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1. INTRODUCTION

Let K be a convex body. In the theory of polytopal approximation, one
considers the polytope Pn with n vertices, or the polytope P(n) with n facets
closest to K, and the main task is to determine the asymptotic behavior of
the distance of Pn (or P(n)) and K.

The topology on the space of convex bodies is always the same but the
actual metric used depends on the nature of the problem. In this paper, we
consider the most commonly used notions of distance of two convex bodies
C and M. The support function of C is defined as

hC(u)=max
x # C

(u, x).

Symmetric Difference Metric. $S(C, M) is the volume of the symmetric
difference C2M of C and M.

L1 Metric. $1(C, M)=�S d&1 |hC(u)&hM (u)| du.

Hausdorff Metric. $H(C, M) is the maximum of all the distances of
points in C from M, and all the distances of points in M from C.

Banach�Mazur Metric. If C and M are o-symmetric then $BM (C, M) is
the minimum of ln * such that for certain linear transformation T, we have

T(C)/M/*T(C).

Schneider's Distance. If M/C then $SCH(C, M) is the maximum
volume of caps of C cut off by supporting planes of M.

If M/C then $1(C, M) is proportional with the deviation of the mean
width. In addition, if M/C, �C is smooth, M is a polytope and �M is
close to �C then $SCH(C, M) is the maximum volume of caps of C cut off
by the affine hull of a facet of M.
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Assume that K has C 2 boundary, and denote by Qx the second
fundamental form at an x # �K (see [30]). Then the sectional curvature at
the direction of the unit vector u tangent at x is Qx(u), and the Gau?

curvature }(x) is the determinant of Qx . Note that Qx is positive semi-
definite (and hence }(x) is non-negative) because of the convexity of K.

An accelerating progress has been taking place in understanding how
well a polytope can approximate K if �K is C 2

+ ; namely, if the Gau?

curvature is positive everywhere. After sporadic results in the plane, the book
[9] of L. Fejes To� th provided for the first time a large number of results
in polytopal approximation, concentrating on the extremal properties of
regular polytopes in dimensions two and three. In higher dimensional
spaces, the first result about the asymptotic order of approximation is due
to R. Schneider (see [27]), considering the Hausdorff metric and assuming
that the boundary is C 3

+ . Later P. M. Gruber managed to extend the
method of L. Fejes To� th (the so called ``Momentum Lemma'') to higher
dimensional spaces, at least in an asymptotic sense (see [12, 13]). This way
he could handle various other metrics and could relax the differentiability
assumption to C 2

+ . An idea of S. Glasauer (see [10]) bringing the polar
body in the picture made it possible to obtain results about the L1 metric.
Finally, M. Ludwig [22] tackled the case of general approximation for the
symmetric difference and the L1 metric. For comprehensive surveys about
the subject, consult the articles [14, 17] of P. M. Gruber.

Next we list the asymptotic formulae, since these are the formulae which
we prove in a more general setting. We always denote by Pn (P(n)) the best
approximating polytope with at most n vertices (with at most n facets). It
is also natural to consider the problem where the polytope is assumed to
be inscribed in K, or circumscribed around K.

First, assume that K is o-symmetric, and denote by &(x) the unit exterior
normal at x # �K. The center affine surface area

A0(K )=|
�K

}(x)1�2

hK (&(x)) (d&1)�2 dx

of K is known to be affinely invariant (see the classical book [2] of
W. Blascke, or the monograph [21] of K. Leichtwei? ). Denote the density
of the thinnest covering of Rd&1 with congruent balls by �d&1 , and
the volume of the unit (d&1)-ball by }d&1 . If P2n (P(2n)) is the best
approximating o-symmetric polytope with 2n vertices (2n facets) then (see
[15])

$BM (K, P2n), $BM (K, P(2n))t
1
2 \

�d&1

}d&1 +
2�(d&1)

} A0(K)2�(d&1) }
1

(2n)2�(d&1) .

