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Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS)models have been
introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug
treatment in vivo in health and disease. This requires consideration of several fundamental properties of biolog-
ical systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience,
and multi-stationarity.
Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the
causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its
biological target, such models may contain expressions to characterize i) the disposition and the target site
distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the
kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the
effect on disease progression in a mechanistic manner. These models have been found useful to characterize
hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological
systems behavior.
Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which
biological networks rather than single transduction pathways are considered as the basis of drug action and dis-
ease progression. Thesemodels contain expressions to characterize the functional interactionswithin a biological
network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic
feedbackmechanisms are operative. As a result systems pharmacologymodels are particularly useful to describe
complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic
disorders).
In this contribution it is shown how physiology-based PKPD and disease models can be extended to account for
internal systems interactions. It is demonstrated how SPmodels can be used to predict the effects of multi-target
interactions and of homeostatic feedback on the pharmacological response. In addition it is shown how DS
models may be used to distinguish symptomatic from disease modifying effects and to predict the long term
effects on disease progression, from short term biomarker responses. It is concluded that incorporation of expres-
sions to describe the interactions in biological network analysis opens new avenues to the understanding of the
effects of drug treatment on the fundamental aspects of biological systems behavior.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Networks as the basis for the prediction of drug action in complex
biological systems: towards systems pharmacology

Modern drug discovery and development has been largely in-
spired by insights in pharmacological mechanisms and based on
pharmacological concepts. Classical pharmacology considers a single
transduction pathway, connecting the processes on the causal path
between drug administration and response, as the basis of drug ac-
tion. Pathway analysis has yielded many useful drugs which are
often taken chronically to control symptoms of a disease. In many in-
stances however these drugs do not modify the disease process. The
. This is an open access article under
focus on pharmacology on a single transduction pathway, as the basis
of drug action is also reflected in the structure of physiology-based
pharmacokinetic-pharmacodynamic (PB-PKPD) models, which are in-
creasingly applied for prediction of drug effects in drug discovery and
development (Danhof et al., 2007, 2008).

In recent years much progress has been made in the emerging field
of systems biology. A system is defined as an entity which maintains its
existence through the interactions between its parts (von Bertalanffy,
1968). In systemsbiology, a system is commonly described as a network
of nodes (functional elements, vertixes) connected by “edges” describ-
ing the functional interactions. To date, research in systems biology
has been mainly focusing on the structure (i.e. molecular level of orga-
nization) of the biological network, without consideration of the nature
and themagnitude of the interactions between thenodes, and often also
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Table 2
Examples of diseases with their progression pattern.

Pattern Examples

Stationary Hormone insufficiency
Linear Neurodegenerative disorders: Alzheimer's disease, Parkinson's disease
Asymptotic Neurodegenerative disorders
Exponential Infectious disease, cancer
Burnt out Common cold
Episodic Neurological disorders (epilepsy, migraine, multiple sclerosis)

Psychiatric disorders (bipolar disease)
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without incorporation of temporal or spatial information. Inmany cases
this has led to doubtful translational or predictive value of systems biol-
ogy towards higher levels of biological organization and dynamics or
clinical endpoints, albeit that there are exceptions (Beard et al., 2002).
Ultimately, for the prediction of drug effects in vivo, biological phenom-
ena need to be described as dynamic processes across widely different
time scales (Kohl et al., 2010).

In systems biology networks can sometimes be relatively simple, yet
they can also become quite complex. This can turn the analysis of a
network into a major challenge. Therefore, in practice a combination
of reductionist and integrationist approaches is applied to understand
biological systems behavior, crossing spatial scales of structural and
functional integration. Meanwhile, steps have been taken towards the
incorporation of network analysis inmechanism-based PKPDmodeling.
This concerns in particular the analysis of drug-drug interactions and of
homeostatic feedback mechanisms as determinants of the effect (Fang
et al., 2011; Lon et al., 2012; Ploeger et al., 2009; Stevens et al., 2012).
The importance of the networks concept in pharmacology however,
reaches much further. In conceptual terms a network structure may
explain a number of the fundamental properties of biological systems
behavior: i) hysteresis, ii) non-linearity, iii) variability, iv) interde-
pendency, v) convergence, vi) resilience and vii) multi-stationarity
(Table 1). Meanwhile, classical pharmacology concepts based on sin-
gle transduction pathways have been found useful to understand the
hysteresis and the non-linearity of biological system behavior and
drug action, but have failed to explain the other aspects. I propose
that incorporation of concepts from network analysis can be useful
to describe complex patterns of pharmacodynamic responses (i.e.
oscillatory behavior). In addition network analysis is particularly
useful for the analysis of the dynamics of disease, where patterns of
disease progression can be complex (Table 2).

