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OBJECTIVES This study evaluates whether contrast-enhanced (CE) cardiac magnetic resonance (CMR) can be used

to identify critical isthmus sites for ventricular tachycardia (VT) in ischemic and nonischemic heart disease.

BACKGROUND Fibrosis interspersed with viable myocytes may cause re-entrant VT. CE-CMR has the ability to

accurately delineate fibrosis.

METHODS Patients who underwent VT ablation with CE-CMR integration were included. After the procedure, critical

isthmus sites (defined as sites with a $11 of 12 pacemap, concealed entrainment, or VT termination during ablation) were

projected on CMR-derived 3-dimensional (3D) scar reconstructions. The scar transmurality and signal intensity at all

critical isthmus, central isthmus, and exit sites were compared to the average of the entire scar. The distance to

>75% transmural scar and to the core-border zone (BZ) transition was calculated. The area within 5 mm of both

>75% transmural scar and the core-BZ transition was calculated.

RESULTS In 44 patients (23 ischemic and 21 nonischemic, left ventricular ejection fraction 44 � 12%), a total of 110

VTs were induced (cycle length 290 � 67 ms). Critical isthmus sites were identified for 78 VTs (71%) based on $11 of

12 pacemaps (67 VTs), concealed entrainment (10 VTs), and/or termination (30 VTs). The critical isthmus sites, and in

particular central isthmus sites, had high scar transmurality and signal intensity compared with the average of the entire

scar. Of the pacemap, concealed entrainment, and termination sites, 74%, 100%, and 84% were within 5 mm of >75%

transmural scar, and 67%, 100%, and 94% were within 5 mm of the core-BZ transition, respectively. The areas within

5 mm of both >75% transmural scar and the core-BZ transition (median 13% of LV) contained all concealed entrainment

sites and 77% of termination sites.

CONCLUSIONS Both in ischemic and nonischemic VT, critical isthmus sites are typically located in close proximity to

the CMR-derived core-BZ transition and to >75% transmural scar. These findings suggest that CMR-derived scar char-

acteristics may guide to critical isthmus sites during VT ablation. (J Am Coll Cardiol Img 2014;7:774–84) © 2014 by the

American College of Cardiology Foundation.
T he aim of ventricular tachycardia (VT) abla-
tion is to eliminate critical isthmuses, which
can be identified by pacemapping, entrain-

ment mapping, and termination of VT by ablation.
The application of these techniques is limited by the
inducibility of multiple and often hemodynamically-
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ABB R E V I A T I O N S

AND ACRONYMS

BZ = border zone

CE = contrast enhanced

CMR = cardiac magnetic

resonance
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fibrosis, and CE-CMR–derived data have been suc-
cessfully integrated with electroanatomical maps
(EAMs) during VT ablation with high registration ac-
curacy (1–7). Integrated CE-CMR scar data may guide
to the scar area and uncover intramural and sub-
epicardial scars (1–4).
SEE PAGE 785 EAM = electroanatomical

mapping

IQR = interquartile range

LGE = late gadolinium

enhancement

LV = left ventricle

MI = myocardial infarction

NICM = nonischemic

cardiomyopathy

SI = signal intensity

VT = ventricular tachycardia
Although CE-CMR may help to identify scar areas
causing VT, there are limited data on specific CMR-
derived scar characteristics at critical isthmus sites,
which may be useful to guide ablation. Features of in-
terest are scar transmurality, which has been associ-
ated with slow conduction (2,4,7,8), and signal
intensity (SI), which has been used to identify con-
ducting channels (5,6) and to delineate core scar and
border zone (BZ). Importantly, to date, no study has
analyzed the value of CMR-derived scar characteristics
to identify areas containing critical isthmuses, thereby
potentially guiding substrate-based VT ablation.

The aims of the present study are: 1) to assess
CMR-derived scar characteristics at critical isthmus
sites of ischemic and nonischemic VT; and 2) to
determine the potential value of CMR to delineate
areas containing critical isthmus sites for imaging-
guided VT ablation.

