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ABSTRACT

We study the relationship between the zero-nonzero pattern of an invertible
matrix and the vanishing minors of the matrix and of its inverse. In particular we show
how to determine when a matrix B could be the inverse of a matrix A with a given
zero-nonzero pattern. In fact, there is always a set of almost principal minors of B (in
one-to-one correspondence with the set of zero entries of A) whose vanishing implies
that B! has zeros everywhere that A does, provided certain principal minors of B
do not vanish.

1. INTRODUCTION

We study the relationships between the zero-nonzero pattern of a square,
invertible matrix A and the zero minors of A and of A™!. We confine our
attention to the case in which A is irreducible and all diagonal entries of A
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are nonzero. As a matrix must have a generalized diagonal of all nonzero
entries in order to be invertible, there is little loss of generality in our
assumptions. We note that for almost every matrix A satisfying our assump-
tions, all entries of A™! will be nonzero.

There are two primary aspects of this topic. First, we say that a minor of
A is generically zero provided that the corresponding minor of every matrix
with the same zero-nonzero pattern as A is zero. If a matrix A has several
zero entries, these may imply, depending upon their location in A, that some
minors of A are generically zero. Because of Jacobi’s identities [8], the
vanishing of a minor of A implies the vanishing of a certain minor of
B=A"' How may we describe all the minors of B that vanish because of
the zero pattern of A? Since all entries of B will typically be nonzero, the
vanishing minors in B do not vanish generically. Nevertheless, when such
minors in B vanish, they may collectively imply that certain entries of A
must be zero. This suggests the second aspect of our problem. From which
sets of vanishing minors in B can we recover the zero-nonzero pattern of A?
In particular, can minimal sets of vanishing minors in B that compel A to
have a specified zero-nonzero pattern be identified?

Such questions have previously been studied in several highly structured
cases:

(a) the matrix A is tridiagonal (e.g., [6, 3],
(b) the matrix A is banded (e.g., [1, 4]),

(c) the matrix A is in “comrade” form [2].

(The comrade matrices are tridiagonal, except that the last row is also allowed
to be nonzero.) The above papers do not fully address the question of
identifying minimal sets of vanishing minors in B (= A™!) that imply the
zero-nonzero pattern of A. Their results on vanishing minors are included
among the general results presented here. See also [11] for a long list of
references about inverses of matrices with specific zero-nonzero structure.

To illustrate the scope of our results we mention two examples. First, let
A = [aS;)] with ag}) # Oexcept foral’),, =0,i=1,...,n — 1,and a{’, =
0. Thus A, has exactly n zero entries. The second example is A, = [ag)] in
which, except along the principal diagonal, ag) # 0 if and only if a%) = 0.
Thus A, has exactly n nonzero entries not on its principal diagonal. Both of
these matrices are irreducible and satisfy a;; # 0, i = 1,2,..., n. Our results
fully address the two aspects of our problem for both of these examples.

In Section 2 we show how to find all of the generically zero minors of A
when its zero-nonzero pattern is given. We then identify the corresponding
vanishing minors of B = A™".

In Section 3 we explain a fundamental relationship that must exist
between the location of zero entries of the matrix A and sets of vanishing
minors of B.



INVERSE ZERO PATTERNS 3

In Section 4 we give one solution to the minimal-set-of-vanishing-minors
problem mentioned above. We prove, in fact, that if certain principal minors
of B =A""' do not vanish and if the matrix A has exactly u zeros among its
entries, then there is always a set of u vanishing almost principal minors of B
that imply that B~! has zeros where A does.

Finally, in Section 5 we present several examples (including the matrices
A, and A, above) that illustrate our results.

2. GENERICALLY VANISHING MINORS

Let N=1{1,2,...,n}, and for « €N let a° be the complement of «
relative to N. We use Al al 8] to denote the submatrix of A in rows a and
columns B. We write Ala| B8] = 0 to indicate that the submatrix in rows «
and columns B is a zero submatrix. When a = 8 we let Ala] = Ala|a], as
is customary. If ||l =|Bland @ N Bl =lal — 1, then Ala|B]is called an
almost principal submatrix. In this event Ala|B] is square, and det Ala| 8]
is called an almost principal minor.

If C is a k Xk matrix, the condition that det C = 0 generically is
classical and given by the following well-known result.