1.1. Fundamental aspects of complex biological systems behavior

The prediction of drug effect on biological system behavior consti-
tutes amajor challenge, given the complexity of the underlying systems
and themultitude of system properties that need to be accounted for. In
principle, two types of dynamical systems can be distinguished: “non-
adaptive” versus “adaptive” systems. Here “non-adaptive” systems are
stable systems in the sense that their functional properties remain
constant over time. In these models time dependencies are described
on the basis of changes in the values of the model parameters. ”Non-
adaptive” models are increasingly used to account for the effects of e.g.
developmental changes or disease progression. In contrast, in “adaptive”
systems the functional behavior may change, in the sense that new, pre-
viously absent properties emerge. Pertinent properties of the functioning
of “adaptive” systems include: emergence, self-organization, degeneracy.
“Adaptive”models are for example needed to describe the functioning of
the immune system (Germain et al., 2011; Subramanian et al., 2015). In
this contribution I will restrict the discussion to the fundamental proper-
ties and the modeling of “non-adaptive” complex biological systems.
Table 1
Fundamental properties of therapeutic interventions on biological systems behavior.

Feature Description

Non-linearity Non-linear relations between dose, exposure and response
Individuality Effectiveness limited to patients with a distinct molecular

mechanism of the disease
Variability Variation in concentration and/or effect between and within

individuals
Interdependency A compound that does not have an effect on its own modifies

the response to a second compound (e.g. allosteric modulation)
Convergence Multiple molecular defects cause diseases with similar or

identical clinical features
Resilience The plasticity of biological systems with regard to disease

progression and drug effects
Multi-stationarity A biological system may exist in multiple, stable conditions
Hysteresis in the time course of the pharmacological effect relative
to theplasma concentration is common. Inmechanistic terms hysteresis
can be explained by slow target site distribution, slow target associa-
tion/dissociation kinetics and slow transduction mechanisms. For each
of these mechanisms relevant PKPD modeling concepts have been de-
veloped (Danhof et al., 2007, 2008).

The non-linearity of pharmacodynamics is also well appreciated.
This is partly caused by non-linearities at the level of the pharmacoki-
netics (i.e. the absorption, distribution and elimination). The main
causes of non-linearity, however, are the intrinsic non-linearities at
the level of the pharmacodynamics (i.e. the target binding/activation,
transduction and homeostatic feedbackmechanisms). PB-PKPDmodel-
ing concepts have been successfully developed to characterize these
non-linearities in a strictly quantitative manner (Danhof, 2015;
Danhof et al., 2007, 2008). A pertinent feature of these models is that
they are based on physiological reality, with a strict distinction between
drug-specific and system-specific parameters. It is believed that in
particular the distinction between drug- and system-specific parame-
ters constitutes a scientific basis for the extrapolation between different
biological systems (i.e. in vitro–in vivo correlations, scaling between tis-
sues, species etc.). The utility of PB-PKPD models for these extrapola-
tions has been illustrated for adenosine receptor agonists, mu opioid
receptor agonists, and serotonin 5-HT1a receptor agonists (Garrido
et al., 2000; Van der Graaf et al., 1999; Yassen et al., 2008; Zuideveld
et al., 2004). PB-PKPD models constitute a scientific basis for the devel-
opment of increasingly complex systems pharmacology models.

In addition to non-linearity, variability in drug effect is well appreci-
ated. This variability results from the complex interactions of genetic
factors, environmental factors, disease, drug treatment and adjunctive
therapy with the biological system (Fig. 1). At present, advanced statis-
tical techniques based on non-linearmixed effectmodeling (NONMEM)
are widely applied to describe intra- and inter-individual variation. This
enables the identification of co-variates which explain part of the ob-
served inter-individual variation and which can serve as the basis for
dose adjustment in clinical practice (Admiraal et al., 2014; Sime et al.,
2015). Population approaches typically express variation in normal dis-
tributions. While the prediction of such variation may be relatively
straightforward, the prediction of outliers constitutes the real challenge.
The identification of outliers and unexpected events may require the
application of even further advanced statistical approaches, such as
by including randomness in parameter values or by using stochastic
rather than deterministic modeling. For reasons of parsimony these
advanced statistical techniques are usually applied in combination
with relatively simple structural pharmacokinetic and/or pharmaco-
dynamic models (e.g. compartmental models). As was outlined
above, a model structure based on physiological reality, combined
with a strict distinction between drug-specific and system-specific
properties, constitutes a scientific basis for extrapolation and predic-
tion of the variation outside the range that has actually been studied.
There is clearly a need for approaches in which non-linear mixed
effects modeling is combined with more mechanistic physiology-
based pharmacokinetic and pharmacodynamic models. Here the chal-
lenge is to design semi-physiological models with sufficient mechanis-
tic detail to allow meaningful extrapolation, while at the same time
being sufficiently simple to allow estimation of the parameter values



Fig. 1. Biological networks as the basis for the prediction of drug effects in complex biological systems. In this example, drug treatment, disease, environmental influences and adjuvant
treatment all influence the biological network.
Modified from Kohl et al. (2010).
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(De Cock et al., 2014; Strougo et al., 2011). In such a model structure,
variability could be predicted by including expressions characterizing
the interactions with specific environmental factors in a mechanistic
manner.

Interdependency of compounds is the property that a compound
that has no effect on its own, modifies the response to a second com-
pound. This property is illustrated in the allosteric pharmacodynamic
interactions and will be discussed in Section 3.1.

