗)+QP T also is nonsingular and the solution
of the matrix equations(F ′(x∗)+QP T)X =Q isN(P TN)−1. Moreover, let

N(P TN)−1= (v1, v2, . . . , vr).
We assume that the set of vectors consisting of the rows ofF ′(x∗), indexed byik, k = 1, . . . , n− r, is

one of the largest linear independent sets ofF ′(x∗), wherei1< i2< · · ·< in−r . The other rows ofF ′(x∗)
are indexed byj1<j2< · · ·<jr . We can construct an auxiliary function as follows:

T (x)= (fi1(x), fi2(x), . . . , fin−r (x), f̃j1(x), f̃j2(x), . . . , f̃jr (x))T,

wheref̃js (x)= fjs (G∗s x + b∗s ), s = 1,2, . . . , r,

(G∗s )T =
vs∇f T

js
(x∗)

‖∇fjs (x∗)‖2
, b∗s = (I −G∗s )x∗. (2.1)

It is easy to see thatT (x∗)= 0 andT ′(x∗) is nonsingular. A basic algorithm for solving (1.1) with (1.2)
can be given by applying the Brown method toT (x).
Letai ∈ Rn, i=1, . . . , j ,Aj=(a1, . . . , aj ) andH(a1, . . . , aj )=AT

j Aj . Clearly,H(a1, a2, . . . , aj ) is
positive semi-definite and{a1, a2, . . . , aj } is linearly independent if and only if detH(a1, a2, . . . , aj ) �=
0. LetH ∗j = H(∇fi1(x∗),∇fi2(x∗), . . . ,∇fij (x∗)) denote the matrix consisting ofj column vectors

taken arbitrarily fromF ′(x∗) andH(k)
j = H(∇fi1(y(k)1 ),∇fi2(y(k)2 ), . . . ,∇fij (y(k)j )), wherey(k)j (j =

1,2, . . . , n) is computedby theAlgorithm2.1. Letr∗=min1�j �n{detH ∗j �= 0, 1�i1< i2< · · ·< ij �n}
andε∗<r∗/2. One has that ify(k)j closes enough tox∗, then det(H (k)

j )�ε∗ iff det(H ∗j ) = 0. Also let

A
(k)
j = (∇fi1(y(k)1 ), ∇fi2(y(k)2 ), . . . ,∇fij (y(k)j )), if A(k)j is of full rank, we adopt a set of the Householder

elementary matricesP
(k)

1 , P
(k)

2 , . . . , P
(k)

j to transformA(k)j into the upper triangular matrix. There is an

orthogonal matrixQ
(k)

j+1= P (k)

1 ∗ · · · ∗ P (k)

j , such that

Q
(k)T
j+1A

(k)
j =




s
(k)
1 ∗ ∗ · · · ∗
0 s

(k)
2 ∗ · · · ∗

0 0 s
(k)
3 · · · ∗

...
...

...
. . .

...

0 0 0 · · · s
(k)
j

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, (2.2)
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whereP
(k)

i (1�i�j) is theith Householder transformation in the transformation process of matrixA
(k)
j

and is of the form

P
(k)

i =
(
I(i−1)×(i−1) 0

0 P̂
(k)
i

)
.

Therefore, det(H (k)
j )=det(A(k)Tj A

(k)
j )=∏j

m=1s
(k)2
m =det(H (k)

j−1)s
(k)2
j . In consequence, ifA(k)j−1 is of full

rank, thenA(k)j is of full rank iff s(k)j �= 0.
Moreover, one has

Q
(k)T
j+1A

(k)
j = (P

(k)

1 ∇fi1(y(k)1 ), P
(k)

2 Q
(k)T
2 ∇fi2(y(k)2 ), . . . , P

(k)

j Q
(k)T
j ∇fij (y(k)j )). (2.3)

By steps 2–3 of Algorithm 2.1,akm (1�m�j) is the discretion ofQ
(k)T
m ∇fim(y(k)m ). From (2.2) and

(2.3), it is obvious that thes(k)m in Step 2 of Algorithm 2.1, obtained by performing the Householder
transformation toa(k)m , is naturally the approximation of thes(k)m obtained by using the Householder

transformation toQ
(k)T
m ∇fim(y(k)m ). From the continuity of elementary transformation on matrix, we can

get that for a fixedk, one has

lim
hk→0

s(k)m = s(k)m , 1�m�j.