THEOREM A (Frobenius-Konig). Let C be a k X k matrix. Then det C
= 0 generically if and only if there is an r X s submatrix of zero entries of C
withr +s>k+ 1.

This theorem first appeared in [5]; an interesting discussion of the result
as well as a proof using Hall’s theorem may be found in [10].

Theorem A makes it clear that we must concern ourselves with submatri-
ces Ala|B] of A satisfying Ala]B]= 0. Note that for a zero submatrix
consisting of a single zero entry of A we have r + s = 2, so that no minors of
A of size greater than or equal to two will be generically zero because of the
vanishing of a single entry. Therefore we will call a zero submatrix of A
proper if r + s > 3. If a zero entry of A is not contained in any proper zero
submatrix of A, we call it an isolated zero of A. Observe that the matrix A,
introduced above has exactly n isolated zeros and no proper zero submatri-
ces. Notice that a proper zero submatrix is not the same thing as a proper
submatrix.

Because of our assumption that A is irreducible, the following concept is
basic. Let a € N properly. We call a a separator of A if there exists at least
one partition of a° into {nonempty) parts B, vy such that A[ Bly] = 0. Thus
to every separator of A there corresponds at least one zero submatrix of A.
Observe that several zero submatrices may result from a separator of A by
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virtue of the fact that there may be several different partitions of a® meeting
the stated requirements.

LEMMA 1. Let A be an irreducible n X n matrix satisfying a;; # 0
(i =1,2,...,n). Then A has a proper zero submatrix if and only if A has a
separator a with |al <n — 3.

Proof. We have already seen that if A has a separator, it has a zero
submatrix. If the zero submatrix is proper, then |B| + |y| > 3, and hence
lal < n — 3. Thus, the “if” part of the lemma is established. For the
converse, suppose A has a proper zero submatrix Al 8]y] = 0 with | 8] +
lvl > 3. Then, since BN y = & (because of the assumption about diagonal
entries), we define a® = B U v, so that |a°| > 3. This implies that |a| <
n — 3 and « is a separator of A, thus proving the “only if” statement. [ |

A zero submatrix Al a|B]is called maximal if it is not a proper submatrix
of any other zero submatrix of A. Thus Ala|B] = 0 is maximal if and only if
no column of AlalB°] is zero and no row of Ala’/B]=10. If a is a
separator of A, we call it a maximal separator if it induces at least one
maximal zero submatrix of A.

Suppose Al Bly] = 0. Then det A[8]e] = 0 generically if B C 8, y C &,
|6] = |el, and |8] = | B| + |y| — 1. That these are the largest minors of A
required to be generically zero by the existence of the zero submatrix
Al Bly] of A follows from Theorem A. Also Theorem A implies that every
generically zero minor (of size > 2) of A is a maximal (w.r.t. index sets)
minor of A required to be zero by some proper zero submatrix of A. We call
the largest generically zero minors of A corresponding to a proper zero
submatrix of A the generically zero minors of A induced by the zero
submatrix.

THEOREM 2. A minor of A is generically zero if and only if it is a zero
entry or a zero minor induced by a proper zero submatrix of A.

Theorem 2 shows that to find all of the generically zero minors of A we
must find all of the zero minors induced by all proper zero submatrices of A.
The matrix A, introduced above, has no proper zero submatrices; hence, by
Theorem 2, it has no generically zero minors (of size greater than 1). On the
other hand, suppose for the matrix A, that n > 5. Then det A,[l, 2}4,
5] = 0 generically, and it is induced by all of the zero submatrices A,[1l4, 5],
A,[214, 5], A,l1, 214], A,ll, 25]. Of course, A,[l, 2|4, 5] is itself a zero
submatrix; hence the corresponding minor is generically zero. Thus there can
be a great deal of redundancy in finding the set of all generically zero minors
of A by using induced minors of proper zero submatrices. Nevertheless the
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condition of Theorem 2 seems to provide the simplest means of identifying
all generically zero minors of A.

Next suppose that A is invertible, and set B = AL By the Jacobi
identities the following is true: If det A[8]e] = 0 (generically or not), then
det B[£°|6¢] = 0.

COROLLARY 3. If the minor Al8|e] of A vanishes generically, then
det B[£°]8°1 = 0.

We come next to a fundamental result.

THEOREM 4. Let Al Bly] be a zero submatrix of A belonging to the
separator a, and let B = A™'. Then det Bla U {i}la U {j}] =0 for all
i€ Bandadljey.