METHODS

PATIENTS. The study population consisted of 44 of
48 consecutive patients with prior myocardial in-
farction (MI) (n ¼ 23) or nonischemic cardiomyopathy
(NICM) (n ¼ 21) who underwent VT ablation with
integration of CE-CMR. Three patients were excluded
because of noninterpretable CE-CMR, and 1 was
excluded because critical isthmus sites could not be
reliably identified due to noninducibility of VT.

The diagnosis of prior MI was based on the presence
of significant coronary artery disease ($70% stenosis
on coronary angiography) and subendocardial or
transmural late gadolinium enhancement (LGE) in a
coronary artery perfusion territory. The diagnosis
of NICM was based on the exclusion of significant
coronary artery disease, congenital heart disease,
hypertrophic cardiomyopathy, arrhythmogenic right
ventricular cardiomyopathy, left ventricular (LV)
noncompaction, restrictive cardiomyopathy, (sub)
acute myocarditis, cardiac sarcoidosis, tachycardia-
induced cardiomyopathy, and primary valvular
abnormalities. All patients were treated according
to our standard clinical protocol and provided
informed consent.

CE-CMR ACQUISITION AND PROCESSING. CE-CMR
was performed on a 1.5-T Gyroscan ACS-NT/Intera
MR system or on a 3.0-T Ingenia MR sys-
tem (Philips Medical Systems, Best, the
Netherlands). A standardized protocol was
followed, including cine CMR in long (2- and 4-
chamber views) and short axis. In addition, the
proximal aorta was imaged using a black-
blood turbo spin-echo sequence. Contrast-
enhanced images were acquired 15 min after
bolus injection of gadolinium (Magnevist,
Schering, Berlin, Germany) (0.15 mmol/kg)
with an inversion-recovery 3D turbo-field
echo sequence with parallel imaging. The
heart was imaged in 1 or 2 breath-holds with
20 to 24 imaging levels in short-axis views.

Using MASS software (research version
2012, LKEB, Leiden UniversityMedical Centre,
Leiden, the Netherlands), the centerline of the
proximal coronary arteries and the luminal

boundary of the proximal aorta weremanually defined
in the black-blood spin-echo images. The endocardial
and epicardial contours were semiautomatically
detected on the short-axis images. The defined geom-
etries of the proximal coronary arteries, aorta, and
myocardial boundaries were converted into 3D
meshes. Scar was defined asmyocardiumwith SI$35%
of maximal myocardial SI, and was subdivided into
core scar (>50% of maximal SI) and BZ (35% to 50% of
maximal SI) according to the method described by
Roes et al. (9). The vertices of the LV endocardial
and epicardial meshes were color-coded for scar
transmurality for the inner and outer one-half of the
wall, respectively. All meshes were imported into the
CARTO system using CartoMerge image integration
software (Biosense Webster Inc., Diamond Bar,
California). On the CARTO 3 system, scars were also
visualized as 3D structures, which were created using
MATLAB software version 2012a (MathWorks Inc.,
Natick, Massachusetts).

ELECTROPHYSIOLOGICAL EVALUATION. Antiarrhy-
thmic drugs were discontinued for $5 half-lives with
the exception of amiodarone. Programmed electrical
stimulation consisted of 3 drive cycle lengths (600,
500, and 400 ms) with 1 to 3 ventricular extrastimuli
($200 ms) from $2 right ventricular sites and burst
pacing (cycle length $200 ms), which was repeated
with isoprenaline (2 to 10 mg/min) when necessary.
The positive endpoint for stimulation was induction
of a monomorphic VT lasting for >30 s or requiring
termination because of hemodynamic compromise.

ELECTROANATOMICAL MAPPING, REAL-TIME IMAGE

INTEGRATION, AND ABLATION . If indicated,
epicardial access was first obtained through sub-
xiphoid puncture. Then, heparin was administered
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and EAM was performed using a 3.5-mm irrigated-tip
catheter (NaviStar ThermoCool, Biosense Webster
Inc.) and the CARTO system. Limited EAM of the
aortic root was performed, and the position of the left
main coronary artery, confirmed by contrast injection
through the mapping catheter, was tagged on the
map. CE-CMR–derived images were visually aligned
with the EAM using the left main landmark. Then,
the LV was mapped retrogradely focusing on the
integrated CMR-derived scar. The LV surfaces of CMR
and EAM were aligned with the translation tool
provided by the mapping system until the lowest
mean surface registration error was reached. Multi-
detector computed tomography–derived coronary
artery anatomy and epicardial fat meshes were inte-
grated with the EAM in patients undergoing epi-
cardial mapping (4,10).

