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ABSTRACT 

We study the relationship between the zero-nonzero pattern of an invertible 
matrix and the vanishing minors of the matrix and of its inverse. In particular we show 
how to determine when a matrix B could be the inverse of a matrix A with a given 
zero-nonzero pattern. In fact, there is always a set of almost principal minors of B (in 
one-to-one correspondence with the set of zero entries of A) whose vanishing implies 

that B-’ has zeros everywhere that A does, provided certain principal minors of B 
do not vanish. 

1. INTRODUCTION 

We study the relationships between the zero-nonzero pattern of a square, 
invertible matrix A and the zero minors of A and of A-‘. We confine our 

attention to the case in which A is irreducible and all diagonal entries of A 
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are nonzero. As a matrix must have a generalized diagonal of all nonzero 
entries in order to be invertible, there is little loss of generality in our 
assumptions. We note that for almost every matrix A satisfying our assump- 
tions, all entries of A-’ will be nonzero. 

There are two primary aspects of this topic. First, we say that a minor of 
A is generically zero provided that the corresponding minor of every matrix 
with the same zero-nonzero pattern as A is zero. If a matrix A has several 
zero entries, these may imply, depending upon their location in A, that some 
minors of A are generically zero. Because of Jacobi’s identities [8], the 
vanishing of a minor of A implies the vanishing of a certain minor of 
B = A-‘. How may we describe all the minors of B that vanish because of 
the zero pattern of A? Since all entries of B will typically be nonzero, the 
vanishing minors in B do not vanish generically. Nevertheless, when such 
minors in B vanish, they may collectively imply that certain entries of A 
must be zero. This suggests the second aspect of our problem. From which 
sets of vanishing minors in B can we recover the zero-nonzero pattern of A? 
In particular, can minimal sets of vanishing minors in B that compel A to 
have a specified zero-nonzero pattern be identified? 

Such questions have previously been studied in several highly structured 
cases: 

(a) the matrix A is tridiagonal (e.g., [6, 3]), 
(b) the matrix A is banded (e.g., [l, 411, 
(c) the matrix A is in “comrade” form [2]. 

(The comrade matrices are tridiagonal, except that the last row is also allowed 
to be nonzero.) The above papers do not fully address the question of 
identifying minimal sets of vanishing minors in B (= A-‘) that imply the 
zero-nonzero pattern of A. Their results on vanishing minors are included 
among the general results presented here. See also [ll] for a long list of 
references about inverses of matrices with specific zero-nonzero structure. 

To illustrate the scope of our results we mention two examples. First, let 
A, = [a!!)] with !‘I a,j z 0 except for a:‘!+ i = 0, i = 1,. . . , n - 1, and a’,“i = 
0. Thus”A, has exactly n zero entries’. The second example is A, = [a$)] in 
which, except along the principal diagonal, a$;) # 0 if and only if ai:) = 0. 

Thus A, has exactly n nonzero entries not on its principal diagonal. Both of 
these matrices are irreducible and satisfy aij # 0, i = 1,2, . . . , n. Our results 
fully address the two aspects of our problem for both of these examples. 

In Section 2 we show how to find all of the generically zero minors of A 
when its zero-nonzero pattern is given. We then identify the corresponding 
vanishing minors of B = A-i. 

In Section 3 we explain a fundamental relationship that must exist 
between the location of zero entries of the matrix A and sets of vanishing 
minors of B. 
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In Section 4 we give one solution to the minimal-set-of-vanishing-minors 
problem mentioned above. We prove, in fact, that if certain principal minors 
of B = A-’ do not vanish and if the matrix A has exactly p zeros among its 
entries, then there is always a set of Al. vanishing almost principal minors of B 

that imply that B-’ has zeros where A does. 
Finally, in Section 5 we present several examples (including the matrices 

A, and A, above) that illustrate our results. 