Consequently, we can estimate det(H
(k)
j ) by s(k)j instead ofs(k)j .Additionally, let the columns ofmatrix

A(k)(x) bea(k)j (x), j = 1, . . . , n, where

a
(k)T
j (x)=

(
fj (x + hke1)− fj (x)

hk
, . . . ,

fj (x + hken)− fj (x)
hk

)
.

Amodified Brown algorithm for solving a class of singular nonlinear systems is defined by the following
steps.

Algorithm 2.1. Givenh0, ε >0 small enough,x0 close sufficiently tox∗ and setH =�, jmin=0,k=0.
Step0: If ‖F(xk)‖<ε, then stop .
Step1: Let Q(k)

1 be an orthogonal matrix , y(k)1 = xk, s(k)1 =±‖a(k)1 ‖, H (k)
0 = I ,D(k) = 1,

j = 1.
Step2:Compute a(k)j = a(k)j (y

(k)
j ),

a
(k)
j =

1

hk




0
...

0
fj (y

(k)
j + hkQ(k)

j ej )− fj (y(k)j )

...

fj (y
(k)
j + hkQ(k)

j en)− fj (y(k)j )




(2.4)

and s(k)j =±‖a(k)j ‖, E(k) =D(k)|s(k)j |.
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If E(k) < ε∗ and j <n− jmin + 1,
then {jmin← jmin + 1,exchange the positions

between fj (x) and fn−jmin+1(x) in F(x),
aj (x) and an−jmin+1(x) in A(k)(x).
go to the beginning of Step 2 }.

D(k) = E(k).

Step3: Find a Householder transformation matrix P
(k)
j being of the form

P
(k)
j = I − �uuT =

(
I(j−1)×(j−1) 0

0 P̂
(k)
j

)
,

such that P
(k)
j a

(k)
j = s(k)j ej , where s

(k)
j =±‖a(k)j ‖.

Step4:Compute Q(k)
j+1=Q(k)

j P
(k)
j and

y
(k)
j+1= y(k)j − s(k)−1j fj (y

(k)
j )Q

(k)
j+1ej .

Set j ← j + 1. If j <n− jmin + 1, then go to step 2.
If j = n+ 1, then go to Step 7.
Step5: If j =n−jmin+1, then let Ak= (a(k)1 , a

(k)
2 , . . . , a

(k)
n )T, r=jmin, by the pivoting

Gauss eliminating method, compute Nk such that

(Ak +QP T)Nk =Q, where Nk = (v(k)1 , v
(k)
2 , . . . , v(k)r ),

where matrices Q, P ∈ Rn×r are generated by a random function.
Step6:Set s = j − n+ r, let

G(k)T
s = v

(k)
s a

(k)T
j

‖a(k)j ‖2
(2.5)

compute b(k)s = (1−G(k)
s )xk and set f̃

(k)
j (x)= fj (G(k)

s x + b(k)s )→ fj (x), (2.6)

go to Step 2.
Step7: Let xk+1= y(k)n+1, hk+1=O(‖F(xk+1)‖), k← k + 1 and go to Step 0 .
End of Algorithm 2.1.

Remark. (1) Note that ifE(k) < ε∗ in Step 2, then∇fij (y(k)j ) is regarded as a linear combination of

∇fim(y(k)m ), m= 1,2, . . . , j − 1.
(2) We will prove theAk +QP T in Step 5 is nonsingular later.

3. Convergence analysis

In this section, the local convergence is investigated andQ-quadratic convergence is demonstrated.
In the following,‖x‖ denotes the Euclidean norm forx ∈ Rn and‖A‖ denotes the Frobenius norm for
A ∈ Rn,n. To begin with, the following assumptions are needed.
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Basic assumptions:

(A) There exist two positive constantsr0>0 andK0>0, such that for anyx, y ∈ B(x∗, r0), j =
1, 2, . . . , n,

‖F ′(x)− F ′(y)‖�K0‖x − y‖. (3.1)

(B)

rank(F ′(x∗))= n− r, 1�r�n,
∇fi(x∗) �= 0, i = 1,2, . . . , n.

