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Cardiac Resynchronization Therapy

Combined Longitudinal and
Radial Dyssynchrony Predicts Ventricular
Response After Resynchronization Therapy

John Gorcsan III, MD, FACC,* Masaki Tanabe, MD,* Gabe B. Bleeker, MD,†
Matthew S. Suffoletto, MD,* Nini C. Thomas, MD,* Samir Saba, MD, FACC,*
Laurens F. Tops, MD,† Martin J. Schalij, MD,† Jeroen J. Bax, MD, FACC†

Pittsburgh, Pennsylvania; and Leiden, the Netherlands

Objectives The purpose of this study was to test the hypothesis that a combined echocardiographic assessment of longitu-
dinal dyssynchrony by tissue Doppler imaging (TDI) and radial dyssynchrony by speckle-tracking strain may pre-
dict left ventricular (LV) functional response to cardiac resynchronization therapy (CRT).

Background Mechanical LV dyssynchrony is associated with response to CRT; however, complex patterns may exist.

Methods We studied 190 heart failure patients (ejection fraction [EF] 23 � 6%, QRS duration 168 � 27 ms) before and
after CRT. Longitudinal dyssynchrony was assessed by color TDI for time to peak velocity (2 sites in all and 12
sites in a subgroup of 67). Radial dyssynchrony was assessed by speckle-tracking radial strain. The LV response
was defined as �15% increase in EF.

Results One hundred seventy-six patients (93%) had technically sufficient baseline and follow-up data available. Overall,
34% were EF nonresponders at 6 � 3 months after CRT. When both longitudinal dyssynchrony by 2-site TDI
(�60 ms) and radial dyssynchrony (�130 ms) were positive, 95% of patients had an EF response; when both
were negative, 21% had an EF response (p � 0.001 vs. both positive). The EF response rate was lowest (10%)
when dyssynchrony was negative using 12-site TDI and radial strain (p � 0.001 vs. both positive). When either
longitudinal or radial dyssynchrony was positive (but not both), 59% had an EF response. Combined longitudinal
and radial dyssynchrony predicted EF response with 88% sensitivity and 80% specificity, which was significantly
better than either technique alone (p � 0.0001).

Conclusions Combined patterns of longitudinal and radial dyssynchrony can be predictive of LV functional response after
CRT. (J Am Coll Cardiol 2007;50:1476–83) © 2007 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2007.06.043
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ardiac resynchronization therapy (CRT) is an important
herapy for heart failure patients using standard selection
riteria of a widened electrocardiograhic QRS complex and
ow ejection fraction (EF). Randomized clinical trials have
hown that the majority of patients benefit from CRT using
his approach; however, the desire to predict patient re-
ponse using measures of mechanical dyssynchrony contin-
es to exist (1–4). An important subset of patients who have
widened electrocardiograhic QRS lack significant me-

hanical dyssynchrony, although the pathophysiologic rea-
on for this phenomenon is unclear (5–11). Several studies
ave shown that these patients without dyssynchrony de-
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ccepted June 25, 2007.
pite having a widened QRS do not respond to CRT and
ave a worse prognosis than those with significant mechan-

cal dyssynchrony (12–21). Although several promising
pproaches to quantify dyssynchrony have been reported,
ifficulties have been encountered with complex patterns of
yssynchrony, particularly in patients with ischemic wall
otion abnormalities (6,13,15,18,22). Accordingly, our ob-

ective was to test the hypothesis that a combined assess-
ent of longitudinal dyssynchrony by tissue Doppler imag-

ng (TDI) and radial dyssynchrony by speckle tracking can
redict left ventricular (LV) function response to CRT
uperior to either approach alone, particularly to identify
atients without dyssynchrony who have a low probability of
V functional response to CRT.

