A note on the boundary of the set where the decreasingly ordered spectra of symmetric doubly stochastic matrices lie

Bassam Mourad

Faculty of Science, Lebanese International University (LIU), Beirut Campus, Al-Mouseitbeh, P.B. Box 14-6404, Beirut, Lebanon

Received 12 February 2003; accepted 17 December 2005
Available online 8 February 2006
Submitted by R.A. Brualdi

Abstract

In this paper, we study the region Θ_n^s of \mathbb{R}^n where the decreasingly ordered spectra of all the $n \times n$ symmetric doubly stochastic matrices lie with emphasis on the boundary set of Θ_n^s. As applications, we study the case $n = 4$ and in particular we solve the inverse eigenvalue problem for 4×4 symmetric doubly stochastic matrices of trace zero by using different techniques than that used in [H. Perfect, L. Mirsky, Spectral properties of doubly stochastic matrices, Monatsh. Math. 69 (1965) 35–57]. Also, we solve the same problem for 4×4 symmetric doubly stochastic matrices of trace two which serves only to illustrate this paper’s method. In addition, we describe a nonconvex region E_f of Θ_4^s which corresponds to new sufficient conditions for the 4×4 symmetric doubly stochastic matrices. At the end, we conjecture that $E_f = \Theta_4^s$.

© 2005 Elsevier Inc. All rights reserved.

AMS classification: 15A12; 15A18; 15A42; 15A48

Keywords: Doubly stochastic matrices; Inverse eigenvalue problem

1. Introduction

An $n \times n$ matrix with real entries is nonnegative (positive) if all of its entries are nonnegative (positive). If A and B are two $n \times n$ nonnegative matrices, and if there exists a permutation matrix

E-mail address: bassamm1@terra.net.lb

0024-3795/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
P such that $B = P^T A P$, then we say that A and B are cogredient. If A is cogredient to a matrix of the form
\[
\begin{pmatrix}
A_1 & 0 \\
A_2 & A_3
\end{pmatrix},
\]
where A_1 and A_3 are square matrices, then A is called reducible. Otherwise A is said to be irreducible. Clearly a positive matrix is irreducible.

A doubly stochastic matrix is a nonnegative matrix such that each row and column sum is equal to 1. The theory of doubly stochastic matrices has been the object of study for a long time. This particular interest in this theory as well as the theory of nonnegative matrices, stems from the fact that it has applications in Physics, Engineering, Economics and Operations Research (see [5]).

An intriguing problem in this theory is the inverse eigenvalue problem for doubly stochastic matrices which is concerned with finding necessary and sufficient conditions that n complex numbers be the eigenvalues of an $n \times n$ doubly stochastic matrix. This problem is essentially equivalent to the problem of finding the region Θ_n of \mathbb{C}^n where the spectra of all $n \times n$ doubly stochastic matrices lie. A subproblem of this problem is the symmetric inverse eigenvalue problem for doubly stochastic matrices which is in turn equivalent to describing the region Θ_n^s of \mathbb{R}^n where the decreasingly ordered spectra of all $n \times n$ symmetric doubly stochastic matrices lie. More precisely, $\Theta_n^s = \{ \lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{R}^n : 1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq -1 \}$ and there exists an $n \times n$ symmetric doubly stochastic with spectrum λ. For more on this subject see [9,17,15,19,20] and the references therein. For more on nonnegative matrices see [1–3,8,14].

In this paper, we are concerned with the study of the region Θ_n^s with emphasis on the case $n = 4$. Note that the case $n = 2$ is trivial (see Section 3) while the case $n = 3$ was solved in [17,20] (see also [16] for a geometric solution to this problem).

This paper is organized as follows. In Section 2, we study the boundary of the region Θ_n^s. Section 3 deals with the case $n = 4$. In particular, we solve the inverse eigenvalue problems for 4×4 symmetric doubly stochastic of trace zero and that of trace two which as mentioned earlier illustrates the new techniques used in this paper for these types of inverse problems. In addition, we prove some new results including describing a nonconvex region E_f of Θ_n^s, and based on some numerical computations not included here, we conjecture that $E_f = \Theta_n^s$.