(1)
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Since the symmetric difference metric and Schneider's notion of distance
are invariant under volume preserving affine transformation, it is no
surprise that the corresponding asymptotic formulae contains the affine
surface area

A(C)=|
�K

}(x)1�(d+1) dx.

Those interested in the main properties of the affine surface area (which we
actually do not need) should consult the books [2] of W. Blaschke or
[21] of K. Leichtwei? , or the paper [24] of E. Lutwak.

If P(n) /K (Pn /K ) is the best approximating polytope with at most n
facets (with at most n vertices) with respect to Schneider's notion of
distance then

$SCH(K, Pn), $SCH(K, P(n))

t
(�d&1) (d+1)�(d&1)

(d+1)(}d&1)2�(d&1) } A(K) (d+1)�(d&1) }
1

n(d+1)�(d&1) .
(2)

This result was established by R. Schneider in [28] for P(n) if �K is C 3
+ ,

and the general result is verified in [3].
If Pn or P(n) is the best approximating with respect to the symmetric

difference metric then M. Ludwig [22] proved that

$S(K, Pn)t
ldeld&1

2
} A(K ) (d+1)�(d&1) }

1
n2�(d&1) (3)

$S(K, P(n))t
ldivd&1

2
} A(K )(d+1)�(d&1) }

1
n2�(d&1) , (4)

where ldeld&1 and ldivd&1 are certain constants depending on the dimension.
Under the additional assumption the polytope is inscribed or circumscribed,
the corresponding asymptotic formulae were determined in [12, 13] by
P. M. Gruber, and in [4].

Note that M. Ludwig also considered a generalization of the symmetric
difference metric: Let w be a positive and continuous function in Rd, and
define

$w(M, C)=|
M2C

w(x) dx
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for convex bodies M and C. Then (see [22])

$w(K, Pn)t
ldeld&1

2
} \|�K

w(x)(d+1)�(d&1) }(x)1�(d+1) dx+
(d+1)�(d&1)

}
1

n2�(d&1)

(5)

$w(K, P(n))t
ldivd&1

2
} \|�K

w(x)(d+1)�(d&1) }(x)1�(d+1) dx+
(d+1)�(d&1)

}
1

n2�(d&1) .

(6)

Now we turn to the L1 metric. M. Ludwig [22] proved (using polarity
and formulae (5) and (6)) that

$1(K, Pn)t
ldivd&1

2
} \|�K

}(x)d�(d+1) dx+
(d+1)�(d&1)

}
1

n2�(d&1) (7)

$1(K, P(n))t
ldeld&1

2
} \|�K

}(x)d�(d+1) dx+
(d+1)�(d&1)

}
1

n2�(d&1) . (8)

The cases of circumscribed or inscribed polytopes are handled in the paper
[10] of S. Glasauer and P. M. Gruber and in [4].

Finally, consider the Hausdorff distance. R. Schneider [27, 29] proved in
the C 3

+ case, and P. M. Gruber [15] in the C 2
+ case that

$H(K, Pn), $H(K, P(n))t
1
4 \

�d&1

}d&1+
2�(d&1)

} \|�K
}(x)1�2 dx+

2�(d&1)

}
1

n2�(d&1) .

(9)

Under the additional assumption that the polytope is inscribed or
circumscribed, the optimal approximation is twice the value in (9).

The main goal of this paper is to verify the conjecture of P. M. Gruber
(see [17]), namely, to remove the positivity condition on the curvature.

Theorem A. The formulae (1), ..., (9) hold for any convex body K with
C2 boundary even if the Gauh curvature is allowed to be zero.

Note that the definition of the affine surface area can be extended to any
convex body (see the book [21] of K. Leichtwei?, or the paper [24] of
E. Lutwak). Therefore it is natural to ask whether (3) and (4) hold for any
convex body whose affine surface area is positive. M. Ludwig has already
made the first step in this direction; namely, in [23], she handles the case
when d=2 and the polygon is inscribed.