ethods

he initial patient group consisted of 190 consecutive heart

ailure patients referred for CRT from 2 centers. The

https://core.ac.uk/display/82397996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


p
f
L
i
p
i
d
c
s
w
fi
(
i
a
Q
p
n
fi
b
L
p
fl
p
e
t
E
p
s
w
a
a
a
s
d
6
a
c
m
s
2
S
a
a
c
t
i
2
v
u
a
s
d
L
s
v
a

f
t
o
s
t
t
o
1
s
v
b
o
s
a
i
p
w
a
j
L
p
r
t
p
t
o
u
T
s
l
d
(
o
i
R
g
p
f
3
i
c
c
s
e
t
o
l
a
s
v
t
v
d
e
d

1477JACC Vol. 50, No. 15, 2007 Gorcsan III et al.
October 9, 2007:1476–83 Combined Longitudinal and Radial Dyssynchrony
rotocol was approved by the Institutional Review Boards
or Biomedical Research at the University of Pittsburgh and
eiden University Medical Center, and all patients gave

nformed consent consistent with this protocol. This was a
rospective study design where investigators from one
nstitution traveled to the other institution to analyze echo
ata in a uniform core lab approach. The study group
onsisted of 176 patients with complete baseline TDI,
peckle tracking, and follow-up datasets; 7% were excluded
ith technically insufficient or missing data. One hundred
fty-nine patients were New York Heart Association
NYHA) functional class III and 17 were class IV at the
nitial evaluation. Forty-one were female. The group mean
ge was 64 � 11 years, EF was 23 � 7% (all �35%), and
RS duration was 168 � 27 ms (all �120 ms). Sixty

ercent of patients had ischemic heart disease, and 40% had
onischemic causes of heart failure. No patients had atrial
brillation. The CRT was initiated with implantation of
iventricular pacing systems in routine clinical use with the
V lead placement via the coronary sinus targeting the
osterior or lateral wall using routine angiographic and
uoroscopic guidance. All patients were on optimal
harmacologic therapy, including angiotensin-converting
nzyme inhibitors, beta-blockers, and spironolactone as
olerated.
chocardiography. All echocardiographic studies were
erformed with a commercially available echocardiography
ystem (Vivid 7, GE-Vingmed, Horten, Norway). Patients
ere studied before and after (mean 6 � 3 months) CRT to

ssess EF response. Digital routine grayscale 2-dimensional
nd TDI cine loops from 3 consecutive beats were obtained
t end-expiratory apnea from standard apical and mid-LV
hort-axis views at depths of 12 to 20 cm as previously
escribed (14,15,23). Frame rates were 30 to 100 Hz (mean
5 � 15 Hz) for grayscale imaging used for speckle tracking
nd 72 to 154 Hz for TDI with a velocity range of �16
m/s. Sector width was optimized to allow for complete
yocardial visualization while maximizing frame rate. Gain

ettings were adjusted for routine clinical grayscale
-dimensional imaging to optimize endocardial definition.
pecific views used for this study included: mid-LV short-
xis views at the papillary muscle level, routine apical views,
nd pulsed-wave Doppler of the LV outflow tract. The
olor TDI protocol varied slightly between the 2 institu-
ions, with recordings only from the 4-chamber view at one
nstitution (15) and color TDI data from apical 4-chamber,
-chamber, and apical long-axis views at the other. The LV
olumes and EF were assessed by biplane Simpson rule
sing manual tracing of digital images, and wall motion
nalysis was performed for hypokinesis, akinesis, or dykine-
is using the American Society of Echocardiography stan-
ard (24).
ongitudinal dyssynchrony analysis. Quantitative analy-

is was performed on all digitally stored images (EchoPAC
ersion BTO6, GE-Vingmed). The ejection interval from

ortic valve opening to aortic valve closure was indicated t
rom the LV outflow tract spec-
ral Doppler signal and appeared
n the time–velocity analysis
creen with care taken to ensure
hat the heart rates were consis-
ent. The TDI data using regions
f interest (approximately 7 mm �
5 mm) were placed in the basal
egments from the 4-chamber
iew in all patients (15) and in
asal and mid segments of each
f 3 standard apical views in a
ubgroup of 67 patients (Figs. 1
nd 2). Tissue synchronization
maging was used to help guide
lacement of the region of interest, but time-to-peak data
ere derived from the time–velocity curves in all (14). For

