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Abstract

The analysis and numerical solution of non-equilibrium traffic flow models in current literature are almost
exclusively carried out in the hyperbolic conservation law framework, which requires a good understanding
of the delicate and non-trivial Riemann problem for conservation laws. In this paper, we present a novel
formulation of certain non-equilibrium traffic flow models based on their isomorphic relation with optimal
control problems. This formulation extends the minimum principle observed by the LWR model. We
demonstrate that with the new formulation, generic initial-boundary conditions can be conveniently handled
and a simplified numerical solution scheme for non-equilibrium models can be devised. Besides deriving the
variational formulation, we provide a comprehensive discussion on its mathematical properties and physical
implications.
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1. Introduction

Despite the extensive applications of the Lighthill-Whitham-Richards (LWR) model for solving various
real-world transportation problems, its capability of modeling some practically important phenomena, e.g.
capacity drop and stop-and-go waves, is known to be limited. Various extensions of the LWR model have
been developed to address this issue, among which the non-equilibrium traffic flow models constitute a
major category. Most non-equilibrium traffic flow models consist of two equations, which can usually be
written in the following form, {

∂tρ + ∂x(ρv) = 0

F(ρ,v,∂xv,∂t v,∂xρ,∂tρ) = 0
(1)

Here ρ, v, and ∂t ·, ∂x· denote traffic density, traffic speed, the partial derivative with respect to time t
and space x, respectively. The first equation of (1) simply expresses the fact that total number of vehicles
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is conserved. The second equation of (1) prescribes a dynamical relation between traffic speed and density,
which reflects certain behavioral postulations or empirical measurements.

Despite its ability in explaining complicated macroscopic traffic phenomena and its intimate relation
with car-following behaviors, the non-equilibrium modeling paradigm has raised numerable puzzles and
debates, on issues such as wrong-way travel and violation of anisotropic property (Daganzo, 1995; Zhang,
2009; Helbing & Johansson, 2009; Helbing, 2009). Substantial efforts have been devoted to resolving
these puzzles from behavioral and mathematical perspectives (e.g., Zhang, 2002; Aw & Rascle, 2000). It is
recognized that some mathematical artifacts, e.g. faster-than-traffic waves, can be rectified in the classical
hyperbolic conservation law (i.e. kinematic wave, KW) framework (Dafermos, 2005).

In this paper, we aim to provide an alternative angle to understand the traits of system (1), in particular
its dynamics in the vicinity of complicated boundaries. Our approach is based on the variational formula-
tion (VF) of KW models, which originates from their connection with Hamilton-Jacobi equations. In the
equilibrium case, such a connection is realized and it is known that the variational formulation can provide
several important enhancements over the traditional KW treatments in the traffic flow modeling context,
including a compact analytical solution form, relative easiness to handle discrete objects in traffic streams,
etc. (Daganzo, 2005a,b). We will show constructively that for a certain case of system (1), its VF exists
and hence these appealing features carry over to the non-equilibrium model. With the VF perspective, we
acquire deeper understanding of the mathematical properties, physical implications and numerical solutions
of System (1), such that the basis of non-equilibrium modeling is further reinforced.

The remainder of this paper is organized as follows. In Section 2, we discuss the qualitative properties
and physical implications of non-equilibrium traffic flow models in conservative form. In Section 3, through
exploiting their special mathematical structure, we develop a variational formulation of non-equilibrium
traffic models that adopt conservative forms. In Section 4, a numerical scheme based on the variational
characterization of these non-equilibrium models is given. In Section 5, we summarize the findings and
briefly remark on some ongoing problems related to the variational formulation of traffic flow models.

2. Non-equilibrium model as a 2 × 2 conservative system

As we mentioned earlier, System (1) consists of a conservation equation and an equation of motion.
Since the second equation encapsulates the behavioral aspects of vehicular traffic flow, it is anticipated
that solution properties of (1) are mainly dictated by it. Many early traffic models, usually derived from
car-following heuristics, amounts to letting the total derivative of traffic speeds ∂t v + v∂xv be a function
of various stimuli, including ρ,∂xρ,v− ve(ρ) (ve(·) is a nominal equilibrium speed-density relation). One
example is the model of Payne (1971), which defines (T is so-called relaxation time)

∂t v + v∂xv = −v− ve(ρ)
T

+
v′e(ρ)
2Tρ

∂ρ
∂x

(2)

For a review of models alike and their shortcomings, the reader is referred to Daganzo (1995) and Zhang
(1998). We note that one major reason accounting for the fallacy associated with such models, e.g. wrong-
way travel, is due to lack of mathematical consciousness in tackling discontinuities (shocks) in solutions.