Convergence or redundancy is the phenomenon that multiple, dis-
tinctly different molecular defects, may cause a single disease with sim-
ilar if not identical clinical features. In mechanistic terms convergence
can be explained by the existence of multiple parallel pathways that
converge into a single node of a biological network. This also explains
individuality in the response to drug treatment. In a personalized treat-
ment paradigm, information on themolecularmechanismof a disease is
used in the selection of the drug for an individual patient. Awell-known
example is the genetic testing in the selection of drugs for the treatment
of breast cancer (Ballinger et al., 2015; Paoletti and Hayes, 2014).

Resilience is the plasticity (i.e. relative insensitivity) of the function-
ing of biological systems to disease progression and to drug treatment
effects. Prime examples of resilience are neurodegenerative disorders,
where clinical symptoms only appear after an extensive loss of func-
tional neurons. The lack of efficacy as a main cause of attrition in drug
development (Schafer and Kolkhof, 2008) could be a reflection of the
resilience of biological systems to drug effects. In mechanistic terms re-
silience can also be explained bymultiple parallel pathways which con-
verge in a single node. The implication is that interactions at multiple
targets in a biological networkmay be required to obtain a robust treat-
ment effect. The current practice of using rational drug combinations in
the treatment of infectious diseases (e.g. HIV) is an example of this.

Multi-stationarity refers to the phenomenon that biological systems
can exist in multiple, more or less stable states. The simplest way in
which this can be the case is the distinction between the healthy and
the disease state. A well-known example of multi-stationarity is parox-
ysmal supraventricular tachycardia, with atrial fibrillation and sinus
rhythm as the two distinctly different states of the same system. For a
variety of diseasesmultiple statesmay exist. Prime examples are neuro-
logical disorders such as migraine and epilepsy (Dahlem et al., 2015;
Margineanu, 2014), and psychiatric disorders such as depression
(Singh and Gotlib, 2014; Voytek and Knight, 2015). Hidden Markov
models have been introduced to describe the transitions between dif-
ferent states in these disorders (Le Cam et al., 2013; Maas et al., 2006).
However, hidden Markov models yield at best empiric descriptions of
system behavior. In other areas of research the strength of rule-based
modeling is clearly evident; for example in artificial intelligent systems
that are based on empirical/historical data. Likewise, multi-stationarity
is also a characteristic of chaos theory. These approaches could be read-
ily utilized in systems pharmacological problems (Vicini, 2010). There is
a clear need for more mechanistic dynamical systems analysis models
for the prediction of multi-stationarity of biological systems.

The list of fundamental properties of biological system behavior
in this paragraph is not complete. Additional fundamental properties
of biological systems behavior are: emergence, robustness, self-
organization, degeneracy (Holland, 1992, 2006; Whitacre, 2010).
These properties are especially observed in adaptive dynamical sys-
tems, such as the immune system. Different approaches in mathe-
matical modeling may be applied to understand or predict these
special features of complex adaptive system behavior, such as rule-
based modeling, pattern recognition (neural network, Bayesian, ge-
netic algorithm) and agent-basedmodeling. In this paper the model-
ing of network interactions in non-adaptive systems is discussed.
2. The evolutionof physiology-basedmodeling of pharmacokinetics,
pharmacodynamics and disease

Pharmacokinetic-pharmacodynamic (PKPD) modeling has long
been recognized as a descriptive discipline, obtaining empirical evi-
dence about the time course of the concentration and the effect of a
drug in a biological system. By characterizing the processes on the
causal path between plasma concentration and effect, PKPD modeling
has becomemoremechanistic (Danhof et al., 2007, 2008). The pertinent
processes on the causal path include i) the disposition and the target site
distribution kinetics of the drug under investigation, ii) the kinetics
of target binding and activation and iii) the kinetics of transduction
(Fig. 2). In addition, mechanistic disease system (DS) models can be
used to characterize the interaction of drug effectwithdisease processes
(Danhof, 2015; Danhof et al., 2008). As highlighted below, research in



Fig. 2. Schematic representation of physiology-based pharmacodynamic (PB-PD) modeling. PB-PD models connect pharmacokinetics to the drug effects on disease progression,
and contain expressions to describe the processes on the causal path between drug administration and effect (target site distribution, target binding and activation, and
transduction and homeostatic feedback).
From: Danhof (2015).

Fig. 3. A schematic whole-body physiologically-based pharmacokinetic model in which a
selection of organs are depicted. The arrows indicate the blood flow. Drug administration
(input) can be at any site of the body. Elimination is for simplicity depicted as occurring
only from liver and kidneys, and the enterohepatic cycling is not included.
Modified from Rowland et al. (2011).
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thepast years has been focused on thedevelopment of PB- PKPDmodel-
ing to further improve the predictive value of PKPD and DS models.

2.1. Physiology-based pharmacokinetic modeling

Traditionally, the time course of drug concentration in plasma is
described by compartmental pharmacokinetic (PK) models. To take
hysteresis between pharmacological effect and plasma concentration
into account, an effect compartment is often included, which theoreti-
cally represents the distribution of the drug to the target site (Sheiner
et al., 1979). In combination with non-linear mixed effects modeling
for the description of variation in the individual plasma concentration
time profiles, compartmental PK models provide a strong statistical
framework for the individualization of drug treatment in the target pop-
ulation (Himebauch and Zuppa, 2014; Knibbe et al., 2011). However,
compartmental PK modeling is much less useful for extrapolation of
pharmacokinetics beyond the physiological ranges that have actually
been studied (Strougo et al., 2012). Moreover compartmentalmodeling
relies on steady-state assumptions and can therefore not predict the
effect-time-varying changes in enzyme or transporter induction or inhi-
bition nor the distribution kinetics of new drugs (Sager et al., 2015).