(C) The rows ofJ (x∗) = F ′(x∗), indexed byi1< i2< · · ·< in−r , form a largest linearly independent
set, and the subscripts of the rest are denoted byj1, j2, . . . , jr .

Therefore, whenk is large enough, the nonlinear equations and its approximationAk to Jacobian
matrixJ (x∗)=F ′(x∗)are rearrangedas follows:F(x)=(fi1(x), fi2(x), . . . , fin−r (x),fj1(x), fj2(x), . . . ,
fjr (x))

T, Ak = (a
(k)
i1
(y
(k)
1 ), a

(k)
i2
(y
(k)
2 ), . . . , a

(k)
in−r (y

(k)
n−r ), a

(k)
j1
(y
(k)
t1
), a

(k)
j2
(y
(k)
t2
), . . . , a(k)jr (y

(k)
tr
))T, where

y
(k)
t1
, y

(k)
t2
, . . . , y

(k)
tr

are some elements amongy(k)i1
, y

(k)
i2
, . . . , y

(k)
in−r .

Lemma 3.1(Ortego and Rheinboldt). Assume that(3.1)holds, then for anyx, y ∈ B(x∗, r0), one has
‖F(y)− F(x)− J (x)(y − x)‖�K0‖y − x‖2.
Lemma3.2. LetT (x)=(fi1(x), fi2(x), . . . , fin−r (x), f̃j1(x), f̃j2(x), . . . , f̃jr (x))T.ThenT (x∗)=0and
T ′(x∗) is of full rank.

The lemma given above can be proved from (B) and (C) of the basic assumptions at the beginning of
this section and Lemma 3.1 can be obtained directly from (3.1).

Lemma 3.3. If r2(r2<r0) is small enough, then there exist�>0andL>0 such that ifx, y ∈ B(x∗, r2),
one has that

1. ‖T ′(x)−T ′(x∗)‖�L‖x−x∗‖, ‖T (y)−T (x)−T ′(x∗)(y−x)‖�L‖y−x‖max{‖x−x∗‖, ‖y−x∗‖};
2. ‖x − x∗‖��‖T ′(x∗)−1‖‖̇T (x)‖.
Proof. From (2.1) and (3.1), it is easy to see that conclusion (1) of this Lemma holds. By virtue ofT (·)
in Lemma 3.2, one has

T ′(x∗)−1T (z)= T ′(x∗)−1(T (z)− T (x∗))
= T ′(x∗)−1

∫ 1

0
T ′(x∗ + t (z− x∗))(z− x∗)dt

= (z− x∗)+ T ′(x∗)−1
∫ 1

0
(T ′(x∗ + t (z− x∗))− T ′(x∗))(z− x∗)dt.

There existsL such that

‖z− x∗‖ − L/2‖T ′(x∗)−1‖‖z− x∗‖2�‖T ′(x∗)−1T (z)‖.
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according to conclusion (1) of this Lemma. Let�−1 = 1− (L/2)r0‖T ′(x∗)−1‖(�−1<1). The value on
the right-hand side of the formula above, i.e.�−1, is greater than zero whenr2 is small enough. It leads
to the second conclusion.�

Lemma 3.4. If r2 is small enough, then‖T (x)‖�K1‖x−x∗‖, x ∈ B(x∗, r2),K1= 0.5Lr2+‖T ′(x∗)‖.
From Step 7 of Algorithm 2.1, it follows that there exists a real numberK2>0 such that|hk|�

K2‖T (xk)‖.
Lemma 3.5. Under the basic assumptions and Algorithm 2.1, there exists a real numberr3 satisfying
0<r3<r2, and a constantc1 such that for any1�j�n− r,we have the conclusion that if|hk|<r3 and
‖y(k)1 − x∗‖�r3 hold, then‖y(k)j+1− x∗‖�c1‖y(k)1 − x∗‖ and|s(k)j |?1/(2‖J̃−1(x∗)‖).
Remark. The difference between Lemma 3.5 and Lemmas 6 and 7 of[3] lies in that the latter is given
based on the condition that matrix is of full rank, see[3].