ll patient studies, regions of interest were manually ad-
usted within the segment in the longitudinal plane of the
V and within the wall to identify the most reproducible
eak velocity during ejection. In other words, the most
epresentative peak of the segment was searched for, par-
icularly where there were multiple peaks. Post-systolic
eaks after aortic valve closure were not included. Segmental
ime to peak systolic wave velocity was calculated from the
nset of the QRS complex or, if the onset was unclear, a
niform point on the electrocardiogram. Dyssynchrony by
DI was determined as the maximal time difference in peak

ystolic velocities from available data: 2-site basal septal to
ateral delay in all 176 patients and maximum opposing wall
elay using 12 segments in a subgroup of 67 patients
14,15). The standard deviation of 12-site time from QRS
nset to peak systolic velocity (Yu index) was also calculated
n this subgroup (6,17,19).

adial dyssynchrony analysis. Speckle tracking of routine
rayscale mid-LV short-axis images was performed as
reviously described in detail (23). Briefly, a minimum
rame rate of 30 Hz was required with frame rate range of
0 to 100 Hz (23,25,26). An end-systolic circular region of
nterest was traced on the endocardial cavity (minimum
avity area), using a point-and-click approach with special
are taken to adjust tracking of all endocardial segments. A
econd larger concentric circle was then automatically gen-
rated and manually adjusted near the epicardium. Speckle
racking automatically analyzed frame-by-frame movement
f the stable patterns of natural acoustic markers, or speck-
es, over the cardiac cycle (26). The location shift of these
coustic markers representing tissue movement provided
patial and temporal data used to calculate regional strain
ectors as change in length/initial length, with myocardial
hickening toward the LV center represented as a positive
alue. The short-axis image was then divided into 6 stan-
ard segments with corresponding time-strain curves from
ach segment. A tracking score, similar to statistical stan-
ard deviation, was provided as feedback of the stability of

Abbreviations
and Acronyms

CI � confidence interval

CRT � cardiac
resynchronization therapy

EF � ejection fraction

LV � left ventricular

NYHA � New York Heart
Association

ROC � receiver operator
characteristic

TDI � tissue Doppler
imaging
he regional speckle tracking, and
 slight adjustments were
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ade to the placement of the region of interest to improve
racking stability (23,27). Because LV dyssynchrony typi-
ally involved inward septal motion early in the cardiac cycle
ith free wall motion appearing delayed, care was taken so

hat the region of interest was fine-tuned using visual
ssessment during the cine loop play feature to ensure that
ll segmental wall motions were included throughout the
ardiac cycle. Significant radial dyssynchrony was defined as
time difference between the anteroseptal and posterior wall

egmental peak strain �130 ms (23). No corrections for
eart rate were performed; heart rate was in the range of 50
o 100 beats/min.
tatistical analysis. Group data were presented as mean �
tandard deviation and were compared using the 2-tailed
tudent t test for paired and unpaired data. Chi-square
nalysis was used for variables that were not continuous.
roportional differences were evaluated with Fisher exact

est. Correlations were determined with Pearson product
oment correlation analysis, with 95% confidence interval

CI) calculated by Fisher r-to-z transformation. Receiver-
perating characteristic (ROC) curves were constructed first
or longitudinal and radial dyssynchrony individually to
etermine optimal sensitivities and specificities and then for
he combined approach with areas under the ROC curves
nitially compared by logistic regression analysis. Individual
redictors were further compared with the combined pre-

Figure 1 Combined Analysis in a Patient With Significant Dyss

(Top) Tissue Doppler time-velocity curves were derived from 12 sites: basal and m
paired curves from 6 sites are shown illustrating a significant opposing wall delay
sites are shown from the midventricular short-axis view with a significant anterior s
valve closing; AVO � aortic valve opening.
ictor from the areas under the ROC curves using the d
ethod of Delong et al. (28). Statistical significance was
� 0.05.