In recent years physiology-based pharmacokinetic (PB-PK)
modeling is increasingly applied in drug development. PB-PK
modeling uses physiologically realistic and species-specific data
on tissue structure, volume and composition (Danhof et al., 2008;
Jones et al., 2015; Sager et al., 2015). The structural model used
for whole body PB-PK modeling is based on the anatomical ar-
rangement of the tissues and organs of the body, linked by perfus-
ing blood (Rowland et al., 2011) (Fig. 3). This structural model, in
combination with a parameterization in drug-specific parameters
(e.g. affinity to metabolizing enzymes, drug transporters) and bio-
logical system-specific parameters (e.g. blood flow, organ and tis-
sue perfusion, expression and functioning of enzymes and
transporters) constitutes the basis interspecies scaling and for the
prediction of tissue and organ exposure (Danhof et al., 2008;
Rowland et al., 2011). In its basic form, a PB-PK model is a network
model in which the various compartments are the “nodes” and the
transport between compartments and the elimination processes
the “edges”. Typically, for small molecules, the interactions in the
network are described by relatively simple, linear functions. Mean-
while the utility of using PB-PK modeling for the characterization
of the target site distribution kinetics as the first step towards
mechanistic PKPD modeling is being explored (Danhof, 2015;
Westerhout et al., 2012). For biologics, more complex “target-me-
diated” disposition models are used to describe time courses of
the concentrations and the corresponding effects (Dua et al.,
2015; Ferl et al., 2015).

2.2. Physiology-based pharmacodynamic modeling

As early as 1966 it was recognized that the relations between
pharmacokinetics and pharmacodynamics are highly non-linear
and complex, with often significant hysteresis between the drug
concentration and the effect (Levy, 1966; Nagashima et al., 1969).
Furthermore, in a series of investigations, using experimental
approaches which enabled a strict separation between variation in
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pharmacokinetics and pharmacodynamics (Danhof and Levy, 1984), it
was shown that inter-individual variation in pharmacodynamics can
be substantial (see for review: (Danhof, 2015)). Ultimately these devel-
opments have led to the concept of physiology-based pharmacodynam-
ic (PB-PD)modeling for prediction of the time course of the drug effect.
PB-PDmodels use separate expressions to describe i) steady-state drug
concentration-effect relations and ii) the transduction mechanisms to
describe hysteresis between concentration and effect.

2.2.1. Receptor theory to characterize steady-state concentration effect
relations

To describe (variation in) steady-state in vivo drug concentration ef-
fect relationships, concepts from receptor theory are used (Ploeger et al.,
2009). Target binding and activation are described by an agonist-
dependent part: binding depends on the target affinity of the drug,
while target activation depends on the intrinsic efficacy of the drug
and the receptor density, respectively (Fig. 4). This is important since
differences in receptor density may explain tissue selectivity of drug ef-
fect (Van der Graaf et al., 1999; van Schaick et al., 1997; Yassen et al.,
2008, 2006) as well as functional adaptation and tolerance (Garrido
et al., 2000). Next, a system-specific transducer function is used to char-
acterize the translation of the target activation into the drug effect.
While there is substantial evidence that the relation between drug con-
centration and target binding/activation can be described by a hyper-
bolic function, the transducer function can take any shape. The shape
and the location of the transducer function, in terms of target activation,
can differ between biological systems and thereby explain variation in
drug effect. It has been shown that the system-specific transducer func-
tion can be identified by simultaneous analysis of the concentration-
effect relationships of a training set of ligands at a given target (Cox
et al., 1998a; Van der Graaf and Danhof, 1997; Visser et al., 2003;
Zuideveld et al., 2004). In this manner receptor theory can be used to
describe variation in drug concentration-effect relations (Danhof,
2015; Danhof et al., 2007; Ploeger et al., 2009; Van der Graaf et al.,
1999). Receptor theory constitutes also the basis for the mechanistic
characterization of drug interactions. In conceptual terms this turns
the receptor model into a network model. The modeling of pharmaco-
dynamic interactions is discussed below in Section 3.