Lemma 3.6. Under Assumption(A), if r3 is small enough, then there existsL1>0such that ify(k)1 =xk ∈
B(x∗, r3), then one has

1. ‖a(k)j − ∇fj (x∗)‖�L1‖xk − x∗‖, 1�j�n,
2. ‖Ak − J (x∗)‖�√nL1‖xk − x∗‖,
3. 2‖∇fj (x∗)‖�‖a(k)j ‖�‖∇fj (x∗)‖/2.

Proof. LetL1=√nK0(c1+K1K2), wherer3<(c1+K1K2)
−1r1�r2. It can be verified that for anym,

m ∈ {1,2, . . . , n− r}, one hasy(k)m + hkei ∈ B(x∗, r2) ⊆ B(x∗, r0). From Lemmas 3.4 and 3.5, one has

‖a(k)im − ∇fim(x∗)‖2=
n∑
i=1
|(fim(y(k)m + hkei)− fim(y(k)m ))/hk − ∇fim(x∗)Tei |2

�nK2
0(‖y(k)m − x∗‖ + |hk|)2

�nK2
0(c1+K1K2)

2‖(xk − x∗)‖2.

Similarly, we can prove that forj �= i1, i2, . . . , in−r ,

‖a(k)j − ∇fj (x∗)‖2�nK2
0(c1+K1K2)

2‖(xk − x∗)‖2.

The argument given above implies that the three conclusions are valid ifr3 is small enough. �

Lemma 3.7. If r3 is small enough, then there existK3>0 andK4>0 such that if‖xk − x∗‖<r3, one
hasAk +QP T is nonsingular and

(1) ‖Nk −N(P TN)−1‖�K3‖xk − x∗‖, whereNk is defined in Algorithm2.1,
(2) ‖G∗s −G(k)

s ‖�K4‖xk − x∗‖.
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Proof. Conclusion (1) can be obtained by Step 5 of Algorithm 2.1 and Lemma 3.6. By Lemma 3.6, we
have

‖G(k)
s −G∗s‖ =

∥∥∥∥∥v
(k)
s a

(k)T
js

‖a(k)js ‖2
− v∗s∇f T

js
(x∗)

‖∇f T
js
(x∗)‖2

∥∥∥∥∥
�

1

‖a(k)js ‖‖∇f T
js
(x∗)‖2

(‖a(k)js ‖2‖∇f T
js
(x∗)‖‖v∗s − v(k)s ‖

+ ‖∇f T
js
(x∗)‖2‖v∗‖‖∇f T

js
(x∗)− a(k)Tjs

‖
+ ‖v∗∇f T

js
(x∗)‖|‖a(k)Tjs

‖2− ‖∇f T
js
(x∗)‖2|)

�
4

‖∇f T
js
(x∗)‖2 (2K3‖∇f T

js
(x∗)‖ + 4‖v∗s ‖)‖xk − x∗‖

=K4‖xk − x∗‖ �.

Lemma 3.8. Under the basic assumptions given at the beginning of this section, it follows from Lemmas
3.6 and 3.7that there existr4(r4<r3), L3, L4, such that for any1�s�r andx, y ∈ B(x∗, r4), one has
that

(1) ‖∇f̃ (k)js
(x∗)− ∇f̃js (x∗)‖�L3‖x(k) − x∗‖,

(2) |f̃ (k)js
(x)− f̃ (k)js

(y)− ∇f̃js (x∗)(x − y)|�L4‖x − y‖(max{‖y − x∗‖, ‖x − x∗‖} + ‖xk − x∗‖).
Proof. Firstly, one has

‖G(k)
s x + b(k)s − x∗‖ = ‖G(k)

s x + b(k)s −G∗s x∗ − b∗s ‖
�‖xk − x∗‖ + ‖G(k)

s ‖‖x − x∗‖ + ‖G(k)
s ‖‖xk − x∗‖

�(1+ ‖G∗s‖ +K4r0)max{‖xk − x∗‖, ‖x − x∗‖}. (3.2)

Evidently, if r4 is small enough andx, xk ∈ B(x∗, r4), then we haveG(k)
s x + b(k)s ∈ B(x∗, r2). Conse-

quently, from (3.2) we have

‖∇f̃ (k)js
(x∗)− ∇f̃js (x∗)‖ = ‖(G(k)

s )T∇fjs (G(k)
s x∗ + b(k)s )− (G∗s )T∇fjs (x∗)‖

�‖G(k)
s −G∗s‖(‖∇fjs (x∗)‖ +K0‖G(k)

s ‖‖xk − x∗‖)
+K0‖G(k)

s ‖‖G(k)
s ‖‖xk − x∗‖�L3‖xk − x∗‖.