esults

entricular function response to resynchronization
herapy. The study group consisted of 176 patients with
omplete data sets consisting of baseline TDI longitudinal
yssynchrony analysis, speckle-tracking radial dyssynchrony
nalysis, and follow-up volume and EF data. Follow-up LV
olume and EF data were available 6 � 3 months after
RT. All patients, except for 3 who were lost to follow-up

fter 3 months, had follow-up of at least 6 months,
epresenting 98% (range 3 to 24 months). An LV functional
esponse, defined as percentage change in EF �15%, was
bserved in 116 patients, corresponding to a 34% EF
onresponder rate (Table 1). Ninety-five percent of EF
onresponders also failed to decrease end-systolic volume by
t least 15%. Nonresponders, compared with responders,
ere more likely to have ischemic heart disease (75% vs.
2%), slightly wider QRS duration (171 � 27 ms vs. 162 �
6 ms), and slightly lower baseline EF (21 � 7% vs. 25 �
%); all p � 0.05 versus responders.
ndividual and combined predictors of response. The
pposing wall delay using the 2-site method was per-
ormed in all patients, using the cut-off of �60 ms

ony Prior to Resynchronization Therapy

ls from apical 4-chamber, 2-chamber, and long-axis views. Representative
ms (white arrows). (Bottom) Speckle-tracking time-strain curves of 6 radial
to posterior wall delay of 310 ms (yellow and purple arrows). AVC � aortic
ynchr

id leve
of 110
eptum
etermined by ROC curve analysis. The sensitivity was
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2% (95% CI 64% to 80%) and the specificity 77% (95%
I 66% to 86%) for predicting EF response (14,15). A

ubgroup of 67 patients had data analysis using a 12-site
DI model with a cut-off value of �65 ms determined by
OC curve analysis, with a slightly better sensitivity of
4% (95% CI 70% to 93%) and specificity of 76% (95%
I 41% to 87%) for predicting EF response. The Yu

ndex, using a 32 ms cut-off, yielded a similar sensitivity
f 80% (95% CI 66% to 89%) and specificity of 78% (95%
I 55% to 91%) for predicting EF response (6,17).
peckle-tracking radial dyssynchrony, using an anterior-
eptal to posterior wall delay �130 ms determined by
OC curve analysis as previously described, had a sensi-

ivity of 84% (95% CI 77% to 91%) and specificity of 73%
95% CI 60% to 84%) for predicting EF response (23).

Figure 2 Combined Analysis in a Patient With No Significant D

(Top) Tissue Doppler time-velocity curves derived from 12 sites: basal and mid lev
wall delay of only 50 ms was not considered to be significant (white arrows). (Bo
tricular short-axis view. The maximum opposing wall delay of only 85 ms was not c

aseline Patient Characteristics

Table 1 Baseline Patient Characteristics

Responders
(n � 116)