First we establish some notation. Let $M_n^+(n)$ be the class of all $n \times n$ symmetric nonnegative matrices. The set of all $n \times n$ doubly stochastic (resp. symmetric doubly stochastic) matrices is denoted by D_n (resp. D_n^s). Let I_n be the $n \times n$ identity matrix, J_n the $n \times n$ matrix all of whose entries are $\frac{1}{n}$, and K_n the $n \times n$ matrix whose diagonal entries are all zeros and whose off-diagonal entries are all equal to $\frac{1}{n-1}$. If p_1, p_2, \ldots, p_n are any points in \mathbb{R}^n or in $M_n^+(n)$, then their convex hull will be denoted by Conv(p_1, p_2, \ldots, p_n), and $p_i p_j = [p_1, p_j]$ will denote the line-segment joining p_i to p_j for $i, j = 1, 2, \ldots, n$.

Next let $E : M_n^+(n) \to \mathbb{R}^n$ be the map defined by $E(X) = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ where $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ is the decreasingly ordered set of eigenvalues of the matrix X. Clearly by definition $E(D_n^s) = \Theta_n^s$, and also it is easy to see that $E(I_n) = (1, 1, \ldots, 1)$. Moreover, in [15] we proved the following:

Lemma 1.1. $E(J_n) = (1, 0, \ldots, 0)$ and $E(K_n) = \left(1, -\frac{1}{n-1}, \ldots, -\frac{1}{n-1}\right)$.

Now concerning Θ_n and Θ_n^s, we have the following theorem for which the proof can be found in [15].
Theorem 1.2. For $n \geq 4$, Θ_n^s and Θ_n are not convex.

Recall that A_n is a convex polytope of dimension $(n - 1)^2$ where its vertices are the $n \times n$ permutation matrices (see [6]). On the other hand, A_n^s is a convex polytope of dimension $\frac{1}{2}n(n - 1)$, where its vertices were determined in [10] (see also [7]), and where it was proved that if A is a vertex of A_n^s, then $A = \frac{1}{2}(P + P^T)$ for some permutation matrix P, although not every $\frac{1}{2}(P + P^T)$ is a vertex.

Finally, we end with the following definition which is useful for our study, and will be used in the next theorem.

Definition 1.3. A set Γ_n of \mathbb{R}^n is said to be star convex with respect to a point $p \in \mathbb{R}^n$ if the line from any point in the set to p is also contained in Γ_n.

In [15], we proved the following:

Theorem 1.4. The region Θ_n^s is star convex with respect to any point of the line-segment $E(I_nK_n) = E(I_n)E(K_n) = \left[(1, 1, \ldots, 1), (1, -\frac{1}{n-1}, \ldots, -\frac{1}{n-1}) \right]$.

2. Boundary sets of Θ_n^s

Let $T_n = \{ \lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{R}^n : 1 = \lambda_1 \geq \lambda_2 \geq \cdots \lambda_n \geq -1$ and $1 + \lambda_2 + \cdots + \lambda_n \geq 0 \}$. Then T_n is a convex polytope where its vertices were determined in [13] and where it is shown that Θ_n^s is strictly contained in T_n. Next, we have the following definitions:

Definition 2.1. A point $\lambda = (\lambda_1, \ldots, \lambda_n)$ in Θ_n^s is said to be wall-boundary if $\lambda_i = \lambda_j$ for some $i \neq j$.

Clearly the E-image of any reducible matrix in A_n^s is wall-boundary since the eigenvalue value 1 is repeated. Wall-boundary points for any subset Γ_n of T_n are defined analogously.

Definition 2.2. A point $\lambda = (1, \lambda_2, \ldots, \lambda_n)$ in Θ_n^s is said to be extreme-boundary if for all $a > 1$, $a\lambda + (1 - a)E(I_n)$ is not the spectrum of any $n \times n$ symmetric doubly stochastic matrix.

Roughly speaking, a point λ in Θ_n^s is extreme-boundary if moving in the direction $\overrightarrow{E(I_n)\lambda}$, we do not stay in Θ_n^s. More generally, a point λ in a subset Γ_n of T_n is said to be extreme-boundary, if moving in the direction $\overrightarrow{E(I_n)\lambda}$, we do not stay in Γ_n.