2.2.2. Dynamical systems analysis to characterize transduction and homeo-
static feedback

Modeling of transduction incorporates processes that link target
activation to a response in vivo. Transduction is typically non-linear
with large differences between biological systems in the rates at
which transduction occurs. To take the time-dependency into account,
Fig. 4. The relationship between drug concentration and the intensity of the biological
response depends on drug- and biological system specific factors. Drug specific
properties are the target binding affinity and the intrinsic efficacy, which govern the
target activation. A biological system-specific transducer function describes the relation
between the target activation and the effect.
Reproduced from Van der Graaf and Danhof (1997).
PKPD modeling often uses concepts from linear dynamical systems
analysis. In theirmost basic form thesemodels are based on the concept
of a physiological indirect response or turnover model as originally pro-
posed by Levy to describe the time course of the anticoagulant effect of
warfarin (Nagashima et al., 1969). Jusko et al. have subsequently for-
malized the concept of using various forms of a turnovermodel to char-
acterize time-dependencies in the pharmacodynamics of a wide range
of drugs (Dayneka et al., 1993; Jusko, 1995; Jusko and Ko, 1994;
Sharma et al., 1998). Here, the drug effect is being characterized as an
enhancing or inhibiting effect on either the zero order rate constant
for input in the system or the first order rate constant for elimination
from the system (Dayneka et al., 1993). Turnover models can be linked
in a cascading manner, whereby the output of one turnover model
serves as the input for a second turnover model; this makes it possible
to characterize complex intermediary processes governing the time
course of the drug response relative to the drug concentration, yielding
a mechanistic model to describe transduction (Ramakrishnan et al.,
2002). Turnover models also constitute a scientific basis for the model-
ing of homeostatic feedback, as is discussed below in Section 4. By def-
inition, PKPD model structures which are based on the connection of
two or more turnover models are network models.

2.3. Disease systems analysis to characterize disease progression

Inmany instances PKPD analyses are based on data obtained at a sin-
gle occasion and following the administration of a single dose of the
drug under investigation. Thereby it is assumed that the biological
system is stationary. Mechanism-based PKPD modeling however also
requires consideration of non-stationarity of biological systems, which
may occur at widely different time scales. Under physiological condi-
tions non-stationarity may be the result of circadian variation, and/or
maturation/degeneration of physiological function (e.g. in pediatrics,
elderly). In addition non-stationarity may also result from drug treat-
ment, both in terms of changes in pharmacokinetics (e.g. enzyme induc-
tion; up/down regulation of transporters) and in pharmacodynamics
(e.g. tolerance development). Finally in disease, non-stationarity may
be caused by disease progression. In this contribution we limit the dis-
cussion to the modeling of disease progression.

Characterization of the effect of drug treatment on disease progres-
sion represents a major challenge due to the complexity of this endeav-
or. Specifically, detailed data on the time course of the change in disease
severity in patients receiving active treatment and placebo are needed.
In addition, depending on the endpoint that is used, effectsmay occur at
widely different time scales. Patterns of disease progression may rela-
tively simple in the sense that the disease progresses as a continuous
process, but they may also be quite complex (Table 2).To analyze com-
plex patterns of disease progression, and to understand individual dif-
ferences between patients, pattern recognition algorithms (e.g. on the
basis of artificial networks) are increasingly used. These emerging
methodologies may enable clustering, classification, and ultimately,
prediction of disease progression in sub-populations of patients, for
example by mining historic information (Zhang, 2007). These
methodologies may contribute significantly to the developing
area of systems pharmacology, where the emphasis is on personal-
ized precision treatments.

As a first step towards amoremechanistic approach to themodeling
of the interaction betweendrug action and disease progression, the con-
cept of disease systems analysis has been introduced (Post et al., 2005).
Disease systems analysis describes disease progression on the basis of a
turn-over model, in which the disease status (S) is governed by a zero-
order synthesis rate constant (kin) and a first-order elimination rate
constant (kout). In a chronic progressive disorder, homeostasis is
perturbed by either a time-dependent change in the synthesis or the
elimination rate which is characterized by the rate constants kin,D or
kout,D, respectively. In this model a symptomatic drug effect is charac-
terized by an interaction with the rate constants kin or kout of the
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turnovermodel. In contrast, a diseasemodifying drug effect is described
by an interaction with the rate constants kin,D or kout,D respectively. In
theory this allows characterization of the exposure-response relations
for either the symptomatic effect, the disease modifying effect or the
combined symptomatic/disease modifying effect. In a series of simula-
tions it was demonstrated that the interactions at the various sites
yield distinctly different signature profiles (Post et al., 2005). Therefore,
these models constitute a scientific basis for distinction between symp-
tomatic versus disease modifying effects. Another important feature of
disease systems analysis is the ability to cope with the widely different
time scales that are typically encountered when analyzing disease pro-
gression. In theory, disease progression can be observed at different
levels of the biological system, which each operate at different time
scales. When responses at different levels are characterized on the
basis of a turn-over models, they can be connected in a cascading man-
ner. This turns the disease progressionmodel into a networkmodel. The
properties of such network models are discussed below in Section 3.

3. Systems pharmacology – towards the modeling of network
interactions

In the previous paragraph it has been discussed that currently used
PB-PKPD models are based on the assumption of a single transduction
pathway, connecting processes on the causal path between drug admin-
istration and effect. It was also shown that, although such models may
beuseful to account for hysteresis and non-linearity in the pharmacody-
namic response profile, they fail to describe other fundamental proper-
ties of biological system behavior. In this paragraph it is discussed how
existing PB-PKPD model structures can be extended to account for
interactions within a biological network.

3.1. Receptor theory – the modeling of multi-target interactions

Modeling of interactions is an integral part of PB-PKPD modeling,
since drugmolecules can interact withmultiple targets in the biological
system. Modeling of pharmacodynamic interactions concerns the pre-
diction of combined drug effects. In this context, synergy occurs when
the combined effect is larger than expected when assuming additivity
or ‘no interaction’ of the two effects separately. In contrast, antagonism
occurs when the combined drug effect is smaller.