Nonresponders
(n � 60) Significance

Age (yrs) 64 � 12 65 � 10 NS

Female gender 31 (27%) 10 (17%) NS

NYHA functional class (III/IV) 105/11 54/6 NS

Ischemic etiology 60 (52%) 45 (75%) p � 0.05

QRS duration (ms) 171 � 27 162 � 26 p � 0.05

Ejection fraction (%) 21 � 7 25 � 7 p � 0.05
r
esponse defined as �15% improvement in ejection fraction.
NS � not significant; NYHA � New York Heart Association.
he combined longitudinal and radial dyssynchrony in-
ormation using these same cut-offs predicted EF re-
ponse statistically better than either technique alone.
he combined approach for the whole 176-patient group,
sing a �60 ms 2-site TDI cut-off and a �130 ms radial
train cut-off, resulted in a sensitivity of 88% and speci-
city of 80% for predicting EF response. The area under
he ROC curve (Fig. 3) was 84.6 for the combined
pproach versus 77.5 for longitudinal dyssynchrony (2-
ite TDI method) and 80.5 for radial dyssynchrony
ndividually (both p � 0.0001) (29).
ositive longitudinal and radial dyssynchrony. There
ere 79 patients (45%) with both longitudinal dyssynchrony
ositive �60 ms by the 2-site opposing wall delay and radial
yssynchrony positive �130 ms by radial strain (Fig. 4).
ifty-two percent of this group had ischemic heart disease,
hich was a significantly smaller proportion than seen in the
ther patient groups (p � 0.05). This pattern of both
ongitudinal and radial dyssynchrony positivity was associ-
ted with a high incidence of LV functional improvement,
ith an EF response rate of 95% (95% CI 88% to 98%). Of
ote, 92% (95% CI 84% to 96%) also had reverse remod-
ling with a decrease in end-systolic volume. Among the
ubgroup of 67 patients with 12-site TDI analysis with
ongitudinal dyssynchrony positive and radial dyssynchrony
ositive, a similar 93% (95% CI 81% to 98%) had an EF

chrony Prior to Resynchronization Therapy

m apical 4-chamber, 2-chamber, and long-axis views. The maximum opposing
Speckle-tracking time-strain curves of 6 radial sites are shown from the midven-
ered to be significant (yellow and purple arrows). Abbreviations as in Figure 1.
yssyn

els fro
ttom)
onsid
esponse to CRT.
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egative longitudinal and radial dyssynchrony. There
ere 43 patients (24%) with no significant radial dyssyn-

hrony and no significant longitudinal dyssynchrony de-
ected by the 2-site TDI method. Their EF response rate
as 21% (95% CI 11% to 35%; p � 0.05 vs. both-positive
r heterogeneous groups). Only 9% (95% CI 4% to 22%)
ad reverse remodeling with improvement in end-systolic

Figure 3 Receiver-Operating Characteristic Curves for Individua

The comparison with the 2-site tissue Doppler longitudinal dyssynchrony data appe
strain appears on the right. The areas under the curves (AUCs) were significantly g
its favorable ability to predict ejection fraction response to cardiac resynchronizati
ler method, 84% and 73% for the radial strain method, and 88% and 80% for the
lines � combined method.

Figure 4 Proportion of Patients Who Were EF Responders to R

All patients had 2-site tissue Doppler measures of longitudinal dyssynchrony along
sue Doppler measures of longitudinal dyssynchrony along with radial strain dyssyn
with ejection fraction (EF) response, whereas a pattern of neither longitudinal nor
tissue Doppler method excluded dyssynchrony. A heterogeneous pattern of either
responders. *p � 0.05 versus both groups; †p � 0.05 versus either group.
olume (p � 0.05 vs. both-positive or heterogeneous
roups). Among the subgroup of 67 patients with 12-site
DI analysis where dyssynchrony could be more completely

xcluded, 10 (15%) had no dyssynchrony by either method,
nd only 10% (95% CI 2% to 40%) of these patients had an
F response to CRT (p � 0.05 vs. both-positive or
eterogeneous groups). Similarly, only 10% of the same

synchrony Methods and the Combined Method

the left, and the comparison with radial dyssynchrony by speckle-tracking radial
with the combined approach than with either individual approach and support

rapy. Sensitivities and specificities were 72% and 77% for the 2-site tissue Dopp-
ed method. Blue dashed lines � individual dyssynchrony methods; red solid

hronization Therapy

radial strain dyssynchrony (left), and a subgroup of 67 patients had 12-site tis-
(right). A pattern of both longitudinal and radial dyssynchrony was associated

dyssynchrony was associated with EF nonresponse, particularly when the 12-site
dinal or radial dyssynchrony (but not both) had an intermediate proportion of
l Dys