Potential ablation target sites were identified by
activation mapping and entrainment mapping for
stable VT. For unstable VT, the area of interest was
identified by substrate mapping and detailed pace-
mapping. To confirm the best pacemap site, pacingwas
repeated after moving the catheter in all possible di-
rections. With the catheter placed in the area of inter-
est, VT was reinduced and briefly mapped to identify
diastolic activity and terminate the VT by ablation, also
used in cases of hemodynamically-unstable VT.

At the epicardium, ablation was usually withheld
when the estimated distance to a coronary artery
was <5 mm, as assessed by integrated multidetector
FIGURE 1 Integration of CMR-Derived 3D Scar Reconstruction With

Before the procedure, the original cardiac magnetic resonance (CMR) (A

(B). During the procedure, the position of the left main (LM) is confirmed

subsequently integrated with the electroanatomic map based on the LM l

CMR-derived scar (F and G).
computed tomography-derived coronary anatomy
and coronary angiography (10). High-output pacing
(10 mA, 2 ms) was performed to localize the phrenic
nerve. Radiofrequency energy was applied at 30
to 45W (maximum temperature 45�C, flow 20 to
30 ml/min, 60 s) for endocardial sites and #50W
(flow 20 ml/min) for epicardial sites.

ACUTE AND LONG-TERM OUTCOME. After ablation,
the entire programmed electrical stimulation protocol
was repeated. Isoprenaline was administered if re-
quired to induce VT before ablation. Complete pro-
cedural success was defined as noninducibility
of any sustained monomorphic VT; partial success as
elimination of the (presumed) clinical VT but persis-
tent inducibility of $1 nonclinical VT; and failure as
persistent inducibility of the (presumed) clinical VT.
Patients were followed up at 3, 6, and 12 months after
ablation and at 6- to 12-month intervals thereafter.

CRITICAL ISTHMUS SITES. For the current analysis,
all studies were thoroughly reviewed on the electro-
physiology recording system (Prucka Cardiolab
recording system, Houston, Texas) with an observer
who was blinded to the electroanatomical maps.
Critical isthmus sites were defined by the following
criteria:

1. $11 of 12 pacemaps (precise match of major de-
flections and all subtle notches in $11 of 12 leads;
site with longest S-QRS delay in case of identical
match);
Electroanatomical Maps

) is processed to create a three-dimensional (3D) scar reconstruction

by contrast injection (C) and tagged on the map (D). The CMR data are

andmark (E). Left ventricular (LV) mapping can then be focused on the



J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 7 , N O . 8 , 2 0 1 4 Piers et al.
A U G U S T 2 0 1 4 : 7 7 4 – 8 4 CMR-Identified VT Isthmus Sites

777
2. Concealed entrainment with post-pacing interval
equal to tachycardia cycle length; and/or

3. VT slowing and termination during ablation.

Critical isthmus sites for the same VT could be
identified by >1 criterion. Because of differences in
accuracy between pacemapping, entrainment, and
termination, we have stratified the analysis for these
different criteria. Critical isthmus sites were further
subdivided into central isthmus sites (S-QRS or
E-QRS 31% to 70% of VT cycle length) and exit sites
(S-QRS or E-QRS 0% to 30% of VT cycle length).

The LV endocardial low bipolar (#1.50 mV) and
unipolar (#8.27 mV [11]) voltage areas were measured
in all patients, and the epicardial low bipolar (#1.81
mV [4]) and unipolar (#7.95 mV [4]) voltage areas
were measured in patients with NICM who
underwent epicardial mapping. The location of LV
endocardial critical isthmus sites with respect to the
endocardial low voltage areas was assessed in all
FIGURE 2 Examples of Critical Isthmus Sites Projected on CMR-Deri

RAO ¼ right anterior oblique; other abbreviations as in Figure 1.
patients. The location of LV epicardial critical
isthmus sites with respect to epicardial areas with
low voltage and abnormal electrograms (4) was
assessed in patients with NICM.