Proof. Suppose that i € Band j€ y. Let 8=BU y—{i}and e=§
U v — {j}. Then Al Bly]is a zero submatrix of A[&|8]. Theorem A implies
that det A[£]8] vanishes generically. Hence, from the Jacobi identities we
conclude that det Bla U {i}|la U {j}] = 0. [ ]

One final concept is required. Suppose row i of the matrix A has a
nonvoid set of zero entries. This set does not include g;;, since we are
assuming that a;;, # 0, i = 1,2,..., n. We call « the row separator of row i
if the set @ contains exactly the set of indices k for which a;; # 0 excluding
the index i itself. Similarly, when column i of A has a nonvoid set of zero
entries, we call a the column separator of column i if the set «a contains
exactly the set of indices k for which a;; # 0 excluding the index i itself. If a
row {or column) of A contains no zero entries, it does not have a row
(column) separator. For the matrix A, row 2 has the separator a =
{1,4,5,..., n}, while for A, row 2 has the separator a = {3}.

Observe that if a is a row separator for row i and we let

a={keN\{i}a,#0}, B={i}, v={keNa =0}
or if « is a column separator for column i and we let
a={k€N\{i}|aki$0}, B = {i}, y = {k € N|a;; = 0},

then these partitions give a®= B U v, showing that row and column
separators are separators.
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3. ZEROS AND INVERSES

Let the invertible matrix B = [b, j] have inverse A =[a,,]. Use i° as
short for {i}°. Then B[i°[j°]is the submatrix of B obtained by (ieleting oW i
and column j of B. Set B, = det B[j¢|i°]. Obviously a; =0 if and only if
B, = 0.

’ Let{x,, x,,..., x,} be a linearly dependent set of nonzero vectors in R*,
k+1>p We call this a minimally dependent set if any proper subset of
these vectors is a linearly independent set.

For given i € N we denote by r (i) the row vector r. (i) = (b, ...,
bii—1:biiv1s - by, and by ¢,(i) the column vector ¢ (i) = (by,, ...,
by 1 4:biyy1 s by)'. We call (i) a punctured row of B and ¢,(i) a
punctured column.

THEOREM 5. Let B be an n X n matrix satisfying det B[k°] # 0 for
k=1,2,...,n. Suppose A= B~' exists. Then the set of positions of zero
entries in row i of A is the nonempty set {ji, ... ,jp} if and only if {r, (i)
k #j,... ,jp} is a minimally dependent subset of {r,(i)lk = 1,2,..., n}.

Proof. Since det B[i°] # 0, the set {r;(i)lk # i} is a linearly indepen-
dent set of n — 1 vectors in R"~*.Therefore r,(i) is a linear combination of
these vectors. Suppose that r(i) = L, ,; A r.(i). Then the only nontrivial
dependencies of {r (i)l <k < n} have the form L}_, a;r,(i) = 0, where
a;, = —a;A; for k # i. It follows that {r,(i)|A; # 0} U {r,(¢)} is the unique
minimally dependent subset of {r;(i)}. Thus a; = det B[j°li°] = 0 if and
only if j € {k|A, = 0}. [ |

It is clear that a similar relationship holds between the punctured
columns of B and the nonzero entries in the columns of A.

Notice that if the matrix A has an isolated zero as the i, j entry, we have
a; # 0if k # j. It follows that the set {r;(i)lk # j} forms a minimally linearly
dependent subset and every proper subset is independent. Thus the matrix
B[j°li°] has rank n — 2. Therefore we obtain the same unique vanishing
minor of B when A has an isolated zero, no matter whether we use Theorem
5 or the corresponding result for punctured columns.

We remind the reader that { r; l(z ), ..., rjp(z' )} is a dependent set of vectors
in R"~! if and only if every minor of order p of the (n — 1) X p matrix with
these vectors as row vectors is zero. Therefore we have the following corollary
of Theorem 5.

COROLLARY 6. Let B be an n X n irreducible matrix satisfying by, # 0
and det B{k°] # 0 fork = 1,2,..., n. Suppose A = B~ exists. Then the set
of positions of zero entries in row i of A is the nonempty set {j,, ..., j,} if and
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only if det Blj,,..., j,lky,..., k,1 =0 for every set {k,, k,,..., k,} SN\
{i}, and if {1, .. .,lq} is any set of distinct integers contained in N with
q < p,then det Bll,..., lq|k1, el kq] # 0 for at least one set {k,,. .., kq}
c N\ {i}.