2. GENERICALLY VANISHING MINORS 

Let N = {l, 2, . . , n), and for (Y c N let LY’ be the complement of (Y 
relative to N. We use A[ (Y I/3] to denote the submatrix of A in rows cr and 
columns p. We write A[ (Y I/3] = 0 to indicate that the submatrix in rows (Y 
and columns p is a zero submatrix. When (Y = /3 we let A[ cx I = A[ (Y I a I, as 
iscustomary.If (a(=(~landlcr~~l=l(~l- 1,then A[a(p]iscalledan 
almost principal submatrix. In this event A[ (Y] /3] is square, and det A[a] P] 
is called an almost principal minor. 

If C is a k x k matrix, the condition that det C = 0 generically is 
classical and given by the following well-known result. 

THEOREM A (Frobenius-K&rig)‘. Let C be a k X k matrix. Then det C 
= 0 generically if and only if there is an r X s submatrix of zero entries of C 

with r + s z k + 1. 

This theorem first appeared in [S]; an interesting discussion of the result 
as well as a proof using Hall’s theorem may be found in [lo]. 

Theorem A makes it clear that we must concern ourselves with submatri- 
ces A[ (Y 1 p] of A satisfying A[ (Y I /? ] = 0. Note that for a zero submatrix 
consisting of a single zero entry of A we have r + s = 2, so that no minors of 
A of size greater than or equal to two will be generically zero because of the 
vanishing of a single entry. Therefore we will call a zero submatrix of A 
proper if r + s 2 3. If a zero entry of A is not contained in any proper zero 
submatrix of A, we call it an isolated zero of A. Observe that the matrix A, 
introduced above has exactly n isolated zeros and no proper zero submatri- 
ces. Notice that a proper zero submatrix is not the same thing as a proper 
submatrix. 

Because of our assumption that A is irreducible, the following concept is 
basic. Let (Y c N p ro erl p y. We call CY a separator of A if there exists at least 
one partition of (Y ’ into (nonempty) parts P, 7 such that A[ P 1 r] = 0. Thus 
to every separator of A there corresponds at least one zero submatrix of A. 
Observe that several zero submatrices may result from a separator of A by 
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virtue of the fact that there may be several different partitions of (Y’ meeting 
the stated requirements. 

LEMMA 1. Let A be an irreducible n X n matrix satisfying aii # 0 
(i = 1,2,. . . , n). Then A has a proper zero submatrix if and only if A has a 
separator cx with 1 aI < n - 3. 

Proof. We have already seen that if A has a separator, it has a zero 
submatrix. If the zero submatrix is proper, then 1 p 1 + 171 > 3, and hence 
I al 6 n - 3. Thus, the “if’ part of the lemma is established. For the 
converse, suppose A has a proper zero submatrix A[ /3 jr] = 0 with 1 p) + 
1~1 > 3. Then, since /3 n 7 = 0 (because of the assumption about diagonal 
entries), we define (Y’ = j3 U y, so that 1 acI > 3. This implies that ( a 1 < 
n - 3 and (Y is a separator of A, thus proving the “only if’ statement. n 

A zero submatrix A[ CI 1 p ] is called maximal if it is not a proper submatrix 
of any other zero submatrix of A. Thus A[ (Y I /3 ] = 0 is maximal if and only if 
no column of A[aJp”] is zero and no row of A[(Y’\/~] = 0. If LY is a 
separator of A, we call it a maximal separator if it induces at least one 
maximal zero submatrix of A. 

Suppose A[ Ply] = 0. Then det A[ 61~1 = 0 generically if P c 8, 7 c E, 
161 = I&l, and 161 = IPI + 171 - 1. That these are the largest minors of A 
required to be generically zero by the existence of the zero submatrix 
A[ Ply] of A f o 11 ows from Theorem A. Also Theorem A implies that every 
generically zero minor (of size > 2) of A is a maximal (w.r.t. index sets) 
minor of A required to be zero by some proper zero submatrix of A. We call 
the largest generically zero minors of A corresponding to a proper zero 
submatrix of A the generically zero minors of A induced by the zero 
submatrix. 

THEOREM 2. A minor of A is generically zero if and only if it is a zero 
entry or a zero minor induced by a proper zero submatrix of A. 