CONTRAST-ENHANCED CMR-DERIVED 3D SCAR

RECONSTRUCTIONS. CMR-derived 3D scar recon-
structions and all CMR-based scar parameters were
computed using MATLAB software. Examples of
scars are displayed in Figures 1 and 2. After the pro-
cedure, all mapping points at critical isthmus sites
were projected onto the CMR-derived 3D scar re-
constructions using MATLAB software (example in
Fig. 2). Scar transmurality was calculated by dividing
scar thickness by wall thickness. The local scar
transmurality and SI at a mapping point were
calculated as the mean value within a 5-mm–radius
transmural cylinder around the mapping point. The
local scar transmurality and SI at critical isthmus
sites were compared with the average scar
ved 3D Scar Reconstructions



TABLE 1 Baseline, P

Age

Male

NYHA functional class

I

II

III

LV ejection fraction, %

LV end-diastolic volum

LV end-systolic volume

History of atrial flutter

BMI, kg/m2

Diabetes mellitus

eGFR <60 ml/min

Number of VTs induced

1

2

$3

Hemodynamic stability

Only stable VT

Only unstable VT

Stable and unstable

Mean cycle length of in

Pericardial puncture

Radiofrequency energy

Only endocardial

Only epicardial

Endocardial and epic

None

Procedural outcome

Complete success

Partial success

Failure

Indeterminate

Procedural duration, m

Fluoroscopy time, min

CMR scar volume, % o

Total scar volume

Core scar volume

BZ volume

CMR scar area, % of en

Area of #50% trans

Area of 51%–75% tra

Area of >75% transm

Values are mean � SD, n (

BMI ¼ body mass index;
filtration rate; LV ¼ left ve
VT ¼ ventricular tachycard
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transmurality and SI in the same patient. The
distances from critical isthmus sites to >75%
transmural scar and core-BZ transition were
calculated. The core-BZ transition was defined as the
line where core and BZ meet, projected on the
endocardial or epicardial surface.
rocedural and CMR-Derived Data

All Patients
(n ¼ 44)

Post-Infarction
(n ¼ 23)

NICM
(n ¼ 21)

62 � 13 67 � 9 56 � 14

37 (84) 20 (87) 17 (81)

24 (55) 12 (52) 12 (57)

17 (39) 10 (44) 7 (33)

3 (7) 1 (4) 2 (10)

44 � 12 45 � 12 42 � 11

e, ml 209 (181–253) 203 (174–233) 213 (189–257)

, ml 109 (87–155) 102 (84–134) 124 (89–160)

/fibrillation 8 (18) 5 (22) 3 (14)

27 � 5 28 � 5 27 � 4

7 (16) 5 (22) 2 (10)

5 (11) 3 (13) 2 (10)

17 (39) 12 (52) 5 (24)

13 (30) 4 (17) 9 (43)

14 (31) 7 (31) 7 (33)

of VTs

12 (27) 7 (30) 5 (24)

18 (41) 8 (35) 10 (48)

VT 14 (32) 8 (35) 6 (29)

duced VTs, ms 292 � 65 292 � 63 292 � 68

15 (34) 2 (9) 13 (62)

applications

31 (71) 21 (91) 10 (48)

4 (9) 1 (4) 3 (14)

ardial 8 (18) 1 (4) 7 (33)

1 (2) 0 (0) 1 (5)

26 (59) 15 (65) 11 (52)

9 (21) 3 (13) 6 (29)

5 (11) 1 (4) 4 (19)

4 (9) 4 (17) 0 (0)

in 201 � 73 179 � 51 225 � 87

44 � 21 37 � 16 51 � 23

f LV wall

16 (12–22) 18 (12–23) 15 (11–20)

6 (4–9) 7 (4–10) 6 (4–8)

10 (7–12) 10 (8–12) 9 (7–13)

docardial LV

mural scar 15 (12–19) 13 (11–16) 17 (13–24)

nsmural scar 7 (4–10) 9 (5–12) 6 (4–9)

ural scar 6 (3–10) 7 (3–13) 4 (2–7)

%), or median (interquartile range).