2.1. Conservative form

Better insights into non-equilibrium models, regarding well-posedness, admissible wave patterns and
valid numerical discretizations, are obtained when they are treated in the hyperbolic conservation law frame-
work (Dafermos, 2005). Thus not surprisingly, most recent non-equilibrium models, e.g. Aw & Rascle
(2000) and Zhang (2002), employ hyperbolic conservation law methodologies intensively.

A system of conservation law refers to the following set of equations{
∂tu1 + ∂x f (u1,u2) = 0

∂tu2 + ∂xg(u1,u2) = 0
(3)
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where u1,u2 are state variables and ( f ,g) is called a flux pair. This set of equations is an evident extension
of the LWR model, which considers a coupled pair of state variables U ≡ (u1,u2) instead of a single scalar
state variable ρ. As in the LWR model, essentially all information on dynamics of this system is encoded in
the flux pair. Actually, it is straightforward to write (3) in a compact vectorial form

∂tU + A(U)∂xU = 0 (4)

where A is a matrix depending on ( f ,g). When A has real eigenvalues, the system (4) is called a hyperbolic
system and (3) is called a hyperbolic system of conservation laws. Quantitative and qualitative characters
of such systems, most prominently admissible wave patterns, are then inferrable from traits of A, which
amounts to applying entropy and shock conditions appropriately. The reader is referred to Dafermos (2005)
for a systematic explanation of hyperbolic conservation laws.

Interestingly, in traffic flow modeling context, though conservation of vehicle number is the only univo-
cal principle, macroscopic models developed based on various car-following heuristics usually turn out to
have form (3), with or without a relaxation term on the right-hand side. Here are several examples.

• Payne-Whitham model. As noted in Jin & Zhang (2003), it adopts the following equation of motion
when q, instead of v, is used as state variable

∂t q + ∂x(q2/ρ + c2
0ρ) =

ρve(ρ)−q
T

(5)

where c0 is a constant interpreted as ‘sound speed’, in analogy of the same concept in gas dynamics.

• Model of Aw & Rascle (2000). The equation of motion proposed therein reads

∂t(v + p(ρ))+ v∂x(v + p(ρ)) = 0 (6)

where p(·) is an increasing function named pressure, which is nothing else than a stimulus whose rate
of change determines the acceleration of a car. The conservative form of (6) can be obtained as

∂t(ρ(v + p(ρ)))+ ∂x(ρv(v + p(ρ))) = 0 (7)

• Model of Lebacque et al. (2007). It is a generalization of the model of Aw & Rascle (2000), which
has the following equation of motion

∂t(ρI)+ ∂x(ρvI) = −ρ f (I) (8)

where I is interpreted as an invariant quantity pertaining to vehicle-driver characters, e.g. preferred
speed-spacing relation. The relaxation term is suggested to be f (I) = I/T .

It is perceivable that not all non-equilibrium models can be written in form (3), though they adopt form
(4), because this requires a21∂xρ + a22∂xs (ai j denotes element of A) be a total derivative. One example is
the model of Zhang (2002), which has equation of motion

∂t v + v∂xv = −c(ρ)vx (9)

where c(ρ) is a function of ρ, similar to c0 in Example 1. This equation has an obvious quasilinear form

∂tv +(v + c(ρ))∂xv = 0 (10)

but does not admit any obvious conservative form.
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2.2. Further analysis

Due to the formal resemblance of (3) to the LWR model, it is anticipated that models of this form may
adopt a similar variational formulation. However, before deriving relevant results, it would be essential to
look into the physical content and limitations of non-equilibrium models in the form of (3).

We first discuss when (3) is appropriate to model traffic flow. Minimal requirements include the follow-
ing: a) Total traffic volume is conserved; b) The fastest wave is less than or equal to traffic speed.

The requirement a) means one of the variables in (3) is traffic density. Since we know that its corre-
sponding flux is ρv, we let u1 = ρ and f (u1,u2) = ρv(ρ,u2). Then (3) can be written in quasilinear from,
with

A =
(

v + ρvρ ρvs

gρ gs

)
(11)

where we use subscripts to denote partial derivatives (e.g. vρ stands for ∂ρv(ρ,s)). The requirement b)
implies matrix A must be diagonalizable and has all its eigenvalues upper bounded by v. This in turn leads
to a first characterization of flux g(ρ,s).

Proposition 2.1. Flux function g satisfies (vs,−vρ)∇g≥ vvρ, if (3) is anisotropic, where ∇· denotes gradient
with respect to ρ and s. Moreover, the equality is attained when one characteristic speed of (3) is v.

Proof We consider y(λ) ≡ det(A−λI). It represents a parabola with respect to λ, whose roots are char-
acteristic speeds of (3). Anisotropy of (3) means the largest root of y(λ) is upper bounded by v, which
holds only if y(v) ≥ 0. This leads to the inequality to prove after simple algebra. Moreover, existence of a
characteristic with speed v means y(v) = 0, i.e. the equality is attained.