Theorem 2 shows that to find all of the generically zero minors of A we 
must find all of the zero minors induced by all proper zero submatrices of A. 
The matrix A,, introduced above, has no proper zero submatrices; hence, by 
Theorem 2, it has no generically zero minors (of size greater than 1). On the 
other hand, suppose for the matrix A, that 12 > 5. Then det A,[l, 214, 
51 = 0 generically, and it is induced by all of the zero submatrices A,[1(4, 51, 
A,[2)4, 51, A,[l, 2141, A,[l, 2151. Of course, A,[l, 214, 51 is itself a zero 
submatrix; hence the corresponding minor is generically zero. Thus there can 
be a great deal of redundancy in finding the set of all generically zero minors 
of A by using induced minors of proper zero submatrices. Nevertheless the 
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condition of Theorem 2 seems to provide the simplest means of identifying 
all generically zero minors of A. 

Next suppose that A is invertible, and set B = A-‘. By the Jacobi 
identities the following is true: If det A[ S 1 E] = 0 (generically or not), then 
det B[E~I~~] = 0. 

COROLLARY 3. Zf the minor A[ SIE] of A vanishes generically, then 

det B[E~I~~] = 0. 

We come next to a fundamental result. 

THEOREM 4. Let A[ p 1~1 be a zero submatrix of A belonging to the 

separator CY, and let B = A- ‘. Then det B[ a! U {i)l CK U {j}] = 0 for all 

i E p and allj E 7. 

Proof. Suppose that i E P and j E y. Let 6 = /3 U y - {i} and E = P 

U y - {jl. Then A[Plyl is a zero submatrix of A[ E[ S 1. Theorem A implies 
that det A[ E] S] vanishes generically. Hence, from the Jacobi identities we 
conclude that det B[ (Y U {ill LY U {j)] = 0. n 

One final concept is required. Suppose row i of the matrix A has a 
nonvoid set of zero entries. This set does not include a,,, since we are 
assuming that a,, # 0, i = 1,2, . . . , n. We call (Y the row separator of row i 

if the set cx contains exactly the set of indices k for which aik # 0 excluding 
the index i itself. Similarly, when column i of A has a nonvoid set of zero 
entries, we call CY the column separator of column i if the set CY contains 
exactly the set of indices k for which ski # 0 excluding the index i itself. If a 
row (or column) of A contains no zero entries, it does not have a row 
(column) separator. For the matrix A,, row 2 has the separator (Y = 

{I, 4,5, . . , n}, while for A, row 2 has the separator (Y = (3). 
Observe that if cr is a row separator for row i and we let 

a = {k E N\{i}/aik z O}, P = Ii), y = {k E Nlaik = O), 

or if (Y is a column separator for column i and we let 

a = {k E N\ {i}laki Z O}, P = Ii), y = {k E Nlaki = 0}, 

then these partitions give (Y’ = p U y, showing that row and column 
separators are separators. 



6 CHARLES R. JOHNSON AND JOHN S. MAYBEE 

3. ZEROS AND INVERSES 

Let the invertible matrix B = [bij] have inverse A = [ai.]. Use i” as 
short for Ii]“. Then B[icljc] is the submatrix of B obtained by deleting row i 
and column j of B. Set Bjj = det B[j’li”]. Obviously aij = 0 if and only if 
Bij = 0. 

Let Ix,, xs,. . . , x ) be a linearly dependent set of nonzero vectors in Rk, 
k + 1 > p. We call t!i’ is a minimally dependent set if any proper subset of 
these vectors is a linearly independent set. 

For given i E N we denote by rk(i) the row vector r,(i) = (bkl, . , 

bk,i-&i+l>.. dk,)> and by c,(i) the column vector s(i) = (bik,. . . , 

bi-,,k>bi+l,k>...> b&IT. We call r,(i) a punctured row of B and c,(i) a 
punctured column. 

THEOREM 5. Let B be an n X n matrix satisfying det B[ kc] # 0 for 

k = 1,2,. . . , n. Suppose A = B-’ exists. Then the set of positions of zero 

entries in row i of A is the nonempty set {j,, . . , j,} if and only if {r,(i): 

k +j,, . . . ,&,I is a minimally dependent subset of {r,(i)lk = 1,2, . , n}. 