BZ ¼ border zone; CMR ¼ cardiac magnetic resonance; eGFR ¼ estimated glomerular
ntricular; NICM ¼ nonischemic cardiomyopathy; NYHA ¼ New York Heart Association;
ia.
The following pre-defined areas were calculated
for the endocardium and epicardium in each patient:
CMR-derived scar, area within 5 mm of >75% trans-
mural scar, area within 5 mm of core-BZ transition,
and areas within 5 and 10 mm of the core-BZ transi-
tion with >75% scar transmurality. The percentage of
critical isthmus sites located within these areas was
calculated.

CMR-derived overall scar characteristics were
calculated, including total scar volume, core volume,
BZ volume, and areas of #50%, 51% to 75%, and >75%
transmural scar. The relation was assessed between
these characteristics and: 1) average cycle length of
induced VTs; 2) number of induced VTs; 3) induc-
ibility of VT after ablation; and 4) VT recurrence.

STATISTICAL ANALYSIS. Categorical variables are
displayed as number (percentage) and continuous
variables are expressed as mean � SD or median
(interquartile range [IQR]). Continuous variables
were compared using the Student t test when nor-
mally distributed or the Mann-Whitney U test when
non-normally distributed. For paired variables, the
paired t test or the Wilcoxon signed rank test were
used, respectively. The relation between CMR-
derived overall scar characteristics and the number
of induced VTs and average cycle length of induced
VTs was first analyzed by univariate linear regression
analysis. The relation with VT inducibility after
ablation was analyzed by univariate logistic regres-
sion and the relation with VT recurrence by univari-
ate Cox regression. When statistically significant
associations were identified in univariate analyses,
multivariate analyses were performed to assess the
independent associations between the scar charac-
teristics of interest and the VT or outcome parame-
ters. All analyses were performed with SPSS version
20.0 (IBM, Somers, New York). All tests are 2-sided,
and p values <0.05 were considered significant.

RESULTS

A total of 44 patients (23 post-MI and 21 NICM, age
62 � 13 years, CMR-based left ventricular ejection
fraction 44 � 12%) underwent VT ablation with
integration of CMR-derived scar (178 � 76 LV map-
ping points; average registration error 3.8 � 0.6 mm,
example in Fig. 1). Epicardial mapping was performed
in 15 patients (13 NICM, 2 post-MI; 174 � 99 mapping
points). Baseline and procedural data are provided
in Table 1. A total of 110 distinct VTs (cycle length
290 � 67 ms) could be induced during the
procedure. A $11 of 12 pacemap was obtained in 67
VTs (61%; median S-QRS 30 ms [IQR: 10 to 48 ms]).
Entrainment was concealed with post-pacing interval
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equaling VT cycle length in 10 VTs (9%; median
E-QRS 98 ms [IQR: 61 to 133 ms]). Thirty-one
VTs (28%) slowed and terminated during ablation
(median E-QRS before ablation 96 ms [IQR: 37 to
126 ms]; median time to termination 9 s, [IQR: 6 to
11 s]). Based on these findings, critical isthmus sites
could be identified in 78 of 110 VTs (71%) at the
following locations: LV endocardium (46 VTs, 59%),
epicardium (16 VTs, 21%), right ventricular septum
(7 VTs, 9%), aortic root (5 VTs, 6%), both aortic
root and LV endocardium (2 VTs, 3%), both right
ventricular endocardium and epicardium (1 VT,
1%) and anterior cardiac vein (1 VT, 1%). Complete
procedural success was achieved in 26 patients
(59%), partial success in 9 (21%), failure in 5 (11%),
and the acute outcome was indeterminate in 4 (9%)
due to noninducible clinical VT prior to ablation.

SCAR TRANSMURALITY, SIGNAL INTENSITY, AND

DISTANCE TO CORE-BZ TRANSITION AT CRITICAL

ISTHMUS SITES. The mapping points at critical
isthmus sites were successfully projected on the CE-
CMR–derived 3D scar reconstructions (examples in
Fig. 2). One epicardial VT originated from the right
ventricular outflow tract and was excluded from
further analyses. Sites with a $11 of 12 pacemap
had a scar transmurality of 66 � 22% compared with
an average scar transmurality in the same patients
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FIGURE 3 Scar Transmurality and SI at Critical Isthmus Sites

Scar transmurality and signal intensity (SI) at critical isthmus sites comp

Values are mean � SD.
of 59 � 12% (p ¼ 0.005) (Fig. 3). The difference in
transmurality was larger at concealed entrainment
sites (concealed entrainment 76 � 16% vs. average
62 � 10%, p ¼ 0.024) and termination sites
(termination 70 � 21% vs. average 62 � 12%,
p ¼ 0.018).