As an exercise, the reader may verify that when s = ρ(v−ve(ρ)), its flux g(ρ,s) = s2/ρ+ve(ρ)s satisfies
the inequality and the equality is also attained. A very interesting implication of Proposition 2.1 is that
though we do not specify what is the second conservative variable, gradient of its flux g naturally satisfies
constraints related to traffic speed. We can characterize flux g better when extra physical constraints are
imposed. For instance, when s = ρI as postulated in Lebacque et al. (2007), we can derive its property from
an invariant assumption.

Proposition 2.2. Flux function g satisfies (ρx,sx)∇g = svx + vsx, if quantity s = ρI(ρ,v) and I is constant
along vehicle trajectories.

Proof The assumption says that when dx/dt = v, there is d(s/ρ)/dt = 0. This expression can be simplified
to svx + st + vsx = 0. We obtain the formula to prove by combining this expression with the conservation
equation st + g(ρ,s)x = st + gρρx + gssx = 0.

A corollary regarding ‖∇g‖ easily follows from Proposition 2.1 and 2.2. By applying the Cauchy-
Schwartz inequality (‖a‖‖b‖ ≥ |a · b|, where a,b are vectors, a · b is their inner product and ‖ · ‖ is second
norm), we obtain the following estimate of ‖∇g‖

‖∇g‖ ≥ max{ vvρ

‖∇v‖ ,
svx + vsx

‖(ρx,sx)‖} (12)

In above we derive two conditions, based on respectively anisotropic principle and an invariant property,
that flux g necessarily satisfies if models of form (3) are appropriate to describe traffic flow. These conditions
can screen out models that are physically unreal and provide a priori estimates for solutions of a given
model. Yet, we want to stress that the validity of a specific model is subject to experimental assessment.
Cautions should be taken when determining the conservative forms of (3), i.e. conservative variables and
their fluxes. Manipulation of conservation equations can result in artificial solutions, due to discontinuities
resulted from shocks. This complication is well-known in the case of Burger’s equation (LeVeque, 1992).
Investigation of this issue is left to future studies.
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2.3. Physics: inhomogeneity and relaxation

From now on, we restrict our attention to the model of Lebacque et al. (2007). When relaxation term
is not included, interestingly, this model resembles an inhomogeneous LWR model (see Li & Zhang (in
press) for an overview). Actually, it has two waves, of speed λ1 = ∂ρQ = ∂ρ(ρv) and λ2 = v respectively.
This roughly means local information propagates along two directions in traffic (refer to Fig.1). One wave
is attached to vehicles, the other wave propagates forwards (in light traffic) or backwards (in heavy traffic),
similar to the kinematic waves in the classical LWR model. Speed of the latter wave could fluctuate if I is
inhomogeneous across drivers.

In simple cases, we can predict traffic evolutions at least qualitatively based on this theory. For example,
in Fig.2, We assume initial data on ρ, I prescribe there are three platoons, labeled respectively as U, M, D,
which locate from upstream to downstream. Also, we assume platoon U moves at its initial speed. The first
wave determines that platoon M and D slow down to U′ and D′ respectively. The second wave determines
that vehicles in each platoon retain their preference (on deviation from some nominal ‘equilibrium’ relation),
which means their states remain on the fundamental diagrams that they initially situated on, while moving
in the direction of solid arrow lines. Accordingly, a loop detector installed downstream would observe state
transitions illustrated by the dotted arrow line.

Space

Time

w_1

w_2

A first wave

second wave

vehicle trajectory

Fig. 1. Traffic and wave relation in Lebacque’s model

Flow

Density

U

D

M

U’

M’

Fig. 2. An example of state transition

One may question the validity regarding invariance of I along vehicle trajectories, because this assump-
tion is essentially an equilibrium assumption for each vehicle. While a comprehensive empirical validation
of this assumption is beyond the scope of this paper, evidences in literature show that it constitutes a good
approximation to the reality. For instance, Duret et al. (2008) looked into NGSIM I-80 trajectory data and
their result (Fig.2b therein) indicated that in usual congested situations, speed-spacing data of individual
vehicles exhibit a well-defined bivariate relation. Li & Zhang (2011) explored single loop detector data on
freeway I-80 near Sacramento, California and found that speed-constant fluctuations are common. Such
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fluctuations, though alien to other theories (e.g. homogenous LWR), have a very natural explanation based
on the example just given (see Fig.2).