One class of extreme-boundary points for Θ_n^s is the set $E(A_n^s(0))$, where $A_n^s(0)$ is the convex polytope of $n \times n$ trace zero symmetric doubly stochastic matrices. Indeed, if $\lambda = (1, \lambda_2, \ldots, \lambda_n) \in E(A_n^s(0))$, then for all $a > 1$, λ is not the spectrum of any $n \times n$ symmetric doubly stochastic matrix. Since otherwise there would exist an $a > 1$ and $A \in A_n^s$ such that $E(A) = a(1, \lambda_2, \ldots, \lambda_n) + (1 - a)E(I_n)$. However the trace of the doubly stochastic matrix A is equal to $n(1 - a) < 0$, which is not possible.

A point $(1, \lambda_2, \ldots, \lambda_n)$ in Θ_n^s (or in any subset Γ_n of T_n) is said to be boundary if it is either wall-boundary or extreme-boundary in that set.
Recall that if α is an eigenvalue of a symmetric doubly stochastic matrix, then by the Perron–Frobenius Theorem $-1 \leq \alpha \leq 1$. Thus we have the following:

Proposition 2.3. Let $\lambda = (1, \lambda_2, \ldots, \lambda_{n-1}, -1)$ be in Θ_n^s. Then λ is boundary.

Boundary points of Θ_n^s in the hyperplane $\lambda_n = -1$ are characterized by the following theorem for which the proof can be found in [15].

Theorem 2.4. Let $\lambda = (1, \lambda_2, \ldots, \lambda_{n-1}, -1)$ with $1 > \lambda_2 \geq \cdots \geq \lambda_{n-1} > -1$. Then

- If $n = 2k$ even, then $\lambda \in \Theta_n^s$ if and only if $\lambda = (1, \lambda_2, \ldots, \lambda_k, -\lambda_k, \ldots, -\lambda_2, -1)$.
- If $n = 2k + 1$ odd, then λ cannot be in Θ_n^s.

Note that the interior of Δ_n^s consists of all $n \times n$ positive symmetric doubly stochastic matrices. The next proposition is concerned with the E-image of this class of matrices.

Proposition 2.5. Let X be in Δ_n^s such that $E(X)$ is not wall-boundary. If all the diagonal entries of X are positive then $E(X)$ is not extreme-boundary in Θ_n^s. In particular, the E-image of every positive symmetric doubly stochastic matrix is not extreme-boundary in Θ_n^s.

Proof. Let $X = (x_{ij})$ and $x = \min(x_{ii}) i = 1, \ldots, n$. Define $a = \frac{1}{1-x}$ then $a > 1$ as $x < 1$ and $aE(X) + (1 - a)E(I_n)$ is the spectrum of the $n \times n$ symmetric doubly stochastic $aX + (1 - a)I_n$. \square

Although Proposition 2.5 shows that no interior point in Δ_n^s can have an extreme-boundary E-image, however we could have interior points in Δ_n^s for which their E-images are wall-boundary such as $E(J_n) = (1, 0, \ldots, 0)$.

The importance of boundary points lies in the fact that characterizing all boundary points of Θ_n^s is equivalent to solving the inverse eigenvalue problem for $n \times n$ symmetric doubly stochastic matrices. Boundary points for the real nonnegative inverse eigenvalue problem have been studied in [4,11].

3. Applications

This section is devoted to the study of the case $n = 4$. The case $n = 2$ is straightforward since Θ_2^s is equal to the line-segment $[(1, 1), (1, -1)]$. For the case $n = 3$, (see [17,16,20]),

$$\Theta_3^s = \text{Conv}\left((1, 1, 1), (1, 1, -1), (1, -\frac{1}{2}, -\frac{1}{2})\right).$$

For the case $n = 4$, following [10,7], the vertices of Δ_4^s are given by

$$P_1 = I_4,$$

$$P_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

$$P_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

$$P_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
Lemma 3.1. $P_8 = 2 \left(\frac{P_2 + P_3}{2} \right) - I_4$, $P_9 = 2 \left(\frac{P_2 + P_3}{2} \right) - I_4$, $P_{10} = 2 \left(\frac{P_2 + P_3}{2} \right) - I_4$, $P_{11} = 3 \left(\frac{P_8 + P_9 + P_6}{3} \right) - \frac{1}{2} I_4$, $P_{12} = 3 \left(\frac{P_2 + P_3 + P_4}{3} \right) - \frac{1}{2} I_4$, $P_{13} = 3 \left(\frac{P_8 + P_9 + P_7}{3} \right) - \frac{1}{2} I_4$, $P_{14} = 3 \left(\frac{P_2 + P_3 + P_4}{3} \right) - \frac{1}{2} I_4$, $J_4 = P_{11} P_{12} P_{13} P_{14}$ and $K_4 = \frac{P_8 + P_9 + P_{10}}{3}$.