The scar SI at critical isthmus sites was higher than
the average scar SI in the same patients ($11 of 12
pacemap 68 � 24% vs. average 59 � 16%, p ¼ 0.001;
concealed entrainment 72 � 21% vs. average 58 � 15%,
p ¼ 0.074; termination 69 � 21% vs. average 59 � 15%,
p ¼ 0.010) (Fig. 3).

The median distance to >75% transmural scar was
1.5 mm (IQR: 0.0 to 5.6 mm) at $11 of 12 pacemaps,
0.0 mm (IQR: 0.0 to 3.0 mm) at concealed entrain-
ment sites, and 1.8 mm (IQR: 0.0 to 3.8 mm) at
termination sites (Fig. 4). The critical isthmus sites
clustered around the core-BZ transition, with a
median distance to the transition of 3.7 mm (IQR:
1.5 to 7.0 mm) at $11 of 12 pacemaps, 1.9 mm (IQR:
0.0 to 2.6 mm) at concealed entrainment sites, and
2.5 mm (IQR: 1.1 to 4.2 mm) at termination sites.

SCAR CHARACTERISTICS AT EXIT AND ISTHMUS

SITES. Based on pacemapping, exit sites could be
identified in 60 VTs and central isthmus sites in 6
VTs. Scar transmurality and SI were higher at
pacemapping-based central isthmus and exit sites,
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ared with the average scar transmurality and SI in the same patient.
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FIGURE 4 Distance From Critical Isthmus Sites to >75% Transmural Scar and the Core-BZ Transition

(A) The distance from critical isthmus sites to >75% transmural scar, and (B) the distance to the core-border zone (BZ) transition.

(C) The remarkable bell-shaped distribution of critical isthmus sites around the core-BZ transition.
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compared with the average (Fig. 5). The differences
were more pronounced at central isthmus sites
(transmurality 78 � 14% vs. average 64 � 8%, p ¼
0.051; SI 77 � 17% vs. average 59 � 6%, p ¼ 0.012),
than at exit sites (transmurality 65 � 23% vs.
average 59 � 12%, p ¼ 0.019; SI 67 � 25% vs.
average 59 � 17%, p ¼ 0.004).

Of the 31 termination sites, 16 (52%) were consis-
tent with an exit site and 15 (48%) with a central
isthmus site. Scar transmurality was above average
at central isthmus sites (75 � 22% vs. 60 � 13%, p ¼
0.008), but not at exit sites (66 � 19% vs. 63 � 10%,
p ¼ 0.58). Similarly, SI was above average at central
isthmus sites (74 � 21% vs. 56 � 13%, p ¼ 0.006), but
not at exit sites (65 � 21% vs. 62 � 15%, p ¼ 0.54). The
number of concealed entrainment sites was too small
for subgroup analyses.

NONISCHEMIC CARDIOMYOPATHY VERSUS POST-

MYOCARDIAL INFARCTION. At $11 of 12 pacemaps
and termination sites, the CMR-derived scar charac-
teristics (including scar transmurality, SI, distance
to >75% transmural scar, and distance to core-BZ
transition) were not significantly different between
patients with NICM or prior MI (all p > 0.05, data
not shown).

CMR-BASED IDENTIFICATION OF CRITICAL

ISTHMUS SITES. The CMR-derived scar area (median
24% of LV [IQR: 16% to 30%]) contained 77% of $11 of
12 pacemap sites, 90% of concealed entrainment
sites, and 90% of termination sites (Fig. 6A). The area
within 5 mm of both >75% transmural scar and
core-BZ transition (median 13% of LV [IQR: 7% to
19%]) included only 56% of $11 of 12 pacemap sites,
but still 100% of concealed entrainment sites and
77% of termination sites.