Meanwhile, this theory provides a mechanism for individual vehicles to have transitions surrounding the
equilibrium curve when relaxation term is included. In this case, it resembles many early non-equilibrium
traffic flow models (e.g. model of Payne-Whitham) and suggests transient car-following behaviors. We can
see this clearly by writing its equation of motion ((14) with I = v− ve(ρ) and relaxation f (I) = −I/τ) as

d
dt

v = −v− ve(ρ)
τ

−ρv′e(ρ)vx (13)

The first term in the right-hand side of (13) represents relaxation, the second term is exactly the acceleration
of traffic predicted by the LWR model if v = ve(ρ). This equation resembles the one proposed in Zhang
(1998) in structure. Rigorous analysis of effects of relaxation can be carried out in a similar way as that
presented in Zhang (2000), which amounts to looking into behaviors of Riemann invariants. We give a
result characterizing the decaying influence of the relaxation term on solutions. The equation of motion in
Lebacque et al. (2007) is equivalent (at least formally) to

∂t I + v∂xI = − f (I) (14)

We take f (I) = − I
τ , where τ is relaxation time. This means along vehicle trajectory (i.e. second wave), we

have
d
dt

ln(I) = −1
τ

(15)

Therefore,

I = I0 exp(−1
τ

t) (16)

where I0 is initial value of I. This means variations in initial data of I are dampened out exponentially fast
if relaxation term is added. In large time, the original model reduces to an homogeneous LWR model.

2.4. Convexity of flux pair ( f ,g)
Before proceeding to the variational formulation of System (3), out of well-posedness considerations,

we impose restrictions on the concavity of flux pair ( f ,g). In general, it is desirable that f and g are not
convex-concave in ρ and s, i.e. their second derivatives with respect to ρ and s have fixed signs. This
requirement is mild. Take flux pair for model of Lebacque et al. (2007) for example,{

f (ρ,s) = ρve(ρ)+ s

g(ρ,s) = ve(ρ)s+ s2

ρ
(17)

it is satisfied when assuming ve(ρ) is continuous, strictly monotone and piecewise linear. In fact, it is then
straightforward to verify that ∂2

ρ f < 0, ∂2
s f = 0, ∂2

ρg≥ 0 and ∂2
s g > 0. This property roughly implies that over

the feasible set of (ρ,s), which is compact, the maximizer of f and minimizer of g are unique. One may refer
to Fig.3 for an intuition on the shape of ( f ,g), which is obtained by assuming ve(ρ) = −65/200(ρ−200).
Similarly, the reader could verify that the flux of Payne-Whitham model (refer to (5)) are both convex.

3. Variational formulation

From now on, we use P,Q, . . . to denote points (tP,xP),(tQ,xQ), . . . on time-space plane, and NP stands
for the cumulative traffic count at point P, i.e. NP = N(tP,xP). Moreover, xPQ denotes a path from P to Q, x·Q
denotes a path to Q, and xP· denotes a path from P. Notation such as xPQ(t) denotes the point on path xPQ at
time t. Path here means a Lipschitz continuous curve directed with time. When necessary, superscript will
be added, e.g. x1

PQ, . . . ,xn
PQ,, to differentiate paths with identical end points. Letters B ,C , . . . are reserved

for boundaries (continuous curves where data are available or constraints are imposed) on the time-space
plane.
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Fig. 3. One example of flux pair ( f ,g).

3.1. An overview of the scalar case

In traffic flow literature, the variational formulation of traffic flow models was first proposed in Newell
(1993a,b), coined as a minimum principle therein. The motivation of this work is to simplify the computation
of first-order kinematic wave model (i.e. the LWR model), through updating cumulative traffic count N(t,x)
instead of traffic density ρ(t,x). In case a triangular fundamental diagram is adopted, the calculation can
actually be done explicitly, by noting that

dN
dt

=

{
0 if wave speed equals v f

wρ j if wave speed equals −w
(18)

along the two kinematic waves, independent of the initial-boundary data. Here v f , −w (w > 0) and ρ j denote
free flow speed, wave speed in congestion and jam density, respectively. The minimum principle is used to
single out a unique N from multiple values that are possibly obtained. It says that actual value of N at some
(t,x) is the minimum of all candidates values from different characteristics. In case where the fundamental
diagram is triangular, calculation amounts to comparing at most two values at each point.

This line of reasoning was further exploited in the variational formulation in Daganzo (2005a,b). This
work tackles the LWR model equipped with a general concave fundamental diagram. Connection of the
LWR model with the Hamilton-Jacobi theory was realized therein and it was shown that the minimum
principle can be generalized to include non-wave paths, when a proper cost functional is defined. Roughly,
in the homogeneous case, the variational formulation of a LWR model states that the cumulative traffic count
N at some point Q is the minimum of a real set,

NQ = inf{NP +
∫

xPQ

sup
ρ
{ f (ρ)−ρẋPQ} : P ∈ B ,xPQ is a path} (19)

where f (·) is the fundamental diagram. Function supρ{ f (ρ)−ρẋPQ} of ẋPQ is Legendre transform of f (·).
It is the maximum passing flow for observer with instantaneous speed ẋPQ at density ρ. We write this term
as R(ẋPQ) for simplicity.