The modeling of pharmacodynamic interactions is based on con-
cepts of receptor theory (Mandema et al., 1992). A dual-pathway
model serves to describe the interaction between drugs that exert
their actions through the interactions with two separate receptor sys-
tems (Gottlieb et al., 2012; Imming et al., 2006; Jonker et al., 2005). By
definition a dual pathway model is a network model (Fig. 5). In this
model the two transduction pathways converge into a single transduc-
tion pathway. An important determinant of the synergy in this model is
the point at which the transduction pathways converge and the degree
of preamplification that occurs before convergence. As can be appreciat-
ed, pharmacodynamic drug interactions are highly dimensional and
complex. For this reason pharmacodynamic interactions are evaluated
on the basis of response-surface plots (Fig. 6) (Jonker et al., 2005).
These three dimensional graphs depict the intensity of the effect versus
two drug concentrations to fully characterize a drug-drug interaction at
Fig. 5.A dual pathwaymodel to describe pharmacodynamic drug interactions. In this example, i
a common response (Jonker et al., 2005).
all concentration pairs; synergy is reflected in an increase while antag-
onism in a depression of the response surface.

Mechanistically 6 different types of interactions can be distinguished:
a) interdependency, b) allosterism, c)modulation, d) summation, e) Bliss
independency and f) competition (Jonker et al., 2005). In this context in-
terdependency refers to the situationwere a drug does not have an effect,
unless co-administered with a second drug which also doesn't have an
effect on its own. Allosterism refers to the situation where a drug, which
does not have an effect on its own, modulates the effect of a second
drug by shifting the concentration-effect relation to a lower or a higher
concentration. Modulation is the situation where a second drug, which
again has no effect when administered alone, affects the concentration-
effect relation of a second drug leading to a change in the maximum
effect. A more common situation is where both drugs elicit a response
when given alone.When signal transduction of both agents is very ineffi-
cient this mechanism is equivalent to summation of the individual phar-
macologic responses. However, when signal transduction is efficient,
summation of the two pharmacologic responses may not apply. Bliss in-
dependence is the situation where the combined response is restricted
through saturation at the transduction (Bliss, 1939; Koizumi and Iwami,
2014). Finally stimulus competition can arise if two receptor stimuli are
interdependent in the sense of a competitive interaction.

The described mechanism-based analysis of interactions between
two drugs in a biological network is generally applicable andnot limited
to drug-drug interactions. Examples of other applications include the
modeling of homeostatic feedbackmechanisms and themodeling inter-
actionswith environmental factors to predict inter-individual variation.

3.2. Dynamical systems analysis – the modeling of homeostatic feedback

In vivo homeostatic mechanisms can have a major impact on the
time course of drug effect. Counter regulatory mechanisms not only at-
tenuate the primary response to a drug, they may also be the cause of
complex pharmacological effect versus time profiles such as the profiles
that have been observed for serotonin 5-HT1a receptor agonists
(Zuideveld et al., 2001, 2004). In addition, changes in drug effect de-
pending on the rate of administration have been observed for vasodila-
tors (Francheteau et al., 1993; Kleinbloesem et al., 1987) and the
development of tolerance upon continued and repeated drug adminis-
tration (Bauer and Fung, 1994; Cox et al., 1998b). In conceptual terms,
modeling of homeostatic feedback concerns themodeling of internal in-
teractions in the biological system. Typically model structures based on
turnovermodels are used to characterize the effects of counter regulato-
ry mechanisms on the drug response.

A recent example of a model to describe attenuation of the primary
drug effect is the systems model for drug effects on the cardiovascular
system (Snelder et al., 2014, 2013). Here a cascade of 2 turnovermodels
describing the changes in cardiac output (CO), total peripheral resis-
tance (TPR),with homeostatic feedback betweenmean arterial pressure
(MAP) and CO and betweenMAP and TPR respectively, successfully de-
scribed attenuation of the hypotensive effects of 8 cardiovascular drugs
with differentmechanisms of action. Inmechanistic terms the influence
of physiological counter regulation was incorporated in the model on
the basis of a relatively simple “modulation” interaction term connected
to MAP (see Section 3.1). By application of sensitivity analysis it was
ndependent receptors activate two signal transduction pathways that converge to produce



Fig. 6. Simulated response surface area (RSA) plots for 6 different interaction models for responses that are mediated through two converging signal transduction pathways. For full
explanation of the parameters that were used during the simulations please see the original reference (Jonker et al., 2005).

Fig. 7. Systems pharmacology model to characterize 5-HT1A receptor mediated
hypothermia. The model is based on the concepts of the indirect physiological response
model and takes into account rate constants associated with the warming of the body
(k in) and cooling of the body (k out). The indirect physiological response model is
combined with the thermostat-like regulation of body temperature, in which body
temperature (T) is compared with a fixed reference or set-point temperature (TSP) at
rate a, generating a set-point signal X. The extent to which the set-point value decreases
is a function of drug concentration f(C), which decreases X by the amplification factor γ.
From: Zuideveld et al. (2001).
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shown that estimates of the parameters describing the homeostatic
feedback interaction were independent of the drug, indicating that
they were true systems parameters. An interesting property of this sys-
temsmodel is that hysteresis is observed between the effects on CO and
TPR, for a drugwith a direct effect on TPR but not for drugs with a direct
effect on CO. In theory, this enables identification of the site of action of
novel blood pressure lowering drugs. The development of the systems
model for drug effects on the cardiovascular system is a prime example
illustrating how biological insight in combination with smart study de-
signs contribute to the identification of a relatively complex systems
model.