Proof. Since det B[i”] # 0, the set {r,(i)lk # i} is a linearly indepen- 
dent set of n - 1 vectors in R”-’ .Therefore r,(i) is a linear combination of 
these vectors. Suppose that r,(i) = C k + i hk r,(i). Then the only nontrivial 
dependencies of {rk(i)ll < k < n} have the form C;=, akrk(i) = 0, where 
ak = -aihk for k # i. It follows that {rk(i)lhk # 0) U {r,(i)} is the unique 
minimally dependent subset of {rk(i)}. Thus aij = det B[j’li”] = 0 if and 
onlyifj E (klh, = 0). n 

It is clear that a similar relationship holds between the punctured 
columns of B and the nonzero entries in the columns of A. 

Notice that if the matrix A has an isolated zero as the i, j entry, we have 
aik # 0 if k # j. It follows that the set {r,(i)lk #j} forms a minimally linearly 
dependent subset and every proper subset is independent. Thus the matrix 
B[j’li”] has rank n - 2. Therefore we obtain the same unique vanishing 
minor of B when A has an isolated zero, no matter whether we use Theorem 
5 or the corresponding result for punctured columns. 

We remind the reader that (p;.,(i), . . . , rjP(i)} is a dependent set of vectors 
in R”-’ if and only if every minor of order p of the (n - 1) X p matrix with 
these vectors as row vectors is zero. Therefore we have the following corollary 
of Theorem 5. 

COROLLARY 6. Let B be an n x n irreducible matrix satisfying b,, # 0 

and det B[k”] # 0 for k = 1,2,. . . , n. Suppose A = B - ’ exists. Then the set 

of positions of zero entries in row i of A is the nonempty set {j,, . . . , j,] if and 
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only if det Bfj,, . . . , jplk,, . . . , kpl = 0 for every set (k,, k,, . . . , kJ E N\ 
{i], and if {Z,, . . . ) ZJ is any set of distinct integers contained in N with 
q -C p, then det B[Z,, . . . , Zqlk,, . . . , kg1 z 0 for at least one set (k,, . . . , kJ 
E N \ Ii]. 

Obviously a similar Corollary 6’ holds relative to Theorem 5’. Thus we 
have for each i such that row i of B - ’ has p nonzero entries a family of at 

least (n p ’ ) vanishing minors of B. These theorems and corollaries do not 

determine how many minors in these families are required to account for all 
of the zero entries of A. 

However, some further insight is obtained in the following way. We call 
two zero entries of the matrix A independent if they lie in different rows and 
columns. Define the zero-term rank of A to be the minimum number of rows 
and/or columns needed to cover the zero entries of A. The following 
Menger-type theorem is easy to prove (see Harary [7, Chapter 51 for 
example). 

THEOREM 7. The zero-term rank of a square matrix A equals the 
maximum number of pairwise independent zero entries of A. 

This result tells us that the number of families of vanishing minors of B as 
specified in Corollary 6 does not exceed the maximum number of pairwise 
independent zero entries of A. 

The matrices A, and A, have zero-term rank n, as do the tridiagonal 
matrices. On the other hand, the comrade matrices studied in [2] have 
zero-term rank n - 1. 

4. MINIMAL SETS OF ZERO MINORS 

Although the zero-term rank tells us the smallest number of sets of 
linearly independent punctured rows of B and/or sets of linearly indepen- 
dent punctured columns of B needed to identify the zero-nonzero pattern of 
A = B-‘, we can in fact do better by judiciously selecting the vanishing 
minors of B. The key to doing this is to make use of Theorem 4 and the next 
result. 

THEOREM 8. Let B be irreducible, and let det B[i”] # 0, i = 1,2, . . . , n. 
Suppose the nonempty sets CY, /3, y form a partition of N such that det B[ a] 
# 0, det B[ (Y U p] # 0, and det B[ (Y U y] # 0, and that det B[ (Y U {i)lo 
U (j)] = 0 for i E /3, j E y. Then A = B-l exists, A[ Ply] is a zero 
submatrtx of A, and (Y is a separator of A. Finally, if in addition det B[ (Y U 
{ill a U {jll + 0 f or at least one j E y for each i E PC and also for at least 
one i E /3 for each j E yc, then (Y and A[ P 171 are maximal. 
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Proof. Without loss of generality we may suppose that the rows and 
columns of B are permuted so that P = {l, 2, , k}, a = (k + 1,. . . , m - 