Lemma 3.2. P_{11} commutes with $\{P_4, P_5, P_6\}$, and so does P_{12} with $\{P_2, P_3, P_4\}$. Also P_{13} commutes with $\{P_3, P_5, P_7\}$, and P_{14} commutes with $\{P_2, P_6, P_7\}$. Moreover $\{P_2, P_5, P_8\}$ commute and so do $\{P_3, P_6, P_9\}$ and $\{P_4, P_7, P_{10}\}$.

Next define

$$P_{15} = \frac{1}{2} (P_2 + P_5) = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 \end{pmatrix},$$

and

$$P_{16} = \frac{1}{2} (P_8 + P_9) = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 1/2 & 0 \end{pmatrix}.$$
Our main results in this section are based on the fact that commuting matrices are simultaneously diagonalizable. In addition, the actual analysis here depends on the three matrices \(U \), \(V \) and \(W_a \), where

\[
U = \frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix},
\]

\[
V = \begin{pmatrix}
1/2 & 1/2 & 1/\sqrt{2} & 0 \\
1/2 & 1/2 & -1/\sqrt{2} & 0 \\
1/2 & -1/2 & 0 & -1/\sqrt{2} \\
1/2 & -1/2 & 0 & 1/\sqrt{2}
\end{pmatrix},
\]

and

\[
W_a = \begin{pmatrix}
1/2 & 1/2 & \frac{2a+\sqrt{5a^2-2a+1}}{2\sqrt{1-2a+5a^2+2a\sqrt{1-2a+5a^2}}} & -\frac{-1+a}{2\sqrt{1-2a+5a^2+2a\sqrt{1-2a+5a^2}}} \\
1/2 & 1/2 & -\frac{2a+\sqrt{5a^2-2a+1}}{2\sqrt{1-2a+5a^2+2a\sqrt{1-2a+5a^2}}} & -\frac{-1+a}{2\sqrt{1-2a+5a^2+2a\sqrt{1-2a+5a^2}}} \\
1/2 & -1/2 & \frac{-2a+\sqrt{5a^2-2a-1}}{2\sqrt{1-2a+5a^2+2a\sqrt{1-2a+5a^2}}} & -\frac{-1-a}{2\sqrt{1-2a+5a^2+2a\sqrt{1-2a+5a^2}}} \\
1/2 & -1/2 & \frac{2a+\sqrt{5a^2-2a-1}}{2\sqrt{1-2a+5a^2+2a\sqrt{1-2a+5a^2}}} & -\frac{-1-a}{2\sqrt{1-2a+5a^2+2a\sqrt{1-2a+5a^2}}}
\end{pmatrix},
\]

where \(0 \leq a \leq 1 \). Note that by inspection \(U \), \(V \) and \(W_a \) are orthogonal and for \(a = 0 \), \(W_0 = U \) and for \(a = 1 \), \(W_1 = V \).

Let \(A_4^x(0) \) be the set of all \(4 \times 4 \) trace zero symmetric doubly stochastic matrices. Then \(A_4^x(0) = \text{Conv}(P_8, P_9, P_{10}) \), and the next theorem characterizes \(E(A_4^x(0)) \) and hence solves the inverse eigenvalue problem for the \(4 \times 4 \) trace zero symmetric doubly stochastic matrices, which had been proved before in [17]. The construction done here is the same as that used in [12,18] albeit arrived at by different means.

Theorem 3.3. \(E(A_4^x(0)) = \text{Conv}\left(\{(1, 0, 0, -1), (1, 1, -1, -1), (1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3})\}\right) \). Also, \(E(A_4^x(0)) \) is an extreme-boundary surface in \(\Theta_4^x \).