We note that in the above discussion (19) has an optimal control interpretation, which stems from the
equivalence of conservation law equations (C1) and Hamilton-Jacobi equation endowed with a scalar Hamil-
tonian (H1), that has been used for numerical analysis purposes (see Caselles, 1992; Jin & Xin, 1998 and
references therein). This equivalence establishes the one-to-one correspondence between the entropy solu-
tions to (C1) and viscosity solutions to (H1), under certain regularity conditions on initial-boundary data and
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the concavity condition of the Hamiltonian. In the perspective of optimal control, the problem of determin-
ing the N-value at (t,x) is cast as a terminal cost problem (i.e. Bolza problem, see Naidu, 2003), which finds
the optimal path η∗ ∈ Ω(t,x) such that the total cost, i.e. N(tη,η(tη))+

∫
η supρ{ f (ρ)−ρη̇} is minimized.

The attractiveness of expression (19) (also called the Lax-Hopf formula in PDE and optimal control liter-
ature) lies in its variational structure, which allows optimization techniques (e.g. dynamic programming) be
used to solve conservation law problems. The variational formulation is advantageous over the conventional
kinematic wave formulation, in terms of modeling flexibility and easiness of computation under complex
initial/boundary conditions, e.g. when traffic signals and moving bottlenecks are involved..

3.2. The auxiliary optimal control problem

Before proceeding to the extension of the variational formulation of non-equilibrium traffic flow models,
it is worth looking into the physics underpinning such a formulation. Significance of (19) lies in that it
reveals an isomorphic relation between a conservation law problem and an optimal control problem.

Suppose on a time-space region Ω with proper initial-boundary conditions, a LWR model is well-posed
and solved by ρ(t,x), with (t,x) ∈ Ω, which maps to a proper N-surface over Ω. Then formula (19) implies
that for any point Q, calculating NQ amounts to solving the following optimal control problem

minimize C(xPQ) = NP +
∫ tQ

tP R(ẋPQ)dt
s.t. d

dt C = q(t,xPQ(t))− ẋPQ(t)ρ(t,x(t))
q = f (ρ)
P ∈ B ;Q is as given

(20)

and letting NQ be the minimal value of C(xPQ). In (20), the first equation in the constraints represents the
instantaneous changing rate of cost C along a trajectory PQ, which corresponds to observation of N in a
moving coordinate of speed ẋPQ(t); the second equation corresponds to the equilibrium assumption (i.e.
fundamental diagram) in the LWR model; and the last row gives boundary conditions. This problem is the
familiar Bolza problem in the optimal control context (Naidu, 2003). Solution of this problem is nothing
else than the kinematic wave emitting from Q (Daganzo, 2005a).

3.3. Extension to non-equilibrium systems

Ever since its discovery, the variational formulation of the LWR model has found numerous practical
applications, e.g. in modeling moving bottlenecks, developing simplified numerical solution schemes, de-
vising data assimilation algorithms for probe vehicle measurements, etc. Major examples include Daganzo
& Laval (2005), Daganzo (2005b), Daganzo & Menendez (2005), Claudel & Bayen (2010a,b, 2011), and
Mazaré et al. (2011). It is thus natural to ask whether other type of traffic flow models possess formulations
alike, so that similar advantages could be attained.

To answer this question, we can consider a moving observer. Suppose this observer observes certain con-
servative quantity y and records its cumulative amount Y . Then we can calculate the cumulative increment
of Y along a path xPQ from P to Q,

YQ = YP +
∫ tQ

tP
ry(t,xPQ(t), ẋPQ(t))dt (21)

where ry(t,x,v) is the passing rate of y at (t,x) relative to an observer of speed v. In the case of the homoge-
neous LWR model, we have the following observations: 1) R(v) is an upper bound of r(t,x,v), for all valid
paths; and 2) R(ẋ) = r(t,x, ẋ) determines a valid path. Actually, these two conditions are sufficient to ensure
that YQ assumes a variational form:

YQ = inf{YP +
∫ tQ

tP
R(ẋPQ)dt} (22)

Proof of this claim is straightforward upon noting that condition 1) and 2) respectively implies right-hand
side of (22) is an upper bound of left-hand side and that it is tight.
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3.4. Systems with no relaxation

Now we extend the above argument to System (3). For simplicity, we first tackle the case h = 0, i.e.
system without relaxation. We first define cost functions (23), assuming f is concave in ρ for each s, and
g is convex in s for each ρ. Physically, similar to the scalar case (Daganzo, 2006), Rρ(ρ,v) characterizes
the upper bound of passing flow relative to an observer of speed v when the other conservative quantity is
s. Due to the symmetric relation of s and ρ, s can be understood as a density-like quantity, measuring the
intensity of ‘off-equilibrium’. Function Rs gives the lower bound of corresponding flux at any density.