Obviously a similar Corollary 6’ holds relative to Theorem 5’. Thus we

have for each i such that row i of B™! has p nonzero entries a family of at

1) vanishing minors of B. These theorems and corollaries do not

least (";
determine how many minors in these families are required to account for all
of the zero entries of A.

However, some further insight is obtained in the following way. We call
two zero entries of the matrix A independent if they lie in different rows and
columns. Define the zero-term rank of A to be the minimum number of rows
and/or columns needed to cover the zero entries of A. The following
Menger-type theorem is easy to prove (see Harary [7, Chapter 5] for
example).

THEOREM 7. The zero-term rank of a square matrix A equals the
maximum number of pairwise independent zero entries of A.

This result tells us that the number of families of vanishing minors of B as
specified in Corollary 6 does not exceed the maximum number of pairwise
independent zero entries of A.

The matrices A} and A, have zero-term rank n, as do the tridiagonal
matrices. On the other hand, the comrade matrices studied in [2] have
zero-term rank n — 1.

4. MINIMAL SETS OF ZERO MINORS

Although the zero-term rank tells us the smallest number of sets of
linearly independent punctured rows of B and/or sets of linearly indepen-
dent punctured columns of B needed to identify the zero-nonzero pattern of
A = B! we can in fact do better by judiciously selecting the vanishing
minors of B. The key to doing this is to make use of Theorem 4 and the next
result.

THEOREM 8. Let B be irreducible, and let det B[i°] # 0,i =1,2,..., n.
Suppose the nonempty sets a, B,y form a partition of N such that det B[ ]
# 0, det Bla U B] # 0, and det B[a U y] # 0, and that det Bla U {i}|a
U{jYl=0 for i€ B, j€vy. Then A=B"" exists, AlBly] is a zero
submatrix of A, and « is a separator of A. Finally, if in addition det Bla U
{iHa U {j}] # 0 for at least one j € y for each i € B° and also for at least
one i € B for each j € v, then a and Al Bly] are maximal.
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Proof. Without loss of generality we may suppose that the rows and
columns of B are permuted so that B ={1,2,..., kL, a={k+1,...., m -
1}, y={m,..., n}, where m > k + 2. Then the matrices C, = [c{’] where
cfjl.) =det Bla U {i}la U {j}] for i,jE€B and C, = [cgj)] where cf?) =
det Bla U {iHla U {j}] for i, j € vy satisfy

det C; = (det B[a])kdet Bla U B],
det C, = (det B[a])" " det B[a U ],

by Sylvester’s identity, and hence are nonzero. On the other hand, the matrix
C = [cij] with ¢y = det Bla U {ila U {j}] for i and j in a° has the form

C,

_ n—m+k+2 .
Cys Cz‘ = (det B[a]) det B;

det C =

hence det C # 0, so det B # 0.
To prove Al Bly]l = 0 we do as follows. Now we have

. a1 Blila] by _
det Bla U {i}|a U {j}] = det[ Bla] B[a|j]] =0
for iep, jevy.

Since det Bla] # 0, this implies that the Schur complement of Blal},
namely bij — Blilal(BlaD'Blelj], is zero. Applying this for all i € B,
j € vy yields

B[ Bly] = B[ Bla](Bl«]) " Blaly].

Then we can write

B[BU aly] = B[ BU ala](B[a]) ' Blaly]. (1)
It follows that
Lip 0 0
A= [B[“(;JB] If’ﬂ] 0 e (BlaD)'Blalv]| (@)
B[yIB] Blyle] B[v]

from (1). We conclude that Al Bly] = 0.
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It remains to establish maximality. Since B is irreducible, so is A, and
detB[i°] # 0,i = 1,2,..., n, implies a;; # 0. Thus Theorem 4 applies to A.
Suppose for contraction that A[ B|y] is not a maximal zero submatrix of A.
Then for some i € B¢ or some j € y° we have Alily] = 0 or Al B|j] = 0.
But then by Theorem 4 we must have det Bla U {i}la U {j}] = 0 either for
an i € B° and all j € y or for a j € ¥° and all i € B, contrary to the
conditions on B. Thus a and A[ Bly] = 0 must be maximal. ]

Notice that it follows from the proof of Theorem 8 that, if B™' exists, the
conditions det Bla] # 0 and det Bla U {iJlaU{j]l=0for i€ B, jey
imply that A[ B|y] = 0 where A = B™'. Therefore we may regard each zero
submatrix of A as being induced by the vanishing of an appropriate set of
almost principal minors of B together with the nonvanishing of an appropri-
ate principal minor of B.