Proof. It is easy to check that for \(0 \leq a \leq 1 \), \(U^T[aP_8 + (1-a)P_{16}]U \) is equal to

\[
a \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} + (1-a) \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}.
\]

Therefore the \(E \)-image of the line-segment \(P_8P_{16} \) is the line-segment joining the point \((1, 1, -1, -1)\) to \((1, 0, 0, -1)\). By Theorem 1.4, \(\Theta_4^x \) is star convex with respect to \(E(K_4) = \left(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right)\), then \(\text{Conv}\left(\{(1, 0, 0, -1), (1, 1, -1, -1), (1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3})\}\right) \) is contained in \(E(A_4^x(0)) \subset \Theta_4^x \). To prove the equality, it suffices to see that \(E(A_4^x(0)) \) is contained in the intersection of the plane \(1 + x + y + z = 0 \) with \(\Gamma \) which is just \(\text{Conv}\left(\{(1, 0, 0, -1), (1, 1, -1, -1), (1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3})\}\right) \). \(\square \)
Corollary 3.4 [17]. Let $1 \geq x \geq y \geq z \geq -1$. If $1 + x + y + z = 0$, then $(1, x, y, z)$ is the spectrum of a 4×4 symmetric doubly stochastic matrix of trace zero.

Next define $A_4^4(2) = \text{Conv}\{P_2, P_3, P_4, P_5, P_6, P_7\}$ as the convex hull of all 4×4 symmetric doubly stochastic matrices of trace two. The next theorem characterizes the E-image of this convex polytope. It is worth mentioning here that the value of this next theorem is mainly in illustrating the methods to be used in Theorem 3.10 below.

Theorem 3.5. $E(A_4^4(2)) = \text{Conv}\{(1, 1, 0, 0), (1, 1, 1, -1), \left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\} \subset \Theta_4^4$.

Proof. Then for $0 \leq a \leq 1$, an inspection shows that $V^T[aP_2 + (1-a)P_{15}]V$ is given by

$$a \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} + (1-a) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Thus the line-segment $[(1, 1, 1, -1), (1, 1, 0, 0)]$ is contained in Θ_4^4. Since Θ_4^4 is star convex with respect to any point of the line-segment $\left[(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}), (1, 1, 1, 1)\right]$ and in particular it is star convex with respect to the point $\left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. As a result $\text{Conv}\{(1, 1, 0, 0), (1, 1, 1, -1), \left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\}$ is contained in Θ_4^4. Since all the matrices in $A_4^4(2)$ are of trace two, therefore $E(A_4^4(2))$ is contained in the plane $x + y + z = 1$. However, it is easy to see that the intersection of Γ with the plane $x + y + z = 1$ is just $\text{Conv}\{(1, 1, 0, 0), (1, 1, 1, -1), \left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\}$. This completes the proof. □

Corollary 3.6. Let $1 \geq x \geq y \geq z \geq -1$. If $1 + x + y + z = 2$, then $(1, x, y, z)$ is the spectrum of a 4×4 symmetric doubly stochastic matrix of trace 2.

The next theorem describes the intersection of Θ_4^4 with the hyperplane $z = -1$.

Theorem 3.7. The only subsets of the plane $z = -1$ which are contained in Θ_4^4, are the two line-segments joining $(1, 1, -1, -1)$ to $(1, 0, 0, -1)$ and $(1, 1, -1, -1)$ to $(1, 1, 1, -1)$.

Proof. Let $1 > x > y > -1$. By Theorem 2.4, $\lambda = (1, x, y, -1) \in \Theta_4^4$ if and only if $\lambda = (1, x, -x, -1)$. This gives the line-segment $E(P_8P_{16}) = E(P_8)E(P_{16}) = [(1, 1, -1, -1), (1, 0, 0, -1)]$; that is the E-image of all irreducible (except for P_8) symmetric doubly stochastic matrices in the plane $z = -1$. Moreover, the line-segment $E(P_2P_8) = [(1, 1, -1, -1), (1, 1, 1, -1)]$ is also contained in Θ_4^4 since for $0 \leq a \leq 1$, the matrix $V^T[aP_2 + (1-a)P_8]V$ is equal to

$$a \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} + (1-a) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

which is the E-image of all the reducible symmetric doubly stochastic matrices in the plane $z = -1$. □
The following lemma will be needed to conclude the results of Theorem 3.10 below.