11, y = h,. . . > n}, where m > k + 2. Then the matrices C, = [cij’] where 
cij) = det B[a U {i}la U (j}] for i, j E /3 and C, = [cii’] where ci;’ = 
det B[ cr u {i}l a u {j)] for i, j E 7 satisfy 

det C, = (det B[ a])” det I?[ (Y U ~1, 

det C, = (det B[ a])“-” det B[ (Y U y], 

by Sylvester’s identity, and hence are nonzero. On the other hand, the matrix 
C = [cij] with cij = det B[cw U {i}la! U (j}] for i and j in (Y’ has the form 

det C = ,“I 
0 

I I 22 c2 
= (det B[ o])n-m+k+z det B; 

hence det C # 0, so det B # 0. 
To prove A[ PI-y] = 0 we do as follows. Now we have 

det B[a U {i}lcy U {j}] = det 
B[ila] bij 

B[a] B[alj] =’ 1 
for i E p, j E y. 

Since det B[ a] # 0, this implies that the Schur complement of B[cu], 
namely bij - B[ilcu](B[al)-‘B[(YIj], is zero. Applying this for all i E P, 

j E y yields 

B[ Plr] = B[ Plo]( B[o])-lB[al~]. 

Then we can write 

B[ p u sly] = B[ P U &](B[al)-lB[d~l. (1) 

It follows that 

0 

(B[~])-‘Bbl~l (2) 
B[Y] I 

from (I). We conclude that A[ p I y 1 = 0. 
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It remains to establish maximality. Since B is irreducible, so is A, and 
detB[i”] # 0, i = 1,2, . . . , n, implies aii # 0. Thus Theorem 4 applies to A. 
Suppose for contraction that A[ p 1 y ] is not a maximal zero submatrix of A. 

Then for some i E PC or some j E y ’ we have A[ily] = 0 or A[ plj] = 0. 
But then by Theorem 4 we must have det B[ cr U {i}l CY U (j}] = 0 either for 
an i E PC and all j E y or for a j E yc and all i E /3, contrary to the 
conditions on B. Thus a! and A[ p I y] = 0 must be maximal. n 

Notice that it follows from the proof of Theorem 8 that, if B-’ exists, the 
conditions det B[ a] # 0 and det B[ (Y U {i]lcx U (j}] = 0 for i E 0, j E y 

imply that A[ Ply] = 0 w h ere A = B - ‘. Therefore we may regard each zero 
submatrix of A as being induced by the vanishing of an appropriate set of 
almost principal minors of B together with the nonvanishing of an appropri- 
ate principal minor of B. 

We now apply Theorem 8 to determine conditions on a matrix B that 
guarantee that B-l exists and has zeros in a given set of entries. 

We say that a finite set of partitions of IV, {ok, &, yk}, k = 1,2, . , r, 
r < n, covers the zeros of the matrix A if pj n Pk = 12( and yj Z yk for 

j # k, and the submatrices A[ &I yk] = 0, and these are the only zeros of the 
matrix A. 

LEMMA 9. Let A be an irreducible matrix with a,, # 0 for i = 1,2, . , n, 

and with a given zero-nonzero pattern. Then there exists a finite set of 

partitions of N that covers the zeros of A. 

Proof. For each i E N let CL = {k E Nlaik = 0). Let ri, be the first 
row of A such that Ci, # 0, and set pi = {iI,. . , iJ, where i, < i, < ... 

< i, and ci = Ci,, j = 2,. ,4. Since i, E P1, P1 Z 0. Let y1 = Ci, and 
= N \ { #i u yl}. Then y1 # 0 by definition, and (Y. z 0 because A is 

Zeducible. Thus {a,, pi, yll is a partition of N, and A\ Pllyll = 0. More- 

over, A[ &lrfl h as no nonzero entries. Now consider the set /IF. For Ci’, the 
first row (if any exist) of A not in the set pi satisfying C,‘, Z 0, we construct 
a second partition of N, {cY~, &, yZ], in the same way. By the construction, 
A[ pal yZ] = 0, A[ p,“I yal has no nonzero entries, /3i U & = 0, and y1 Z yz. 
We then consider the row set ( pi U &>‘. Clearly, in a finite number r < n 

of steps we cover all of the zeros of A with the partitions {ok, &, Yk], and all 
of the zeros of A belong to the sets A[ Pk I yk I, k = I,% , r. n 

Observe that if we use columns in place of rows we may also cover the 
zeros of A using partitions of N such that pj f & and 3 fl Yk = 0 for 

j z k. 