We now apply Theorem 8 to determine conditions on a matrix B that
guarantee that B™! exists and has zeros in a given set of entries.

We say that a finite set of partitions of N, {ay, Bi, %}, k= T,
r < n, covers the zeros of the matrix A if B, N By = and v, 9& Yi for
j # k, and the submatrices A[ By, ] = 0, and these are the only zeros of the
matrix A.

LEMMA 9.  Let A be an irreducible matrix witha,; # 0 fori = 1,2,...,n
and with a given zero-nonzero pattern. Then there exists a finite set of
partitions of N that covers the zeros of A.

Proof. For each i € N let C, = {k € Nla;, = 0}. Let r;, be the first
row of A such that C;, =# &, and set B, = {iy,...,i } where 11 iy < e
<i, and C; —C,’] q81nce11€Bl,Bl¢@Lety1——C and
a; = N\{ﬁj1 v 71} Then v, # & by definition, and «;, # & because A is
irreducible. Thus {a,, B,, v,} is a partition of N, and A[ Bily,1 = 0. More-
over, Al B,]y{] has no nonzero entries. Now consider the set B;. For o the
first row (if any exist) of A not in the set B, satisfying C; # &, we construct
a second partition of N, {a,, B,, v,}, in the same way. By the construction,
Al B,ly,]1 = 0, Al B;|v,] has no nonzero entries, 8, U B, = &, and y, # v,.
We then consider the row set ( B, U B,)°. Clearly, in a finite number r < n
of steps we cover all of the zeros of A with the partitions {a;, B, ¥}, and all
of the zeros of A belong to the sets Al By, L k=1,2,...,r. [ ]

Observe that if we use columns in place of rows we may also cover the
zeros of A using partitions of N such that B; # By and Y Ny = for
] # k.

THEOREM 10. Let B be irreducible, and suppose that det Bli¢] # 0 for
i=12...,n Let A be an irreducible matrix, with a; # 0 for i =
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1,2,...,n. Suppose that {ay, Bi,vi), k=1,2,...,r, is a finite set of
partitions of N that covers the zeros of A. Then B! exists and has a zero
everywhere that A has a zero if and only if the following conditions are
satisfied:

(i) For at least one value of k, det Bl U B ] # 0 and det Bla; U ;]
* 0.

(i) For each k, det Bla,] # 0 and det Bloy U {i}la; U {j}] =0 for
i€ By, jE Y

Proof. By Theorem 8, (i) implies that B~ exists, and (ii) implies that
B UBvl=0 k=1,2,...,r. Since {a;, B, 7} for k =1,2,...,r cov-
ers the zeros of A, the result follows. [ ]

The natural question to ask is the following. Can B! have zero entries
where A has nonzero entries? Since B! exists, the hypothesis that det B[i°]
#0 for i =1,2,...,n implies that if B™! = [bij], then b, #0, i =
1,2,...,n. Next, if we impose the conditions that det Bla; U {i}la; U {j}]
# 0 for at least one j € vy, for each i € B{ and also for at least one i € B;
for each j € ¢, then the zero submatrices B™![ B;|y,] are all maximal. It
follows that no column of B~'[ B¢ly,] and no row of B~'[ B;ly{] can be
zero. These observations do not imply that B™" cannot have additional zeros
to those of A in the general case. In fact, this can often happen. Observe,
however, that B~! cannot have an additional (generic) zero at a fixed
location, i.e., a zero at a fixed location for all possible choices of entries of B
such that B! exists. For if it has, we have chosen the wrong zero-nonzero
pattern for A. But there is at least one important special case where B!
cannot, in fact, have additional zeros.

COROLLARY 11. Let B and A satisfy the conditions of Theorem 10, and
suppose in addition that A is nearly reducible, i.e., if any nonzero entry of A
not on the principal diagonal is changed to zero, the resulting matrix A’ is
reducible. Then B™! has the same zero-nonzero pattern as A.