The modeling of 5-HT1A receptor agonists induced hypothermia is
an example of the use of dynamical systems analysis to predict complex
effect versus time profiles. To characterize serotonin 5-HT1A-agonist-in-
duced hypothermia in a mechanistic manner, a model was proposed
which is based on the concept of a set-point thermostatmodel connect-
ed to a physiological indirect response model (Fig. 7) (Zuideveld et al.,
2001). In the physiological indirect response part of the model, the
change in body temperature is described as a response to either the
inhibition of the production of body heat or the stimulation of its loss.
The thermostat-like regulation of body temperature is implemented in
the model as a continuous process in which the body temperature is
compared with a reference or set point temperature (TSP). Serotonin
5-HT1A agonists elicit hypothermia by decreasing the value of the set
point temperature TSP in a concentration dependent manner. In the
model the interaction between body temperature and set point temper-
aturewas described as “interdependence” (see Section 3.1); this creates
a feedback loop that can give rise to oscillatory behavior. It has been
shown that the proposedmodel is able to reproduce the complex effect
versus time profiles, which are typically observed upon the administra-
tion of serotonin 5-HT1A receptor agonists in rats (Zuideveld et al.,
2001). The identification of such a model in terms of drug-specific and
system-specific parameters constitutes a major challenge, given the
complexity of the model. To achieve this, a mathematical approach
based on redefinition of variables was applied to reduce the model.
The reduced model was successfully applied to experimental data for
6 distinctly different serotonin 5-HT1a receptor agonists, partial agonists
and antagonist, upon widely different modes of administration
(Zuideveld et al., 2004). This yielded physiologically relevant estimates
of drug- and system-specific parameters. Specifically, significant corre-
lations were observed between the drug-specific parameters character-
izing the target binding and activation in the mechanism PKPD model
and corresponding parameters in in vitro bio-assays (Zuideveld et al.,
2004). Finally, on the basis of allometric scaling it was shown that
such an effect does not occur in humans (Zuideveld et al., 2007).

The modeling of counter-regulatory mechanisms also constitutes a
basis to the modeling of multi-stationarity of biological systems, as
was recently demonstrated for the prolactin response following the
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administration dopamine D2 receptor antagonists. Previously, a precur-
sor pool depletion model has been proposed to describe tachyphylaxis
of the prolactin response following repeated administration of the do-
pamine D2 receptor antagonist remoxipride in humans (Movin-
Osswald and Hammarlund-Udenaes, 1995). Recently, in a study in
rats, where the effects of remoxipride were studied at multiple dose
levels, this model was extended with an extra homeostatic feedback
loop to characterize positive feedbackbetween the serumprolactin con-
centration and the prolactin synthesis rate in the lactotrophs (Stevens
et al., 2012). In a series of simulations it was shown that this system
can exist in multiple, more or less stable, states (Bakshi, S, Danhof, M,
et al., unpublished observations). Themodel structure constitutes there-
fore a basis for the modeling of multi-stationarity in biological systems.
This model structure could be of considerable interest as the basis for
the modeling of complex patterns of disease progression (e.g. episodic
disorders). Ultimately this might constitute the basis for the design of
pre-emptive treatmentmodalities, aimed at “resetting” of the biological
system from the diseased to the healthy state.

3.3. Disease systems analysis – the modeling of disease progression

Disease systems analysis has been introduced as novel approach to
characterize the effect of drug treatment on disease progression.Model-
ing of disease progression is particularly important for drugs which aim
to modify disease progression or when an adverse effect of drug treat-
ment on disease progression needs to be excluded. The modeling of
drug effects on disease progression can be challenging, due to the inher-
ent complexity of disease models. This concerns in particular the dis-
tinction between a symptomatic and a true disease modifying effect in
situations where there may be a combination of a placebo effect, a
symptomatic effect and a disease modifying effect. The prediction of
the long term treatment effect on the basis of the data from a short
term treatment intervention constitutes a significant challenge.

In theory disease progression can be observed at different levels of
the biological system. As a result disease progression is increasingly
modeled on the basis of biomarker responses in addition to, or instead
of, clinical parameters, using a model structure in which multiple turn-
over models are connected in a cascading fashion. Typically rather
simple “modulation” interaction terms are used to characterize the in-
teractions between the turnover components of the model.

The first application of disease systems analysis has been to analyze
the effects of pioglitazone, metformin, and glyclazide on disease
Fig. 8. Schematic representation of a disease systems analysis to analyze the effect of drug treat
feedback between fasting serum insulin (FSI) and fasting plasma glucose (FPG) as well as feed
From: de Winter et al. (2006).
progression in type 2 diabetes mellitus (de Winter et al., 2006). The
mechanism-based model to characterize disease progression contained
expressions to characterize: i) the homeostatic feedback relationship
between fasting serum insulin (FSI) and fasting plasma glucose (FPG)
concentrations and ii) the feed-forward relationship between FPG and
glycosylated hemoglobin A1c (HbA1c). A unique feature of the model is
that it contains also expressions to describe changes in beta cell function
and insulin sensitivity. In addition, the model contains physiologically
relevant expressions to characterize the interaction with drug treat-
ment (Fig. 8) (deWinter et al., 2006). Thismodel allowed the identifica-
tion of the long-term effects of different treatments on loss of β cell
function and insulin sensitivity in treatment-naïve type-2 diabetes
mellitus patients. This model constitutes a promising conceptual ad-
vance in the study of drug effects on type 2 diabetes mellitus disease
progression.