THEOREM 10. Let B be irreducible, and suppose that det B[i”] + 0 for 

i = 1,2 ,...,n. Let A be an irreducible matrix, with aij # 0 for i = 
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1,2, . . . , ft. Suppose that {CQ, & -yJ, k = 1,2, . . . , I-, is a finite set of 
partitions of N that covers the zeros of A. Then B-’ exists and has a zero 
everywhere that A has a zero if and only if the following conditions are 
satisfied: 

(i) For at least one value of k, det B[ CQ U f&l + 0 and det B[ ffk U ykl 
# 0. 

(ii) For each k, det B[ q.1 Z 0 and det B[CQ U {ill (Yk U (jll = 0 for 

Proof. By Theorem 8, (i) implies that B-i exists, and (ii) implies that 
B-‘[ Pk]yk] = 0, k = 1,2,. . , r. Since (ok, &, Yk} for k = 1,2,. . , r cov- 
ers the zeros of A, the result follows. W 

The natural question to ask is the following. Can B-’ have zero entries 
where A has nonzero entries? Since B - ’ exists, the hypothesis that det B[iC] 
# 0 for i = 1,2,..., n implies that if B- ’ = [bij], then bii f 0, i = 
1,2,. . . ) n. Next, if we impose the conditions that det B[ (Yk U {i)l (Yk U {j)] 
# 0 for at least one j E yk for each i E &! and also for at least one i E & 
for each j E yt, then the zero submatrices B- ‘[ &lYk] are all maximal. It 
follows that no column of B - ‘[ &I yk ] and no row of B-‘[ & 1 yt ] can be 
zero. These observations do not imply that B-l cannot have additional zeros 
to those of A in the general case. In fact, this can often happen. Observe, 
however, that B-’ cannot have an additional (generic) zero at a faced 

location, i.e., a zero at a fmed location for all possible choices of entries of B 
such that B-l exists. For if it has, we have chosen the wrong zero-nonzero 
pattern for A. But there is at least one important special case where B -’ 
cannot, in fact, have additional zeros. 

COROLLARY 11. Let B and A satisfy the conditions of Theorem 10, and 
suppose in addition that A is nearly reducible, i.e., if any nonzero entry of A 
not on the principal diagonal is changed to zero, the resulting matrix A’ is 
reducible. Then B- ’ has the same zero-nonzero pattern as A. 

Proof. By Theorem 10 we how that B-’ exists and has a zero every- 
where that A has a zero. Thus BP1 is nearly reducible. Also, our hypotheses 
imply that the principal diagonal of B-’ has no zero entries. It follows that, if 
B-’ had a zero entry in addition to those of A, it would be reducible. This 
contradicts the hypothesis that B is irreducible. Hence if B-’ = [bij], 
bij = 0 if and only if aij = 0. n 

Theorem 10 and Corollary 11 provide basic results that can be used in a 
variety of ways, but they leave open some interesting questions. Here is an 
example. Let B be an n X n matrix (which may or may not be invertible), 
and suppose (Y c N and there exists a partition /3, y of (Y’ such that the 
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almost principal minors det B[ CY U {i}l a U {j}] = 0 for i E /?, j E y. Then 
which additional minors of B must vanish? 

We observe that Theorem 10 provides us with a minimal set of vanishing 
minors of B, which implies that B-l has at least the zero entries of A. This 
set is not unique in general, and it does not usually consist only of vanishing 
minors of smallest order of B. When will there exist a set of vanishing minors 
of B of smallest order which implies that B-’ will have zeros everywhere 
that A does? If such a set exists, how small can it be? 