Proof. By Theorem 10 we know that B! exists and has a zero every-
where that A has a zero. Thus B~ is nearly reducible. Also, our hypotheses
imply that the principal diagonal of B! has no zero entries. It follows that, if
B~! had a zero entry in addition to those of A, it would be reducible. This
contradicts the hypothesis that B is irreducible. Hence if B™' =[b,],
b;; = 0if and only if a;; = 0. [ |

Theorem 10 and Corollary 11 provide basic results that can be used in a
variety of ways, but they leave open some interesting questions. Here is an
example. Let B be an n X n matrix (which may or may not be invertible),
and suppose a C N and there exists a partition B,y of a® such that the



INVERSE ZERO PATTERNS 11

almost principal minors det Bla U {i}la U {j}] = 0 for i € B, j € . Then
which additional minors of B must vanish?

We observe that Theorem 10 provides us with a minimal set of vanishing
minors of B, which implies that B™! has at least the zero entries of A. This
set is not unique in general, and it does not usually consist only of vanishing
minors of smallest order of B. When will there exist a set of vanishing minors
of B of smallest order which implies that B~! will have zeros everywhere
that A does? If such a set exists, how small can it be?

5. EXAMPLES

First consider an irreducible tridiagonal matrix A. The zero sets for the
rows are all distinct, so that a set of partitions that covers all of the zeros has
n elements. We set B, ={i}, i=12,...,n, v, ={3,4,....n}; vy, =
{45,....n}; »={,2,....,k—-2,...,n}, 3<k<sn—-2 y_, =
{1,2,...,n =3k v, ={1,2,...,n — 2}. The corresponding sets «; are a,
={2 oy =k - Lk+1,2<k<n—1 a ={n— 1}. Therefore, if B
is irreducible (det B[k°] # 0 for k = 1,2,..., n), then B~' has a zero entry
everywhere A does if:

(iT) For at least one k one has det Bla; ] # 0, det Blay, U B,]1 # 0, and
det Bl U v, ] # 0.
(iiT) One has

by # 0 and det B[1,212,j] =0, je€{3,4,...,n},
det B[1,3] # 0 and det B[1,2,3]1,3,;] =0, j=1{4.5,...,n},
det B[k~1,k+1] # 0 and det B[k—1,k, k+1lk—1,k+1,j] =0,
3<k<n—-2, je(l,....,.k=-2,k+2,...,n},
det B[n —2,n] # 0 and det B[n — 2,n — 1,nlj,n — 2,n] =0,
je {1,2,...,n —3},
b, , ..o #0and det B[n~1,nlj,n—-1]1=0, je{l1,2,...,n—2}.
Observe also that Corollary 11 applies to the present example, since an

irreducible tridiagonal matrix is nearly reducible. Therefore, when B satisfies
conditions (iT) and (iiT), B™! has precisely the same zero-nonzero pattern as
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an irreducible tridiagonal matrix. These results are based upon Theorem 10
and Corollary 11, but we can do no more in the present case. It follows from
Theorem 2 that if B=A""' for A irreducible and tridiagonal, then all
second-order minors of the form det Bli, jlj, k] for either i <j <k or
i > j > k vanish. These are also almost principal minors of B. Now suppose
by, # 0, and consider, for example

by by by
B[1,2,3I1,3,j] = by by sz , je{4,5,...,n}.
by by by

Since det B[1, 3|3, j1 = 0 and det B[2,33, j] = 0 for any such j, we have
byj = by3by; /by, and by; = by3by;/by,. Therefore

bll blS bleBj/b33

B[l,2,3|l,3,j]= by by bzaij/bss.
by by ij

Factoring by;/b,; out of the last column of det B[1,2,3l1,3, j], we see that
the vamshmg of det Bl1, 3[3, j] and of det B[2, 33, j] implies
det B[1,2,3]1,3, j] = 0. The same kind of argument can be used on each of
the third-order determinants appearing in (iiT). Thus we can replace (iT) by
the condition

GiiT) b,, # 0,2 <i <n — 1, and det Bli, jlj, k] = Oforeither i <j <k
or z>]>k detB[lS]#O det Blk - Lk+11#0, 3<k<n-—29
det B[n — 2,n] # 0.