Lemma 3.8. Let $0 \leq a \leq 1$, then $E(aP_2 + (1 - a)P_{16})$ is a curve γ in the plane $x - y - z = 1$ given by:

$$
\left(1, a, \frac{1}{2} \left(a - 1 + \sqrt{5a^2 - 2a + 1}\right), \frac{1}{2} \left(a - 1 - \sqrt{5a^2 - 2a + 1}\right)\right).
$$

Proof. For $0 \leq a \leq 1$, a simple check shows that $W_a^T[aP_2 + (1 - a)P_{16}]W_a$ is equal to

$$
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & \frac{1}{2} \left(-1 + a + \sqrt{5a^2 - 2a + 1}\right) & 0 \\
0 & 0 & 0 & \frac{1}{2} \left(-1 + a - \sqrt{5a^2 - 2a + 1}\right)
\end{pmatrix}.
$$

Note that $\frac{1}{2} \left(-1 + a + \sqrt{5a^2 - 2a + 1}\right) \geq \frac{1}{2} \left(-1 + a - \sqrt{5a^2 - 2a + 1}\right)$ for all a and $a \geq \frac{1}{2} \left(-1 + a + \sqrt{5a^2 - 2a + 1}\right)$, and only if $0 \leq a \leq 1$. Finally, it is easy to see that the point

$$
\left(1, a, \frac{1}{2} \left(a - 1 + \sqrt{5a^2 - 2a + 1}\right), \frac{1}{2} \left(a - 1 - \sqrt{5a^2 - 2a + 1}\right)\right)
$$

is in the plane $x - y - z = 1$, and the proof is complete. □

Our next theorem defines the surface (s), which will be used to define the region E_f of Θ_4^s that corresponds to new sufficient conditions for the 4×4 symmetric doubly stochastic matrices which are given by Theorem 3.10.

Theorem 3.9. The E-image of Conv(P_8, P_2, P_{16}) is the surface (s) obtained by joining $E(P_8) = (1, 1, -1, -1)$ to the curve γ via straight lines.

Proof. The proof can be easily seen from the fact that for $0 \leq a \leq 1$, and $0 \leq b \leq 1$ then $W_a^T[bP_8 + (1 - b)[aP_2 + (1 - a)P_{16}]]W_a$ is equal to

$$
b \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} + (1 - b) \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & \frac{1}{2} \left(-1 + a + \sqrt{5a^2 - 2a + 1}\right) & 0 \\
0 & 0 & 0 & \frac{1}{2} \left(-1 + a - \sqrt{5a^2 - 2a + 1}\right)
\end{pmatrix}.
$$

This completes the proof. □

Recall that the region Θ_4^s is star convex with respect to any point of the line-segment $[E(I_4), E(K_4)]$. Then the region E_f of \mathbb{R}^4 obtained by joining the line-segment $[(1, 1, 1, 1), (1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3})]$ to the set
is contained in Θ_4^s, where (s) is the surface defined in Theorem 3.9.

As a result, the region E_f can roughly be described as follows. Let (s') and (s'') be respectively the surfaces obtained by joining $(1, 1, 1, 1)$ and $(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3})$ to the curve γ. Then (s') and (s'') intersect along a curve β (see Figs. 1 and 2)\(^1\) so that the part (ps') of (s') bounded by the curve β, the curve γ and the line-segment $\left[(1, 0, 0, -1), (1, \frac{1}{5}, \frac{1}{5}, -\frac{3}{5})\right]$, where $\left(1, \frac{1}{5}, \frac{1}{5}, -\frac{3}{5}\right)$ is the intersection of the two line-segments $E(I_4P_{16}) = [(1, 1, 1, 1), (1, 0, 0, -1)]$ of (s') and $E(K_4P_2) = \left[(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}), (1, 1, 1, -1)\right]$ of (s''), is an extreme-boundary surface for E_f. Also, the part (ps'') of (s'') bounded by the curve β, the curve γ and the line-segment $\left[(1, 1, 1, -1), (1, \frac{1}{5}, \frac{1}{5}, -\frac{3}{5})\right]$ is another extreme-boundary surface for E_f. Moreover, the remaining extreme-boundary surfaces of E_f are the surface (s) and the plane-surface $\text{Conv}\left((1, 1, 1, 1), (1, 0, 0, -1)\right)$. However, the wall-boundary surfaces of E_f are given by

\begin{align*}
\text{Conv}\left((1, 1, 1, 1), (1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}), (1, 0, 0, -1)\right), \\
\text{Conv}\left((1, 1, 1, 1), (1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}), (1, 1, 1, -1)\right), \\
\text{Conv}((1, 1, 1, 1), (1, 1, 1, -1), (1, 1, 1, -1)),
\end{align*}

\(^1\) Generated by Maple.
An alternative way of obtaining the region \(E_f \) is by joining the point \((1, 1, 1, 1)\) to the surface \((s), (s'), (s'')\) and \(\text{Conv}\left((1, 1, -1, -1), \left(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right), (1, 0, 0, -1)\right)\) (see Fig. 2).