5. EXAMPLES 

First consider an irreducible tridiagonal matrix A. The zero sets for the 
rows are all distinct, so that a set of partitions that covers all of the zeros has 
n elements. We set pi = {i), i = 1,2,. . . , 12, y1 = {3,4, . , n); yZ = 
(4, 5, . , n}; yk = 11, 2, . . . , k - 2, . . . , n), 3 < k < n - 2; Y,-~ = 

{I, 2,. . . , n - 3); y,, = {1,2,. . . , n - 2}. The corresponding sets (Ye are (Ye 

= (21; CQ = {k - 1, k + l}, 2 Q k < n - 1; (Y, = {n - 1). Therefore, if B 
is irreducible (det B[ k”] # 0 for k = 1,2, . . , n), then B-l has a zero entry 
everywhere A does if: 

(iT) For at least one k one has det B[a,] Z 0, det B[ak U &I Z 0, and 
det B[ak U yk] # 0. 

(iiT) One has 

b,, # 0 and det B[1,212,j] = 0, j E (3,4,. . , n}, 

det B[1,3] # 0 and det B[1,2,3/1,3,j] = 0, j = {4,5 )..., n), 

det B[ k - 1, k + l] z 0 and det B[k - 1, k, k + 1Jk - 1, k + l,j] = 0, 

3<k<n-2, j~{l,..., k-2,k+2 ,..., n}, 

det B[n - 2, n] # 0 and det B[n - 2, n - 1, nlj, n - 2, n] = 0, 

jE{1,2 ,..., n-3}, 

b npl,fl-2 f 0 and det B[n - 1, nlj, n - l] = 0, jE {1,2,...,n-2) 

Observe also that Corollary 11 applies to the present example, since an 
irreducible tridiagonal matrix is nearly reducible. Therefore, when B satisfies 
conditions (iT) and (iiT), B-’ has precisely the same zero-nonzero pattern as 
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an irreducible tridiagonal matrix. These results are based upon Theorem 10 
and Corollary 11, but we can do no more in the present case. It follows from 
Theorem 2 that if B = A-’ for A irreducible and tridiagonal, then all 

second-order minors of the form det B[i, jlj, k] for either i < j < k or 
i > j > k vanish. These are also almost principal minors of B. Now suppose 

b,, # 0, and consider, for example 

b 11 bK3 blj 

B[1,2,311,3,j] = bsi bss bsj , 

I I 

j E (4,s )...) n). 

b 31 bss bsj 

Since det B[l, 313,j] = 0 and det B[2,313,j] = 0 for any such j, we have 

blj = b,,baj/b,, and bzj = b,,bzj/b,,. Therefore 

B[I, 2,3lI,3,j] = [ ;;; ;;; ;;;r::q 

Factoring b,/b,, out of the last column of det B[l, 2,3]1,3, j], we see that 
the vanishing of det B[l, 313, j] and of det B[2, 313, j] implies 
det B[l, 2,311,3, j] = 0. Th e same kind of argument can be used on each of 

the third-order determinants appearing in (iiT). Thus we can replace (iiT) by 

the condition 

(iiiT) bii # 0, 2 < i < n - l,anddet B[i,jlj,k] = Oforeitheri <j <k 
or i > j > k; det B[l, 31 # 0; det B[k - 1, k + 11 # 0, 3 Q k < n - 2; 

det B[n - 2, n] f 0. 

Finally let us count how many vanishing minors we must have. From (iiT) 
we have a set of 2( n - 2) second-order minors and (n - 2Xn - 3) third- 
order minors which must vanish, for a total of (n - 1Xn - 2) as many as 
there are zero entries in a tridiagonal matrix. But each of the third-order 
minors is required to vanish by a pair of second-order minors; hence we 
require 2(n - 2X n - 3) + 2(n - 2) = 2(n - 2)’ (distinct) 2-by-2 minors to 
vanish. All of the minors are almost principal minors. Such sets of 2-by-2’s 
need not be minimal. 