ars on
reater

on the
combin
esync

with
chrony
radial
longitu
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atients had a decrease in end-systolic volume (p � 0.05 vs.
oth-positive or heterogeneous groups). Accordingly, the
bsence of 12-site longitudinal dyssynchrony accompanied
y the absence of radial dyssynchrony was associated with
onresponse to CRT.
eterogeneous patterns of longitudinal and radial dys-

ynchrony. There were 54 patients (31%) with heteroge-
eous patterns of either positive radial dyssynchrony or
ositive longitudinal dyssynchrony: 19 had positive longi-
udinal dyssynchrony but negative radial dyssynchrony, and
5 had negative longitudinal dyssynchrony but positive
adial dyssynchrony. The EF response rate of patients with
eterogeneous dyssynchrony patterns was 59% (95% CI 4%
o 71%), and a similar 56% had reverse remodeling with a
ecrease in end-systolic volume (p � 0.05 vs. both-positive
roup). Among the subgroup of 67 patients with 12-site
DI analysis, a similar 57% (95% CI 33% to 79%) had an
F response to CRT (p � 0.05 vs. both-positive group).
ccordingly, a heterogeneous pattern of either longitudinal
yssynchrony or radial dyssynchrony, but not both, was
ssociated with an intermediate response to CRT. Sixty-one
ercent of these patients with heterogeneous dyssynchrony
atterns had ischemic heart disease with wall motion ab-
ormalities versus 52% in the patients with both positive

ongitudinal dyssynchrony and positive radial dyssynchrony.
linical response to resynchronization therapy. The
YHA functional class assessments at follow-up were

vailable in a subset of 164 patients, which was 92% of
atients with follow-up EF data. The dyssynchrony patterns
orresponded to similar levels of group mean NYHA
unctional class response to CRT as follows: patients with
oth positive longitudinal and radial dyssynchrony had the
reatest improvement in NYHA functional class, at 1.03 �
.69; patients with neither longitudinal nor radial dyssyn-
hrony had the least improvement in NYHA functional
lass, at 0.59 � 0.77 (p � 0.001 vs. both-positive group);
nd patients with heterogeneous patterns of dyssynchrony
ad an intermediate improvement in NYHA functional
lass, at 0.80 � 0.71.

iscussion

his is the first study to use a combined approach of
ssessing longitudinal and radial dyssynchrony to predict EF
esponse to CRT. Patients who had both positive longitu-
inal dyssynchrony by TDI and positive radial dyssynchrony
y speckle-tracking strain had a high likelihood of response
o CRT; conversely, patients with neither longitudinal nor
adial dyssynchrony had a lower likelihood of EF response.

more complete exclusion of dyssynchrony using 12 TDI
ites and radial strain in a subgroup had the lowest proba-
ility of EF response to CRT. Patients with a heteroge-
eous pattern of either longitudinal or radial dyssynchrony,
ut not both, often had ischemic wall motion abnormalities
nd had a less predictable EF response to CRT. Similar

egrees of NYHA functional class response were associated t
ith dyssynchrony patterns, with patients with both longi-
udinal and radial dyssynchrony having the greatest im-
rovements in NYHA functional class and patients with
bsence of dyssynchrony having the least NYHA functional
lass improvements. Although the TDI longitudinal velocity
ethod and speckle-tracking radial strain methods had similar

ensitivities and specificities for predicting reverse remodeling
y themselves, their positive and negative predictive values
ere more favorable when combined.
This study extends earlier work that supports the hypoth-

sis that markers of mechanical dyssynchrony by cardiac
maging have potential clinical utility to predict response to
RT (5,6,14–16,19,23). It demonstrates that consistent
atterns of dyssynchrony in longitudinal and radial planes,
ither both positive or both negative, have predictive value
egarding reverse remodeling after CRT. The subgroup of
atients with either longitudinal or radial dyssynchrony, but
ot both, comprised an important 31% and were character-

zed by ischemic disease where the response rate was less
redictable, at 59%.
Most earlier studies to quantify LV dyssynchrony and

redict response to CRT have focused on longitudinal
elocities by TDI (6,14,15,19) or radial wall motion by