Definition We define the cost pair (Rρ,Rs) as the Legendre-Fenchel type transform of the flux pair ( f ,g){
Rρ(s,v) = supρ{ f (ρ,s)−ρv}
Rs(ρ,v) = infs{g(ρ,s)− sv} (23)

Lemma 3.1. Suppose h(x,y) is strictly concave with respect to x for any given y, then sups{h(s,y)−
s∂xh(x,y)} = h(x,y)− x∂xh(x,y).

Proof Let g(s) = h(s,y)− su. It is straightforward to verify that g(s) is concave, therefore attains its supre-
mum when g′(s) = 0, i.e. ∂sh(s,y) = u. This lemma is proved by letting u = ∂xh(x,y) and noting that
∂sh(s,y) = ∂xh(x,y) if and only if s = x, due to the strict concavity of h.

Now we have the main result of this paper, which gives the form of variational solutions and a sufficient
condition for their existence.

Definition Suppose y(x,t) is a scalar field on the time-space plane, we define its corresponding cumulative
count Ny as follows

Nl(x,t) =
∫ ∞

x
l(s,t)ds

Theorem 3.2. Consider System (3) with zero relaxation and proper initial-boundary data on B ⊂ R+×R.
Then Nρ and Ns adopt the following variational representations

{
Nρ(t,x) = inf{Nρ(tηρ ,ηρ(tηρ))+

∫ t
tηρ

Rρ(s(τ,ηρ(τ)), η̇ρ)dτ : ηρ is a path from B to (t,x)}
Ns(t,x) = sup{Ns(tηs ,ηs(tηs))+

∫ t
tηs

Rs(ρ(τ,ηs(τ)), η̇s)dτ : ηs is a path from B to (t,x)} (24)

if the following ordinary differential equations (ODEs) admit Lipschitz continuous solutions{
η̇ρ(τ) = ∂ρ f (ρ(τ,ηρ(τ)),s(τ,ηρ(τ)))
ηρ(t) = x

(25)

{
η̇s(τ) = ∂sg(ρ(τ,ηs(τ)),s(τ,ηs(τ)))
ηs(t) = x

(26)

where ρ(t,x) and s(t,x) are proper solutions to system (3) with the given initial-boundary data. We call the
solutions to these ODEs optimal paths pertaining to scalar field ρ and s respectively.

Proof First, consider two arbitrary paths connecting the boundary B and point (t,x), denoted as ηρ and ηs.
They start from time tηρ and tηs respectively. We calculate changes of Nρ and Ns along these paths, and
observe that there are always

Nρ(t,x)−Nρ(tηρ ,ηρ(tηρ)) ≤
∫ t

tηρ
Rρ(s(τ,ηρ(τ)), η̇ρ)dτ (27)
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and

Ns(t,x)−Ns(tηs ,ηs(tηs)) ≥
∫ t

tηs

Rs(ρ(τ,ηs(τ)), η̇s)dτ (28)

This is because the left-hand sides of (27) and (28) represent the path integral of instantaneous passing rate
along ηρ and ηs, while the right-hand sides of these inequalities represent their upper and lower bounds,
according to the definitions of Rρ and Rs. Since ηρ and ηs are arbitrary, (27) and (28) imply that

Nρ(t,x) ≤ inf{Nρ(tηρ ,ηρ(tηρ))+
∫ t

tηρ
Rρ(s(τ,ηρ(τ)), η̇ρ)dτ} (29)

and

Ns(t,x) ≥ sup{Ns(tηs ,ηs(tηs))+
∫ t

tηs

Rs(ρ(τ,ηs(τ)), η̇s)dτ} (30)

To obtain the variational formulation, it remains to show that the inequalities (29) and (30) are indeed
binding. This is true because of the assumption we made, i.e. that the two ODEs admit Lipschitz continuous
solutions. To see this, we take (29) for example, and denote the solution to (25) as η∗

ρ. It is then easy to see
η∗

ρ ∈ Ω(t,x) and at each time instant s ∈ [tη∗ ,t], there is

f (ρ,s)−ρη̇∗
ρ = f (ρ,s)−ρ∂ρ f (ρ,s) = sup

y
{ f (y,s)− y∂ρ f (ρ,s)} (31)

where the first equality is due to the construction of η∗
ρ, and second equality is implied by Lemma 3.1. The

fact that the left-hand side equals the right-hand side in (31) means the observed passing flow equals the
relative capacity almost everywhere, when the moving observer has trajectory η∗

ρ on the time-space plane.
This thus shows constructively the inequality (29) must be binding, which is simply an alternative way of
expressing the desired variational formulation of Nρ. The same procedure can be applied to (26) and (30) to
obtain the variational formulation of Ns. This completes our proof.