In post-MI patients, the areas within 5 mm of
>75% transmural scar, within 5 mm of the core-BZ
transition, and the low bipolar voltage areas were
limited in size and contained the majority of LV
endocardial critical isthmus sites (Fig. 6B).

For patients with NICM the areas within 5 mm of
both >75% transmural scar and core-BZ transition
(median 13% of LV [IQR: 6% to 19%]), and the LV
endocardial low unipolar voltage area (median 11% of
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same patient. Values are mean � SD.
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LV [IQR: 2% to 16%]) were comparably small and
contained the majority of LV endocardial critical
isthmus sites (Fig. 6C). The LV epicardial low
bipolar and unipolar voltage areas with abnormal
electrograms were large (median 27% of LV [IQR:
15% to 41%] and median 43% of LV [IQR: 25% to
65%], respectively), whereas the area within 5 mm
of both >75% transmural scar and the core-BZ
transition was smaller (median 12% of LV [IQR: 6%
to 19%]) and contained the majority of epicardial
entrainment and termination sites (Fig. 6D).

CMR-DERIVED SCAR CHARACTERISTICS, VT

CHARACTERISTICS, AND OUTCOME. Univariate
analysis revealed that total scar, core and BZ
volumes, and areas of 51% to 75% and >75% trans-
mural scar were associated with slower induced VTs
(Online Table 1). In a multivariate model including
scar transmurality areas, only the area of >75%
transmural scar remained associated with VT cycle
length (þ17 ms per 5 cm2, 95% confidence interval:
7 to 27 ms, p ¼ 0.001). In a multivariate model
including the core and BZ volumes, only the BZ
volume remained associated with VT cycle length
(þ20 ms per 5 ml BZ, 95% confidence interval: 9 to
32 ms, p ¼ 0.001). BZ volume and area of >75%
transmural scar were interrelated (R2 ¼ 0.50, p <

0.001) and became nonsignificant if both parameters
were included in a model.
None of the overall scar characteristics were asso-
ciated with the number of induced VTs, inducibility
of VT after ablation, or VT recurrence (all p > 0.20)
(Online Tables 2 to 4).

DISCUSSION

In the present study, critical VT isthmus sites in pa-
tients with prior MI or NICM were typically located in
close proximity to the CMR-derived core-BZ transi-
tion and >75% transmural scar. In particular, central
isthmus sites had high scar transmurality and signal
intensity compared with the average of the entire
scar, suggesting that slow conducting pathways are
located within relatively dense and transmural scar.
The area within 5 mm of both >75% transmural scar
and the core-BZ transition covered a median of 13%
of the LV, but contained all concealed entrainment
sites and 77% of VT termination sites, allowing CE-
CMR–based delineation of relatively small areas
containing critical parts of the re-entry circuit. The
BZ volume and area of >75% transmural scar were
positively correlated with the cycle length of induced
VTs, providing further support to the premise that
the BZ and >75% transmural scar are associated with
slow conduction.

SCAR TRANSMURALITY AND SIGNAL INTENSITY.

The current study comprises the largest series of
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patients undergoing VT ablation with CE-CMR inte-
gration to date, and provides detailed analyses of
CMR-derived scar parameters at VT-related sites.
Critical isthmus sites were typically located within, or
in close proximity to, >75% transmural scar in post-
MI and NICM patients. In 1 prior study in 23 post-MI
patients, 62% of re-entrant VT critical sites were
identified in regions with >75% transmural scar
(8). Several studies have demonstrated a strong
correlation between electrogram prolongation and
scar transmurality (2,4,7,8), which is in line with
our finding that the area of >75% transmural scar
correlated positively with the cycle length of induced
VTs. Scar transmurality may therefore be an
important aspect of the substrate for re-entrant VT.

The scar density at critical isthmus sites is reported
in only 1 study in 9 patients with ischemic VT, in
which 71% of VT isthmus sites were located in the
infarct core and 29%were located in the BZ (7). All
critical sites in the BZ were in an area of transmural
infarct, with SI slightly lower than the cutoff
defining core infarct. In the present study, the
remarkable bell-shaped distribution of critical
isthmus sites around the core-BZ transition suggests
that the 50% maximal SI threshold may indicate a
critical mix between fibrosis and viable myocytes
that allows for slow conduction and, thereby, re-
entrant VT.