Finally let us count how many vanishing minors we must have. From GiD
we have a set of 2(n — 2) second-order minors and (n — 2Xn — 3) third-
order minors which must vanish, for a total of (n — 1Xn — 2), as many as
there are zero entries in a tridiagonal matrix. But each of the third-order
minors is required to vanish by a pair of second-order minors; hence we
require 2(n — 2Xn — 3) + 2n — 2) = 2An — 2)? (distinct) 2-by-2 minors to
vanish. All of the minors are almost principal minors. Such sets of 2-by-2’s
need not be minimal.

For the matrix A, defined in the introduction, the zero sets for the rows
are again all distinct. We have for our partitions

o, ={1,2,...,i—1,i+2,....n}, B, ={i}, v,={i+1},
l1g<igsn—1,

@, ={23,....n-1, B ={n}, %n={1}
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Therefore, if B is irreducible with det B[k°] # 0 for k = 1,2,..., n, then B
has a zero entry everywhere A, does if iT) holds and

(iil) det Bla;] # 0 and det B[i°l(i + 1 mod n)°] = 0fori=1,2,..., n.
For the matrix A, we have
a={2}, B={1}, %n={3.. .1},
o, ={i+1}, B ={i}, y,={L2,....i—1,i+2,...,n},
2<ig<n—2
-1 ={n},  Bii={n-1}, y.,={L2..,n-2}
a, = {1}, B, = {n}, Y. =1{2,....n — 1}.

Hence if (iT) holds and if

det B[1,22,j]1=0, je{3,...,n},
det B[i,i + i+ 1,j]=0, je({1,2,...,i—1,i+2,...,...,n},
2<ign—1,

det B[n — 1,nlj,n—1]=0, je{1,2,....,n-2}, (ii2)

then B~! has the same zero-nonzero pattern as A,. Here, as in the
tridiagonal case, Corollary 11 applies.

In each of our first three examples the zero sets for different rows are
different, so that, in Theorem 8, r = n. We present next a quite different
example. Consider the 10 X 10 matrix with the zero-nonzero pattern shown
below:

OO OOR B 8 RB R
COOOOR 8B B B R
QOO OOR R 8 8 R
SOOOR ©OR B R »
SO OR 8 R O=Rr 8B R
KRR R OR R R OOO
2828 818018 OQOOO0
R KRR IIOOOOO
2R KRR ROODOOO
]2 8 K]’ K82OoOO00CO0C
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For this matrix we have
a, = {4,5}, B, =1{1,2,3}, v, = {6,7,8,9,10},
a, ={1,2,3,6}, B, = {4}, v, = {5,7,8,9, 10},
a;={1,2,3,6,7}, By=1{5}, v,-{4,8,9,10},
a, = {4,5,8,9,10}, B, ={6}, v, ={1.23.7},
a;=1{5,8,9,10},  B;={7}, v ={1.2,3,4,6},
a5 = (6,7},  Bs=1{89,10}, v ={1,2,3,4,5).

Therefore, if GT) holds and if

(iiS) det B[4, 5] # 0, det B[1,2,3,6] # 0, det B[L,2,3,6,7] # 0,
det B[4,5,8,9,10] # 0, det B[5,8,9,10] # 0, det B[6,7] # 0,

while
det B[i,4,54,5,j1 =0, ie{1,2,3}, j€{6,7,8,9,10},
det B[1,2,3,4,6/1,2,3,6,j] =0, je({5,7,8,9,10},
det B[1,2,3,5,6,71,2,3,6,7,j] =0, j<{4,8,9,10},
det B[4,5,6,8,9,1017,4,5,6,8,9] =0, j<{1,2,3,7},
det B[5,7,8,9,10/,5,8,9,10] =0, je{1,2,3,4,5},

det B[6,7,ilj,6,7] =0, i€{8,9,10}, je{1,2,3,4,5},

then the matrix B™! has zeros everywhere A does.

The matrix A has a maximal zero submatrix A[ B|y] = 0, where 8 =
{1,2,3,4}, v ={7,8,9,10}. Thus every minor of A, of the form A[8|¢]
equals zero generically if 8 ={1,2,3,4,4,1y,i5} and &={j, j,./5. 7.8,
9,10}. It follows that all third-order minors of B = A~! having the form
det Bliy, iy, i5]]1, jo, j3]. where (i}, iy, i3} €{1,2,3,4,5,6}, {j,js.js} C
{5,6,7,8,9,10), vanish. These are almost principal minors if and only if
{5,6} c {iy, iy, 5} and {5,6} < {j,, j;. j3}

The authors would like to thank both referees, who helped clarify the
exposition of the results.
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