Remark 1: Several intrinsically related approaches exist in the literature to develop the variational formu-
lation of scalar conservation law, e.g. based on Green’s theorem (Lax, 1973; Dafermos, 2005), exploiting
the special role of characteristic curves (Newell, 1993a; Daganzo, 2005a), and using the viability theory
(Aubin et al. , 2008). Our proof revolves estimating and closing the gap between Nρ(t,x) and Ns(t,x), which
are unknown, and infimum/supremum of their upper/lower bounds, which are obtainable for every possible
path of an imaginary observer. Refer to the illustration of Fig.4, in general, the paths over which the up-
per/lower bounds are binding are different, which could be interpreted as a pair of coupled controls. This
is in a similar spirit to the interpretation of variational formulation raised in Daganzo (2006), though that
paper focused on the first-order model and did not discuss the issue of binding.

Space

Time

QP_1

P_2
Boundary Data

Paths

Information

Decision

Fig. 4. Concept of a variational solution.
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Remark 2: It can be seen that in our proof, the existence of a variational formulation for a system of
PDEs (partial differential equations) is linked with the existence of proper solutions to the corresponding
ODEs, which are in principle easier to deal with. In particular, an ODE like (25) or (26) admits a unique
solution when its right-hand side is bounded and sufficiently smooth. When shocks only exist on a set of
zero measure (this is always the case for a scalar conservation law, i.e. the LWR model, see Dafermos
(2005)), the corresponding ODEs are locally well-posed. Therefore, intuitively, requirement looks mild
for the existence of proposed variational formulation. Nonetheless, rigorously proving that the ODEs in
Theorem 3.2 always have solution requires substantial analysis of the complications caused by shocks in ρ
and s. It amounts to proving the well-posedness of{

ẋ = h(ρ(t,x),s(t,x))
x(0) = x̄

(32)

for some smooth function h. A similar problem (in (33), ρ(x, t) solves a scalar conservation law),{
ẋ = h(ρ(t,x))
x(0) = x̄

(33)

has been tackled in Bressan & Shen (1998), and the reader is referred there for a discussion of discontinuous
ODE problems.

Remark 3: In the optimal control context, the two controls induce an external cost to each other, due to
the coupled form of cost pair (Rρ,Rs). This gives an interpretation of the trajectories η∗

ρ and η∗
s as solutions

to an externality problem. The reader is referred to Loreti & Vergara Caffarelli (2000, 2004) for in-depth
discussions along this line of reasoning.

Remark 4: The variable s = ρI is interpreted as ‘a density of an off-equilibrium measure’, with the unit
of traffic volume when I = v− ve(ρ). Unlike ρ, s does not has a fixed sign, so Ns is in general not monotone
with respect to time or space. This is different from Nρ, specification of which needs extra cares.

3.5. Systems with relaxation
Earlier in this paper we estimated the influence of relaxation on traffic state, which was shown to decay

exponentially fast (see (16)). In this case, the model ultimately degenerates to a LWR model (s = 0).
We thus can infer the true value of Nρ (with relaxation) from a LWR model with speed-density relation
v = ve(ρ). Let us consider a leading vehicle, which represents a given boundary condition, and a following
vehicle. Suppose the leading vehicle has trajectory xL(t), t ≥ 0, their initial gap is ρ−1

0 and initial speed of
the following vehicle is vF . Then initially, the quantity I attached to the following vehicle is I0 = ρ0(vF −
ve(ρ0)). We can evaluate the deviation of trajectories of the following vehicle in two models, denoted as
xF(t) (original model) and x̃F(t) (the LWR approximation) respectively. It is

|xF(t)− x̃F(t)| = |
∫ t

0
(ẋF(s)− ˙̃xF(s))ds| (34)

From (16), we have
ρ(t)(ẋF − ve(ρ(t))) = I0 exp(−t/T ) (35)

while in the LWR model,
˙̃xF − ve(ρ(t)) = 0 (36)

We assume |ρ(t)−ρ0| ≤ a from some constant a strictly less than ρ0, which means the gap has a bounded
variation over time. Then we can combine these relations and obtain

|xF(t)− x̃F(t)| ≤ I0

a

∫ t

0
exp(−s/T )ds =

I0

a
1− exp(−t/T )

T
≤ I0

aT
(37)