Since

|f̃ (k)js
(x)− f̃ (k)js

(y)− ∇f̃ (k)js
(x∗)(x − y)|�K0‖G(k)‖2‖x − y‖max{‖y − x∗‖, ‖x − x∗‖}

�L2‖x − y‖max{‖y − x∗‖, ‖x − x∗‖},
we have

|f̃ (k)js
(x)− f̃ (k)js

(y)− ∇f̃js (x∗)(x − y)|�L2‖x − y‖max{‖y − x∗‖ + ‖x − x∗‖}
+ L3‖xk − x∗‖‖x − y‖

�L4‖x − y‖(max{‖y − x∗‖, ‖x − x∗‖} + ‖xk − x∗‖),
whereL4=max{L2, L3}. The demonstration is completed.�
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In order to simplify the following discussion, we give the notations below

f m(x)= fim(x), m= 1,2, . . . , n− r,
f m(x)= f̃js (x), m= n− r + 1, . . . , n, s =m− n+ r. (3.3)

Lemma 3.9. Under the assumption of Lemma3.8,if r4 (r4<r3) is small enough, there existc3, c4, such
that for any1�j�n andhk < r5, one has

(1) If ‖y(k)1 − x∗‖�r4, . . . , ‖y(k)j − x∗‖�r4, then‖y(k)j+1− x∗‖�c3‖x(k) − x∗‖,
(2) ‖y(k)j − x∗‖�c4‖xk − x∗‖ and|s(k)j |?1/(2‖J̃−1(x∗)‖), whereJ̃ (x∗)= T ′(x∗).
Proof. Firstly, by lemma 3.6, if 1�j�n − r, conclusions (1) and (2) obviously hold. Ifn − r < j�n,
denoteJ̃ = J̃ (x∗). Simplicity, keepi andj fixed, and letL= (lp,q), where

lp,q =


eTpJ̃Q

(k)
j+1eq, 1�q <p�n, j <p�q�n,

s
(k)
p , 1�p = q�j,
0 otherwise.

Supposep�j . By Lemma 3.1 and the structure ofa(k)p (Step 2 of Algorithm 2.1), one has

|(a(k)Tp − eTJ̃ (y(k)p )Q(k)
p )eq |�K0hk/2, q = p, p + 1, . . . , n− r. (3.4)

If q >n − r, then lets = q − n + r. Firstly, by the assumption of induction and (3.2), one has that if
r4(r4<r3) is small enough andy(k)p ∈ B(x∗, r4), thenG(k)

s y
(k)
p + b(k)s ∈ B(x∗, r2). Furthermore, if any

x ∈ B(x∗, r4), we also haveG(k)
s x + b(k)s ∈ B(x∗, r2). Hence, from Lemma 3.3, Lemma 3.9 (2) and the

assumptions, we have that for anyq, n− r + 1�q�n,

|(a(k)Tp − eTJ̃ (y(k)p )Q(k)
p )eq | = |a(k)Tp eq − ∇f̃js (y(k)p )TQ(k)

p eq |
�

1

hk
|f̃ (k)js

(y(k)p + hkQ(k)
p eq)− f̃ (k)js

(y(k)p )− ∇f̃js (x∗)TQ(k)
p eqhk|

+ |(∇f̃js (x∗)− ∇f̃js (y(k)p ))TQ(k)
p eq |

�L4(‖y(k)p − x∗‖ + |hk| + ‖xk − x∗‖)+ L‖y(k)p − x∗‖
�L5max{‖y(k)p − x∗‖, ‖x(k) − x∗‖}. (3.5)

Therefore, from (3.4) and (3.5), for anyp�j, q = p, p + 1, . . . , n, we have

|(a(k)Tp − eTJ̃ (y(k)p )Q(k)
p )eq |�L6max{‖y(k)p − x∗‖, ‖x(k) − x∗‖}. (3.6)

We can prove that there exists aM ′>0 such that‖L− J̃Q(k)
j+1‖�M ′r4, which is similar to the proof of

[3, Lemma 6]. Therefore, ifr4 is small enough, we have

|s(k)j |�
1

2‖J̃−1‖ . �
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By Algorithm 2.1, one has‖y(k)j+1 − x∗‖�c3‖x(k) − x∗‖. Similarly, by [3, Lemma 3.7], one has that
conclusion (2) holds. Now we establish the main result, the convergence theorem.