Disease systems analysis has also been applied successfully to ana-
lyze the effect of drug treatment on disease progression in osteoporosis
(Post et al., 2013; Schmidt et al., 2011). Disease progression models in
osteoporosis are based on the mechanistic bone cell interaction model
proposed by Lemaire et al. (2004). Briefly, this model describes bone
remodeling on the basis of the interactions between three distinctly
different cell types, not yet active osteoblasts (R), active osteoblasts
(B), and active osteoclasts (C). Due to its inherent complexity this
model is not readily identifiable. It has been shown however that the
model can be mathematically reduced without compromising its dy-
namic properties (Schmidt et al., 2011). The reducedmodel contains ex-
pressions describing the activities of two cell types: active osteoblasts
and active osteoclasts (Fig. 9). The reduced model has been applied to
data on plasma bone specific alkaline phosphatase (BSAP) and urinary
N-telopeptide (NTX) as biomarkers for the activity of osteoblasts and
osteoclasts, respectively, and the plasma concentration of osteocalcin
(OST) as a biomarker reflecting the combined action of osteoblasts
and osteoclasts. In addition, bone mineral density (BMD) in lumbar
spine and total hip were included as the primary clinical biomarkers
in the model (Post et al., 2013). Wide differences in the dynamics of
the turnover of the biomarkers were observed. While the dynamics of
bone turnover markers changes rapidly, closely following changes in
the activity of bone cells, changes in BMD were slower. Application of
the reduced mechanism-based disease systems model to the clinical
data allowed for an adequate description of the data and yielded param-
eter estimates that are consistent with physiological values reported in
the literature (Lemaire et al., 2004). The used model enabled
ment on disease progression in type 2 diabetes mellitus. This model contains homeostatic
-forward between FPG and glycosylated hemoglobin A1c (HbA1c).



Fig. 9. Schematic illustration of the bone-cell interactionmodel to analyze the effect of drug treatment on disease progression in osteoporosis. The originalmodel by Lemaire et al. (2004))
was mathematically reduced without compromising its dynamic properties.
From: Schmidt et al. (2011).

12 M. Danhof / European Journal of Pharmaceutical Sciences 94 (2016) 4–14
characterization of (i) the critical time scales involved in disease pro-
gression, (ii) the dynamics of the system during onset and offset of
the therapeutic intervention, and (iii) the distinction between re-
sponders and low-responders to tibolone treatment.

4. Summary and conclusions

In this contribution the concept of systems pharmacology modeling
is introduced as an approach to predict the effect of drug treatment on
biological systems behavior. Systems pharmacology considers a biolog-
ical network structure, rather than a single transduction pathway as the
basis of drug action. As a result systems pharmacology models are ex-
tensions of traditional mechanism-based PKPD models, which contain
expressions to characterize the pharmacodynamic interactions in bio-
logical networks. Receptor theory constitutes the scientific basis for
modeling of pharmacodynamic interactions and mathematical expres-
sions have been developed to account for differentmechanisms of inter-
action: interdependence, allosterism, modulation, summation, bliss
independence and competition. The application of these models is not
limited to the analysis of drug-drug interactions per se. They also consti-
tute a basis for the modeling of the interactions in cascading turnover
models which are increasingly used to describe complex patterns of
pharmacological responses and disease progression.

The identification of systems pharmacology models constitutes a
significant challenge, given the complexity of the models structure.
Through the application of advanced mathematical principles, based
on redefinition of variables, the number of parameters in a model may
be reduced without affecting the dynamic behavior (Post et al., 2013;
Schmidt et al., 2011; Zuideveld et al., 2001). This has enabled the iden-
tification of complex pharmacodynamic and disease progression
models.

Progress in the field of systems biology will lead to novel insights in
themechanisms of disease and the identification of novel drugs targets.
This will lead to the development of novel “systems therapeutic” inter-
ventions. Such interventions will be ‘precision treatments’, which differ
inmanyways from traditional drugs. Systems therapeutic interventions
will be: i) personalized, bothwith respect to the selection of thedrug (or
the combination of drugs) and the dose, ii) diseasemodifying, leading to
preventive and pre-emptive treatment modalities and iii) complex,
based on a rational combinations of multiple drugs, drugs combined
with intelligent drug delivery systems. Given their complexity, systems
therapeutic interventions cannot be developed nor be applied in clinical
practice by trial and error. Instead, model-based approaches will be
paramount.

It is concluded that on the basis of biological insight, the use of smart
study designs, and the application of advancedmathematical and statis-
tical techniques, meaningful systems pharmacology models can be
developed and identified, which constitute a scientific basis for the
development and clinical implementation of novel systems therapeutic
interventions.
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