Fig. 2. A view of the surfaces \((s), (s')\) and \((s'')\).

\[
\text{Conv}\left((1, 1, 1, 1), \left(1, \frac{1}{5}, \frac{1}{5}, -\frac{3}{5}\right), (1, 1, 1, -1)\right).
\]

More precisely, these surfaces can be described as follows. By Theorem 3.3, the \(E\)-image of \(\text{Conv}(P_8, K_4, P_{16})\) is given by

\[
E(\text{Conv}(P_8, K_4, P_{16})) = \text{Conv}\left((1, 1, -1, -1), \left(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right), (1, 0, 0, -1)\right)
\]

since for \(0 \leq a \leq 1\) and \(0 \leq b \leq 1\),

\[
E(bP_8 + (1 - b)[aK_4 + (1 - a)P_{16}]) = \left(1, b - \frac{a}{3}(1 - b), -b - \frac{a}{3}(1 - b), \frac{2}{3}a(1 - b) - 1\right).
\]

Now by Theorem 3.9, the surface \((s)\) which is the \(E\)-image of \(\text{Conv}(P_8, P_2, P_{16})\) is given by \(E(bP_8 + (1 - b)[aP_2 + (1 - a)P_{16}]\) and is equal to
Similarly, from (3) we obtain
\[b(1, 1, -1, -1) + (1 - b) \]
\[\times \left[\left(a, \frac{1}{2} \left(a - 1 + \sqrt{5a^2 - 2a + 1} \right), \frac{1}{2} \left(a - 1 - \sqrt{5a^2 - 2a + 1} \right) \right) \right]. \] (2)

On the other hand, making use of Lemma 3.8, the surface \((s'')\) can be defined explicitly as \(E(bK_4 + (1 - b)[aP_2 + (1 - a)P_{16}])\) and is equal to
\[b \left(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3} \right) + (1 - b) \]
\[\times \left[\left(a, \frac{1}{2} \left(a - 1 + \sqrt{5a^2 - 2a + 1} \right), \frac{1}{2} \left(a - 1 - \sqrt{5a^2 - 2a + 1} \right) \right) \right]. \] (3)

Also by Lemma 3.8, the surface \((s')\) can be described explicitly in a similar fashion by \(E(bI_4 + (1 - b)[aP_2 + (1 - a)P_{16}])\) and is equal to
\[b(1, 1, 1, 1) + (1 - b) \]
\[\times \left[\left(a, \frac{1}{2} \left(a - 1 + \sqrt{5a^2 - 2a + 1} \right), \frac{1}{2} \left(a - 1 - \sqrt{5a^2 - 2a + 1} \right) \right) \right]. \] (4)

From (1), the \(E\)-image of \(\text{Conv}(P_8, K_4, P_{16})\) is the set of \((x, y, z)\) satisfying: \(1 \geq x \geq y \geq z \geq -1\) and
\[1 + x + y + z = 0. \] (5)

From (2), we have
\[
\begin{aligned}
x &= a(1 - b) + b, \\
y &= \frac{1}{2} \left[a(1 - b) - b - 1 + (1 - b)\sqrt{5a^2 - 2a + 1} \right], \\
z &= \frac{1}{2} \left[a(1 - b) - b - 1 - (1 - b)\sqrt{5a^2 - 2a + 1} \right],
\end{aligned}
\]
so that \(b = \frac{1}{3}(x - y - z - 1)\) and \(a = \frac{x + y + z + 1}{5 - x - y - z}\). Substituting these values of \(a\) and \(b\) in the equation \(y - z = (1 - b)\sqrt{5a^2 - 2a + 1}\) to obtain the surface \((s)\) as the subset of \(I'\) defined by
\[y - z - \sqrt{2x^2 + y^2 + z^2 + 2xy + 2xz + 2yz + 2y + 2z + 2} = 0. \] (6)