-mode scanning or TDI strain (13,16,20,21,23). An
dvantage of longitudinal TDI appears to be the favorable
oppler angle of incidence for a robust signal, and multiple

linical studies have demonstrated its utility. Yu et al. used
ime to peak longitudinal systolic velocities from 12 sites to
uantify LV dyssynchrony, demonstrating that an increased
tandard deviation was predictive of clinical response to
RT, and this remains to have a high sensitivity

6,17,19,30). Søgaard et al. (5) used the percentage of the
V base displaying basal longitudinal contraction delay to
redict improvements in EF after CRT. Notabartolo et al.
31) also used differences in peak TDI velocities from
pposing walls, including postsystolic peaks, to quantify LV
yssynchrony and predict response to CRT, although sub-
equent studies have shown superiority when limiting anal-
sis to the ejection interval (17). Other studies found that a
ongitudinal time to peak velocity delay predicted reverse
emodeling and clinical outcomes (14,15). Although TDI is
seful, limitations may occur in patients with infarction or
omplex dyssynchrony where motion along the longitudinal
xis does not completely describe LV mechanics. Magnetic
esonance imaging and 3-dimensional echocardiography
tudies have demonstrated that circumferential myocardial
ynamics may characterize LV dyssynchrony in a more
ensitive manner than longitudinal dyssynchrony (21,32).
he echocardiographic speckle-tracking method of Fried-
an and Lysyansky used in this study was not affected by

ngle of incidence as TDI imaging techniques are, although
t is affected by frame rates and image quality (25–27,33–
5). The acoustic markers, or speckles, used are the result of
ackscattered ultrasound from within the myocardial wall
hat are tracked frame-by-frame to calculate myocardial

hickening, motion, or deformation. Our previous work
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ith radial strain by TDI or speckle tracking characterized
echanical dyssynchrony to predict response to CRT

16,23). Strain imaging may assess myocardial thickening in
manner less affected by passive translational motion or

ethering and appears favorable to M-mode scanning to
haracterize radial mechanics (16,36). The present study
emonstrated the additive role of radial mechanical assess-
ent to longitudinal TDI in the overall more complete

ssessment of LV dyssynchrony. In particular, our ability to
xclude significant dyssynchrony by using both a 12-site
ongitudinal TDI approach and a radial strain approach
mproved the ability to identify patients with a low chance
f response to CRT.
tudy limitations. The presence or absence of dyssyn-
hrony does not completely describe response to CRT.
ther important confounding variables include LV lead

osition, scar burden in patients with ischemic disease that
annot reverse remodel, disease progression, impact of
edical therapy, and spontaneous improvement (22,37,38).
he present study extends the evaluation of dyssynchrony to
ultiple anatomic LV planes but cannot account for these

ther potential factors. This study highlights the complexity
f dyssynchrony patterns that may occur in a large group of
atients referred for CRT, but EF response appears to be
ore clearly associated with homogeneously positive or

egative dyssynchrony patterns. A limitation is that long-
erm clinical outcome data, such as exercise capacity, quality
f life assessment, or survival, were not part of the study. We
hose to use EF response and reverse remodeling by
nd-systolic volume as the markers for patient response in
his study, because they are objective measures with signif-
cant prognostic importance (10,11). Several earlier studies
ave used similar echocardiographic measures (5,6,15,18,
9,23). Another limitation is that only a subgroup of 67
atients had a more complete 12-site TDI data analysis.
here are limitations with TDI data analysis, including

ignal noise affecting peak velocity measures and ambiguous
ime-velocity curves. Care was taken to move the region of
nterest within the segment and determine the most repro-
ucible peak velocity with a uniform approach in all pa-
ients. Limitations of speckle tracking include endocardial
order tracing, where care must be taken to manually
ne-tune the region of interest to capture the early anterior
eptal motion in left bundle branch block and adjust its
idth for dyssynchrony analysis before generating and
easuring regional strain.
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