On the other hand, Theorem A is in some sense optimal; namely, one
can not relax further the differentiability requirement on �K. This was
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verified in [17] by showing that no asymptotic formula exists for the best
approximation if �K is only assumed to be C1.

Next we consider how well the facets or vertices of the best approximating
polytope are distributed. Let Fn be a family of objects on �K for any n. We
say that Fn uniformly distributed on �K with respect to the density function
* if for any Jordan measurable subset X of �K,

lim
n � �

*[F # Fn | F & X{<]
*Fn

=
�X *(x) dx
��K *(x) dx

.

Note that by Theorem A, Pn (P(n)) has asymptotically n vertices (n
facets). In Theorem B below, any reasonable meaning can be attached to
the phrase ``projection into �K,'' like the closest point map, radial projec-
tion from a fixed interior point of K, etc. The corresponding result was
proved in [11] by S. Glasauer and R. Schneider for most metrics if the
curvature is everywhere positive.

Theorem B. If �K is C2 then the projections onto �K of the vertices of
Pn (the facets of P(n)) are uniformly distributed with respect to the density
function *(x) which appears in the asymptotic formulae (1), ..., (9).

In the three dimensional case, even the asymptotic shape of most faces
of the best approximating polytope can be determined (see [5], or for the
C 2

+ case with more exact estimates, see [8, 18, and 19]).
Finally, assume that K is a convex body with C2 boundary, and X is

a Jordan measurable open subset of �K such that }(x)>0 at some
x # X. Then polytopal hypersurfaces approximating X can be defined
as the corresponding parts of the boundary of some polytopes (see
Section 2), and the analogues of Theorem A and Theorem B holds for X
(see Corollaries 1 and 2).

2. APPROXIMATING THE BOUNDARY

We use the terms open and Jordan measurable relative to the intrinsic
structure of convex surfaces in Rd as well, the meaning will be always clear
from the context. Denote the (d&1)-dimensional Hausdorff measure by | } |
(see [7, 26] for the main properties).

In this section, we fix a convex body K with C2 boundary in Rd. Our
arguments are based on the approximation of certain parts of �K, so let X
be a Jordan measurable open subset of �K.

A Jordan measurable open subset of the boundary of a convex polytope
Q is called a polytopal hypersurface. Next we define the polytopal hypersur-
face Y in �Q associated to X. In case of the symmetric difference metric or
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$w , we assume that the origin is contained in the interior of both of K and
of Q, and Y is the radial projection of X onto �K. For the other metrics,
define Y as the set of points y of �Q such that there exists an exterior
normal to Q at y which is the exterior normal to K at some x # X. Note
that in case of the Banach�Mazur distance, we assume that K and Q are
o-symmetric.

The vertices of Y are the vertices of Q lying in Y, and the facets of Y are
the sets of the form F & Y where F is a facet of Q and |F & Y|>0.

Then a polytopal hypersurface Y is inscribed (or circumscribed) with
respect to X if Q can be chosen inscribed in K (or circumscribed around K ).

The analogues of the notions of distances above are defined as follows:
$S(X, Y ) is the volume of the part between X and Y, and $w(X, Y ) is the
integral of w on the part between X and Y. For x # X, denote by &(x) the
exterior unit normal to K at x, and let y(x) be a point of Y with the same
exterior normal. Then set

$1(X, Y )=|
X

|( y(x)&x, &(x)) | }(x) dx,

$H(X, Y )=sup
x # X

|( y(x)&x, &(x)) |.

If Y is inscribed then define $SCH(X, Y ) as the maximal volume of any
caps cut out from K by the affine hull of a facet of Y.

For any metric $ above, if X=�K and Yn=�Pn (Y(n)=�P(n)) for the
best approximating polytope Pn (P(n)) with at most n vertices (facets) then

$(X, Yn)=$(K, Pn) and $(X, Y(n))=$(K, P(n)).