For the matrix A, defined in the introduction, the zero sets for the rows 
are again all distinct. We have for our partitions 

cq={1,2 ,..., i-l,i+2 ,..., n}, pi=(i), yi={i+l}, 

l<i<n-1, 

o!” = {2,3,. . . ,n - l}, P, = in), ‘y, = (11. 
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Therefore, if B is irreducible with det B[k”] z 0 for k = 1,2,. . . , n, then B 
has a zero entry everywhere A, does if (iT) holds and 

(iii) det B[ ai] # 0 and det B[PKi + 1 mod n)c] = 0 for i = 1,2,. . . , n. 

For the matrix A, we have 

a1 = (21, Pl = 1% Yi = (3,. . . > n), 

q={i+l), pi=(i), y,={l,Z ,..., l-l,i+2 ,..., n), 

2<i<n-2, 

a,-1 = {n), PnW1 = In - l), y,-l = (1,2 ,..., n - 2), 

a, = {l), P, = 14, y, = (2,. . . , n - 1). 

Hence if (iT) holds and if 

det B[1,212,j] = 0, j E {3,...,4, 

det B[i,i + Iii + l,j] = 0, j E (1,2,..., i-1,1+2 ,...,..., n), 

26i,<n-1, 

det B[n - 1, nlj, n - 1] = 0, jE{1,2 ,..., n-2), (ii2) 

then B- ’ has the same zero-nonzero pattern as A,. Here, as in the 

tridiagonal case, Corollary 11 applies. 
In each of our first three examples the zero sets for different rows are 

different, so that, in Theorem 8, r = n. We present next a quite different 
example. Consider the 10 X 10 matrix with the zero-nonzero pattern shown 
below: 

A= 

x x x x x 0 0 0 0 0 
x x x x x 0 0 0 0 0 
x x x x x 0 0 0 0 0 
x x x x 0x0000 
x x x 0 x x x 0 0 0 
oooxxxoxxx 
ooooxoxxxx 
oooooxxxxx 
oooooxxxxx 
oooooxxxxx 
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For this matrix we have 

a1 = (4,5), Pi = (1,2,3), ~1 = (6,7,8,9> lo), 

a2 = (1,2,3,6), PZ = (4) 72 = (5,7,8,9,10), 

(~3 = (L%3,6,7), P3 = (5), 73 = (~,W,~O), 

a4 = (4,5,8,9,10), P4 = (61, ~4 = (L2,3,7), 

(~5 = (5,8,9,10), PS = (71, 75 = {L%W,6), 

q, = (6,7), P,j = {Kg, lo), 3/s = {U,3,4,5). 

Therefore, if (iT) holds and if 

(iiS) det B[4, 53 # 0, det B[l, 2, 3, 61 f 0, det B[l, 2, 3, 6, 71 # 0, 
det B[4,5,8,9, lo] # 0, det B[5,8,9, lo] # 0, det B[6,7] # 0, 

while 

det B[i,4,514,5,j] =O, i~(L2,3), j~(6,7,8,9,10), 

detB[l,2,3,4,611,2,3,6,j] =O, j~(5,7,8,9,10), 

detB[1,2,3,5,6,711,2,3,6,7,j] =O, j~(4,8,9,10), 

detB[4,5,6,8,9,101j,4,5,6,8,9] =O, j~(1,2,3,7), 

det B[5,7,8,9,lOjj, 5,8,9, lo] = 0, j E (1,2,3,4,5}, 

det B[6,7, ilj, 6,7] = 0, i~(8,9,10), jE(L2,3,4,5), 

then the matrix B-i has zeros everywhere A does. 
The matrix A has a maximal zero submatrix A[ /3 171 = 0, where p = 

{1,2,3,4}, y = {7,8,9, lo}. Thus every minor of A, of the form A[ 6 IE] 
equals zero generically if 6 = {1,2,3,4, i, i,, i3} and E = (j,,jZ,j3, 7,8, 
9, lo}. It follows that all third-order minors of B = A-’ having the form 

det BJi,, i,, i,lj,, j2, j,l, where Iil, i,, i3} G 11,% 3,4,5,6), {j,, j,, jJ C 
{5,6,7,8,9, IO), vanish. These are almost principal minors if and only if 

(5,6J c (ii, i,, i3J and (5,6J c (j,,jZ,j3J. 

The authors would like to thank both referees, who helped clarzzy the 
exposition of the results. 
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