Note that the right-hand side of (37) is independent of t and Nρ is constant along trajectories xF(t) and x̃F(t),
we can see that the two N-surfaces formed under the two different models has bounded deviation to each
other. Therefore, when relaxation exists, the problem reduces to solving a LWR model in large time.
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4. Simplified numerical scheme

One main application of the variational formulation is on developing numerical solution schemes or
estimators that incorporate moving elements in traffic flow models, e.g. moving bottlenecks and probe
vehicles. Compared to the cell-based algorithms (Daganzo, 1994; Lebacque, 1996), the numerical scheme
based on variational formulation does not require cell partitions, thus is much more flexible with the type
of input data or imposed constraints. Moreover, the variational formulation itself naturally ensures the
uniqueness of solution. Therefore, entropy conditions are not explicitly stated. This is favorable because as
such the preliminary work of solving Riemann problem can be skipped.

4.1. The scheme

We present a numerical scheme below to illustrate how the variational formulation (24) is used for the
computational purposes. The idea resembles the one in Daganzo (2005b): A dense mesh is laid on the time-
space plane, whose connected arcs approximate the paths and Nρ and Ns values on its nodes are updated.
The discrete time and location are labeled by positive integers i and j, respectively. Concerned nodes are
divided into two categories: boundary set B and interior set O of a prescribed computational region. The
update strategy is described as below,

1. Set current time i0 = 0;
2. For all (i, j) such that i = i0, we calculate the approximate value of ρ and s,

ρ(i, j) = ∑
| j′− j|=1

|Nρ(i, j′)−Nρ(i, j)|/|{ j′}|Δx

s(i, j) = ∑
| j′− j|=1

|Ns(i, j′)−Ns(i, j)|/|{ j′}|Δx

3. Update N-values of ρ and s according to the variational formulas derived above

Nρ(i+ 1, j) = min
j′∈A

{Nρ(i, j′)+ ΔtRρ(s(i, j′),( j′ − j)Δx/Δt)}

Ns(i+ 1, j) = max
j′∈A

{Ns(i, j′)+ ΔtRs(ρ(i, j′),( j′ − j)Δx/Δt)}

where A = { j : (i, j) ∈ B};
4. If N-values of all nodes in O are obtained, stop; otherwise, set i0 = i+1, B = B ∪{(i, j) : i = i0}, and

go to step 2.

This algorithm looks simple and should be self-explanatory. We only mention that in step 2, the ρ and s
values are calculated, which are used in step 3 for updating Nρ and Ns. Note that although the mesh used in
this algorithm has a grid like structure, it is not essential. In addition, moving objects can be conveniently
handled in this numerical scheme, because of the variational character of the proposed numerical scheme.
The technical details are similar to that of the first-order model (Daganzo, 2005b; Leclercq et al. , 2007) and
omitted here.

4.2. Error bounds

The proposed scheme essentially approximates optimal paths (see Theorem 3.2 and Fig.4) with piece-
wise linear curves, whose slopes are mΔx/Δt, with m belonging to a proper integer set. Therefore, we can
in principle evaluate the error of this scheme by tracking the change of state variables along an optimal path
x(t), and its approximation x̃(t). We point out the following necessary condition for the numerical solution
to be exact.

Proposition 4.1. The proposed numerical scheme is exact only if ∂ρ f and ∂sg are piecewise constant, and
they take values in the set {mΔx/Δt}.
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Proof If the given scheme generates exact solutions, we know that the optimal paths are piecewise linear.
Since the optimal paths solve (25) and (26), we know the right-hand side of these equations, i.e. ∂ρ f and
∂sg, must also be piecewise constant, taking their values in the set {mΔx/Δt}.

Remark: In the VF of the LWR model, we know exact numerical solution is possible only if correspond-
ing fundamental diagram is piecewise linear. The above proposition is a generalization of this fact.

5. Conclusions

In this paper, we revisit the variational theory of traffic flow modeling and derive the variational formula-
tion for a generic class of non-equilibrium traffic flow models. We achieve this goal through characterizing
the binding conditions relevant to moving observations. This approach reflects the intrinsic connection of
conservation law problems with optimal control problems.

Our finding enables the LWR model and a class of non-equilibrium traffic models to be tackled in a
unified mathematical framework. In particular, this novel formulation of non-equilibrium models make the
incorporation of peculiar boundary conditions and moving objects straightforward, which is favorable for
numerous applications, e.g. simulations involving slow moving vehicles, probe data fusion, etc.

There are several directions to go based on the current work. We believe that the full potential of
the variational formulation has not been explored. Its physical implications, mathematical and numerical
properties, and applications to various real-world problems are worth further investigations. In particular,
our ongoing work is focusing on the implementation and analysis of the proposed numerical solution scheme
and testing it in various scenarios of practical significance.
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