Finally, if Y is inscribed then the definition of $BM can be extended only
in a restricted sense; namely,

$BM (X, Y )=sup
x # X

ln \1+
|( y(x)&x, &(x)) |

|(x, &(x)) | + .

Since affine maps keep the number of faces, this definition suffices for our
purposes. More precisely, assume that K is o-symmetric and P2n (P(2n)) is
the best approximating o-symmetric polytope with respect to the Banach�
Mazur distance, P2n (P(2n)) is a contained in K, and the linear transformation
can be chosen to be the identity. If X=�K and Y2n=�P2n (Y(2n)=�P(2n))
then

$BM (X, Y2n)=$BM (K, P2n) and $BM (X, Y(2n))=$BM (K, P(2n)).
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2.1. Approximating the Flat Part

If +>0 then denote by 7(+) the set of points on �K where the minimal
sectional curvature is less than +. In the arguments below, we frequently
need a small open neighborhood of some closed set _ to be Jordan
measurable. The existence of such an open neighborhood always follows
from the fact that any uncountable family of level sets of a continuous
function vanishing exactly on _ contains a member with zero measure. For
example, 7(+) is Jordan measurable for all but countably many +.

We use the Landau symbol O( } ) meaning that the implied constant
depends only on K.

Lemma 1. Let $ be one of the metrics above, and let =>0. Then for any
small + where 7(+) is Jordan measurable, 7(+) satisfies the following
property: For large m, there exists a polytopal hypersurface Ym (Y(m)) with
at most m vertices (m facets) approximating 7(+) such that

$(7(+), Ym), $(7(+), Y (m))=
O(=)
m# ,

where #= d+1
d&1 for $SCH and #= 2

d&1 otherwise. The analogous results hold for
inscribed and circumscribed hypersurfaces.

Proof. Completely different arguments are needed for Scheider's notion
of distance and for the other metrics. The reason is that a hyperplane close
to a flat point may cut out a cap with relatively large volume, while being
close in the sense of Hausdorff metric automatically yields the closeness
with respect to $BM , $w , and $1 .

Case I. Schneider's Notion of Distance. Here we use the method of cap
covering developed originally by A. M. Macbeath (see [25]). If y # K and
*>0 then a Macbeath region is

M( y, *)= y+*((K& y) & ( y&K)).

These regions have the surprising property (see [6])

M( y1 , 1
2) & M( y2 , 1

2){< yields that M( y1 , 1)/M( y2 , 5). (10)

On the other hand, consider a hyperplane H intersecting K which is
parallel to the tangent hyperplane at an x # �K and have distance h from
x. Then the cap cut out by H from K is denoted by C(x, h).
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Consider 7(+) where we fix + later. For large m and x # 7(+), define
h(x) so that

V(C(x, h(x)))=
=

m(d+1)�(d&1) .

Since the sectional curvatures are bounded on �K, we deduce by x # 7(+)
that

h(x)=
O(+1�(d+1)=2�(d+1))

m2�(d&1) ,

which in turn yields the estimate

V \ .
x # 7(+)

C(x, h(x))+=
O(+1�(d+1)=2�(d+1))

m2�(d&1) . (11)

Now consider the hyperplane bounding C(x, 1
10 h(x)), and denote

by y(x) the center of mass of the section of K by this hyperplane. The
definition of h(x) yields the existence of a c1>0 depending only on d such
that

V(M( y(x), 1
2))>c1 }

=
m(d+1)�(d&1) . (12)

Let [x1 , ..., xk] be a maximal family on 7(+) such that the interiors of
the sets M( y(xi),

1
2) are disjoint. We deduce by (11) and by (12) that

k<c2 }
+1�(d+1)

=(d&1)�(d+1) } m

for a c2 depending only on K. Therefore k<m if we choose + initially small
enough.

Now to construct Y(m) , take the polytopal hypersurface determined by
the hyperplanes bounding the caps C(x i , h(xi)). What is left to prove that
Y(m) is inscribed; namely, that any x # 7(+) is contained in some
C(xi , h(xi)). The xi we need is the one satisfying

M( y(x), 1
2) & M( y(x i),

1
2){<.