Similarly, from (3) we obtain
\[
\begin{aligned}
x &= a(1 - b) - \frac{1}{3}b, \\
y &= \frac{1}{2} \left[a(1 - b) + b + \frac{1}{3} - 1 + (1 - b)\sqrt{5a^2 - 2a + 1} \right], \\
z &= \frac{1}{2} \left[a(1 - b) + b + \frac{1}{3} - 1 - (1 - b)\sqrt{5a^2 - 2a + 1} \right],
\end{aligned}
\]
so that \(b = \frac{3}{2}(y + z - x + 1)\) and \(a = \frac{x + y + z + 1}{3x - 3y - 3z - 1}\). Substituting these values of \(a\) and \(b\) in the equation \(y - z = (1 - b)\sqrt{5a^2 - 2a + 1}\), we obtain the surface \((s'')\) as the subset of \(I'\) defined by
\[y - z - \sqrt{2x^2 + 5y^2 + 5z^2 - 2xy - 2xz + 10yz + 6y + 6z + 2} = 0. \] (7)
Also from (4), we have
\[
\begin{align*}
x &= a(1 - b) + b, \\
y &= \frac{1}{2} \left[a(1 - b) + 3b - 1 + (1 - b)\sqrt{5a^2 - 2a + 1} \right], \\
z &= \frac{1}{2} \left[a(1 - b) + 3b - 1 - (1 - b)\sqrt{5a^2 - 2a + 1} \right],
\end{align*}
\]
so that \(b = \frac{1}{2}(y + z - x + 1) \) and \(a = \frac{3x - y - z - 1}{x - y - z + 1} \). Substituting these values of \(a \) and \(b \) this time in the equation \(y - z = (1 - b)\sqrt{5a^2 - 2a + 1} \), we obtain the surface \((s') \) as the subset of \(\Gamma \) defined by
\[
y - z - \sqrt{10x^2 + y^2 + z^2 - 6xy - 6xz + 2yz - 8x + 2y + 2z + 2} = 0.
\]

Hence the region \(E_f \) which also can be defined as the set of real 4-tuples \((x, y, z)\) where \(1 \geq x \geq y \geq z \geq -1 \) and \((x, y, z)\) satisfies simultaneously the following conditions:
\[
\begin{align*}
x + y + z + 1 &\geq 0, \\
y - z - \sqrt{2x^2 + y^2 + z^2 + 2xy + 2xz + 2yz + 2y + 2z + 2} &\leq 0, \\
y - z - \sqrt{2x^2 + 5y^2 + 5z^2 - 2xy - 2xz + 10yz + 6y + 6z + 2} &\leq 0, \\
y - z - \sqrt{10x^2 + y^2 + z^2 - 6xy - 6xz + 2yz - 8x + 2y + 2z + 2} &\leq 0.
\end{align*}
\]
is contained in \(\Theta_4^s \). Thus we have established the following:

Theorem 3.10. Let \(1 \geq x \geq y \geq z \geq -1 \). If \((x, y, z)\) satisfies simultaneously
\[
\begin{align*}
x + y + z + 1 &\geq 0, \\
y - z - \sqrt{2x^2 + y^2 + z^2 + 2xy + 2xz + 2yz + 2y + 2z + 2} &\leq 0, \\
y - z - \sqrt{2x^2 + 5y^2 + 5z^2 - 2xy - 2xz + 10yz + 6y + 6z + 2} &\leq 0, \\
y - z - \sqrt{10x^2 + y^2 + z^2 - 6xy - 6xz + 2yz - 8x + 2y + 2z + 2} &\leq 0.
\end{align*}
\]
then \((x, y, z)\) is the spectrum of a \(4 \times 4 \) symmetric doubly stochastic matrix.

Note that for each point \(p \) in \(E_f \) it is easy to construct the solution matrix \(X \in A_4^s \) such that \(E(X) = p \).

With extensive numerical computations (using Maple) we are unable to find any \(4 \times 4 \) symmetric doubly stochastic matrix for which its \(E \)-image is outside the region \(E_f \), however at this stage we are not able to prove this claim. This readily suggests the following conjecture:

Conjecture 3.11. Let \(1 \geq x \geq y \geq z \geq -1 \). Then \((x, y, z)\) is the spectrum of a \(4 \times 4 \) symmetric doubly-stochastic matrix if and only if \((x, y, z)\) belongs to \(E_f \). That is \(\Theta_4^s = E_f \).

Acknowledgments

Many thanks go to the referee for many constructive comments and suggestions.

References