Theorem3.1(Convergence theorem). Suppose assumptions(A), (B) and(C) are valid.Then there exists
a constant�>0 such that for anyx0 ∈ B(x∗, �) the sequence{xk} generated by the algorithm converges
Q-quadratically tox∗.

Proof. Firstly, takey(k)1 = xk ∈ B(x∗, r5), wherer5<r4. If 1�j�n, then from Lemma 3.4, Lemma 3.9
and (3.3) one has

‖f j (y(k)j )‖�c4‖xk − x∗‖. (3.7)

According to the proof of[3, Lemma 3.7], there exists a constantc5 such that for anyj, 1�j�n, we have

‖s(k)j − eTj J̃ (x∗)Q(k)
n+1ej‖�c5‖xk − x∗‖.

So there exists a constantc6, such that‖s(k)j − eTj J̃ (y(k)j )Q
(k)
n+1ej‖�c6‖xk − x∗‖. Therefore,

|f j (y(k)j )− eTj J̃ (y(k)j )s
(k)−1
j f j (y

(k)
j )Q

(k)
n+1ej |�2c4c6‖J̃ (x∗)−1‖‖xk − x∗‖2.

By the definition ofy(k)j+1, one has

|f j (y(k)j )− eTj J̃ (y(k)j )(y
(k)
j − y(k)j+1)|�2c4c6‖J̃ (x∗)−1‖‖xk − x∗‖2. (3.8)

Thus, from (3.8) and Lemma 3.4, we have

|f j (y(k)j+1)|�c8‖xk − x∗‖2+ L‖y(k)j+1− y(k)j ‖2. (3.9)

‖y(k)j+1− y(k)j ‖2 is of the order O(‖xk − x∗‖2), we have

|f j (y(k)j+1)|�c8‖xk − x∗‖2. (3.10)

Now we estimatef j (y
(k)
n+1)− f j (y(k)j+1). By virtue of Steps 2–4 of Algorithm 2.1 and the constitution of

Q
(k)
j , we have

|f j (y(k)n+1)− f j (y(k)j+1)| = |∇f j (u(k)n+1)T(y(k)n+1− y(k)j+1)|
= |∇f j (u(k)n+1)T�nm=j s

(k)−1
m fm(y

(k)
m )Q

(k)
m+1em|

= |(∇f j (u(k)n+1)−Q(k)
j a

(k)
j )T�nm=j s

(k)−1
m fm(y

(k)
m )Q

(k)
m+1em|. (3.11)

From the proof of Lemma3.9, there exists a constantc9 such that

|f j (y(k)n+1)− f j (y(k)j+1)|�c9‖xk − x∗‖2.
Also, from (3.10) and (3.11), we have

|f j (y(k)n+1)|�(c8+ c9)‖xk − x∗‖2. (3.12)
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By virtue of (3.12), there exists a constantN >0 such that‖T (xk+1)‖�N‖xk − x∗‖2. It follows from
(2) in Lemma3.4 that

‖xk+1− x∗‖��N‖T ′(x∗)−1‖‖xk − x∗‖2. (3.13)

If � is small enough,�<min{r6, (�‖T ′(x∗)−1‖N)−1} and‖x0 − x∗‖< �, then by induction, it can be
proved from (3.13) that for allk >0 andx0 ∈ B(x∗, �) one has

y
(k)
1 ∈ B(x∗, r6)
‖xk+1− x∗‖���N‖T (x∗)−1‖‖xk − x∗‖. (3.14)

whereB(· , ·) denotes an open ball. Taking the limit of the second line of (3.14), one has

lim
k→∞ xk = x∗.