CMR-derived BZ channels through higher SI scar
areas have been correlated with critical isthmus sites
(5,6,12). Notably, in the present study we observed
relatively high SI at critical isthmus sites, contra-
dicting the premise that VT isthmuses manifest as
relatively low SI channels on CE-CMR.

Prior investigations demonstrated differences in
scar features between patients with NICM and prior
MI. One study demonstrated a lower LGE SI in pa-
tients with atypical LGE patterns, compared with
patients with an infarct LGE pattern, suggesting that
there is a higher scar density in post-MI patients (13).
A study in 33 patients with NICM or prior MI who
underwent VT ablation showed that patients after
MI had more pronounced EAM-based conduction
delay than patients with NICM (14). In the current
study, we could demonstrate that, although overall
scar characteristics may be different, CMR-derived
scar characteristics at critical isthmus sites were
similar between patients with prior MI or NICM.
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CMR-BASED IDENTIFICATION OF THE AREA OF

INTEREST. We could demonstrate the added value of
CMR-based scar characteristics for identification of
areas containing critical isthmus sites during VT
ablation. A limited area within 5 mm of both >75%
transmural scar and core-BZ transition encompassed
all concealed entrainment sites and 77% of termina-
tion sites, which are considered to be reliable
markers for critical isthmus sites. This area may,
therefore, serve as a target area for substrate-guided
ablation approaches. Only 56% of $11 of 12 pacemap
sites was located in these regions. However, $11 of 12
pacemaps may also be recorded in the vicinity of exit
sites and may therefore be less accurate. Impor-
tantly, the CMR-derived target area can be displayed
and used as a guide for ablation using single
landmark-based image integration without extensive
electroanatomical substrate mapping.

STUDY LIMITATIONS. No critical isthmus sites could
be identified in 29% of VTs, which may be due to
intramural re-entry circuits, epicardial re-entry cir-
cuits in patients who did not undergo epicardial
mapping, or epicardial re-entry circuits that could not
be mapped due to epicardial fat.

Pacemapping is considered to be a less accurate
technique for defining critical isthmus sites, in
particular if no S-QRS delay is observed. Therefore,
we have stratified the analysis for different tech-
niques to identify critical isthmus sites and for
different E/S-QRS delays.

Scar transmurality and signal intensity were
calculated for a 5mm-radius transmural cylinder, and
therefore, they do not depend on the endocardial or
epicardial location. The present data can thus not be
used to predict whether an endocardial or epicardial
ablation procedure will be successful.

Data from endocardial and epicardial critical
isthmus sites were pooled, because the distance to
>75% transmural scar and core-BZ transition did
not differ between endocardial and epicardial
pacemapping- or termination-based critical isthmus
sites in patients with NICM.

CLINICAL IMPLICATIONS. Based on the present
findings, CMR may be used to guide to areas that are
likely to contain critical isthmus sites. Within these
areas, ablation target sites may be further specified
(e.g., based on electrogram characteristics or pace-
mapping). Importantly, the CMR-derived area of in-
terest is available before extensive substrate mapping
and is not limited by intramural or subepicardial
location of scars or by epicardial fat. Moreover, it is
relatively small compared to low-voltage areas, in
particular to epicardial low-voltage areas in NICM. VT
cycle length was not different between VTs with and
without an identifiable critical isthmus site (294 � 65
ms vs. 282 � 70 ms, p ¼ 0.40), indicating that both
slow and fast VTs are represented in the analysis.
CMR may be particularly useful if no or only limited
mapping time is available for poorly tolerated fast
VT. Future prospective studies are required to assess
whether CMR guidance to pre-selected regions that
are likely to contain critical isthmus sites may
improve the efficiency and efficacy of VT ablation.

CONCLUSIONS

In ischemic and nonischemic VT, critical parts of the
re-entry circuit are typically located in close prox-
imity to >75% transmural scar and the core-BZ tran-
sition. The area within 5 mm of both >75% transmural
scar and core-BZ transition contained all concealed
entrainment sites and 77% of termination sites. These
findings suggest that CMR-derived scar characteris-
tics may be used to guide to critical isthmus sites
during VT ablation.
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