Summarizing the statement given above, it follows from (3.13) that{xk} generated by the algorithm
convergesQ-quadratically tox∗. �

4. Numerical experiments

We take some examples from[15], satisfying (B) of the basic assumptions in Section 3 (seeTable 1).
Using the formulation

F̂ (x)= F(x)− F ′(x∗)A(ATA)−1AT(x − x∗) (4.1)

due to Dan et al. (1993), one has that (4.1) is of the rank one defect if takingAT = (1,1, . . . ,1), of the
rank two defect if taking

AT =
(
1 1 1 1 · · · 1
1 −1 1 −1 · · · (−1)n

)
.

In what follows, some computation results are given via the algorithm presented in Section 2, and related
comparison of the results obtained byAlgorithm 2.1 with the ones given by other authors, in the case that
the same choices of matricesAmentioned above are used, are listed byTables 2–4.

Table 1
The start points of the test functions

Functions Start points

Bigg exp 6 (1,10,1)
Box 3D (1.5,10.5,1.5)
Broyden banded (−1,−1, . . . ,−1)
Rosenbrock (−1.2,1)
Powell singular (3,−1,0,1)
Brown alm (12,

1
2, . . . ,

1
2)
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Table 2
Results on the nonsingular cases by the tensor method and the modified Brown method

Function n k TM x∗? k MBM x∗?

Bigg exp 6 6 70 0.13–12 Y 19 0.86–17 Y
Box 3D 3 3 0.10–11 Y 3 0.14–21 Y
Broyden banded 30 4 0.12–11 Y 5 0.29–17 Y
Rosenbrock 4 7 0.14–20 Y 3 0.23–24 Y
Powell singular 4 3 0.25–15 Y 16 0.72–15 Y
Brown alm 10 7 0.38–11 Y 7 0.92–25 Y

Table 3
Results on the first singular test set with rank(F ′(x∗)= n− 1)

Function n k TM x∗? k MBM x∗?

Bigg exp 6 6 150 ∞ N 7 0.19–16 Y
Box 3D 3 5 0.57–15 N 6 0.38–22 Y
Broyden banded 30 4 0.12–11 Y 6 0.98–26 Y
Rosenbrock 4 3 0.47–14 Y 3 0.37–24 Y
Powell singular 4 3 0.25–15 Y 16 0.72–15 Y
Brown alm 10 4 0.41–7 Y 4 0.21–20 Y

Table 4
Results on the second singular test set with rank(F ′(x∗)= n− 2)

Function n k TM x∗? k MBM x∗?

Bigg exp 6 6 150 ∞ N 5 0.18–09 Y
Brown alm 10 4 0.9–13 N 3 0.27–23 Y
Box 3D 10 11 0.2–12 N 19 0.39–15 Y

In Tables 2–4, the two columns labelledx∗?, contain “Y(yes)” if the method converged to the singular
points, “N(no)” otherwise; the results in the two columns labelled TM and MBM are the values of
1
2‖F(xk)‖22; n denotes the number of variables;k denotes the number of iterations; “0.13–12” means
0.13× 10−12; TM denotes the tensor method and MBM denotes the modified Brown method.

Remark. MatricesQ andP are generated by a random function using MATLAB 6.1 language. In the
process of iteration, we selecthk =min{c‖F(xk)‖,10−8}, where 0<c<0.0001.

4.1. Comparison

(1) The comparison of calculating amount: Tensor method is needed to calculate accurate Jacobian
Matrix per iterative step, but it is difficult and more complicated than the nonlinear equations. The total
cost of solving the tensor model is about2

3 n
3+ n2p +O(n2)multiplications and additions in the dense
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case. My method need not calculate accurate Jacobian MatrixF ′(xk). We use an approximate matrixAk
to substituteF ′(xk), henceN2/2+ O(n) function evaluation is necessary. The total cost of the method
proposed in this paper isn3+ n2/2r +O(n).
(2) Evaluation from the numerical experiments: We can derive the conclusion that the approximate

solution obtained by using MBM is far more accurate than ones of TM fromTable 3. In Table 4, we find
that the approximate solution obtained by using MBM convergence to the singular point while the ones
of TM do not converge to the singular point at all.
It can be seen from the comparisons given above that the modified Brown method is highly efficient

and locallyQ-quadratic convergent under the rank defect conditions ofF(x).
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