We deduce by (10) that M( y(x), 1)/M( y(xi), 5), which in turn yields by
x # M( y(x), 1) that x # C(xi , h(xi)).

On the other hand, Ym is defined using the convex hull of the x i 's. Here
we should verify that for any x # 7(+), the cap C(x, h(x)) contains some x i ,
which can be done as above.
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Case II. The Other Metrics. First for small + we construct a covering
of 7(+) by a finite family [7:] of open, Jordan measurable sets and corre-
sponding hyperplanes H: with the following properties:

(i) Denote by 8: the projection of 7: onto H: . Then a
neighborhood of cl 7: on �K is the graph of a C2 function f: defined in a
neighborhood of cl 8: in H: .

(ii) For large m, there exists a covering F: of cl 8: by non-overlapping
translates of a rectangular box 6: /H: whose diameter tends to zero as m
tends to infinity, and there exists a function .: linear on each 6 # F: such
that if z # 6 then

.:(z)� f:(z)<.:(z)+
=

m2�(d&1) .

(iii) � |8: |< |�K |.

(iv) �*F:<m.

Denote by 0 the maximum of 2Qx(u) for x # �K and &u&=1. Define
;>0 such that

(d&2) } 0 } ;2�(d&2) } |�K |2�(d&1)< 1
2 } =,

and + is defined so that

2+
;2 } |�K |2�(d&1)<

1
2

} =,

and 7(+) is Jordan measurable.
For any x # cl 7(+), denote by Hx the tangent hyperplane, and by fx the

C2 function on Hx parameterizing �K around x. For z # Hx , let qz be the
quadratic form representing the second derivative of fx at z. Since Qx=qx ,
there exist a Jordan measurable open neighborhood Ux of x on �K and a
suitable system of coordinates such that if z is in the projection of Ux into
Hx and &u&=1 then

qz((u1 , ..., ud&1))<2+u2
1+0u2

2+ } } } +0u2
d&1 . (13)

Let Ux1
, ..., Uxk

be a finite covering of 7(+), and define H:=Hx:
and

V:=(Ux:
& 7(+))> .

:&1

i=1

cl Uxi
.
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We may assume that each V: is non-empty. Now each V: is Jordan
measurable, the sets V: are pairwise disjoint, and the union of their
closures cover 7(+). Thus define a Jordan measurable open neighborhood
7: of cl V: such that in an open neighborhood in H: of the closure of the
projection 8: of 7: into H: (13) still holds and

: |8: |<|�K |.

In H: , let 4: be the lattice determined by the box 6: defined as

_0,
1
; \

|�K |
m +

1�(d&1)

+__0, ;1�(d&2) \ |�K |
m +

1�(d&1)

+_ } } }

__0, ;1�(d&2) \ |�K |
m +

1�(d&1)

+ .

For any z # H: , denote by lz the derivative of f: at z. Denote by F: the
family of w+6: where w is a point of 4: intersecting 8: , and for
w+6: # F: and z # w+6: , set

.:(z)= f:(w)+lw(z&w).

Then f:(z)�.:(z), and the Taylor formula and the definition of ; and +
yield for any z # w+6 a v # w+6 such that f:(z)&.:(z)= 1

2qv(z&w), and
hence

f:(z)&.:(z)<
2+
;2 \ |�K |

m +
2�(d&1)

+(d&2) 0 } ;2�(d&2) \ |�K |
m +

2�(d&1)

<
=

m2�(d&1) .

Finally, the number of tiles intersecting |8: | is asymptotically |8: |�|�K |�m,
and hence for large m, we have that �*F:<m. At this point, all the
properties (i), ..., (iv) have been established.

Now we prove the lemma for the Hausdorff metric. Call the closure of
the image of a 6 # F: by .: a patch. Then Y(m) is simply determined by the
affine hulls of the patches.

Turning to Ym , repeat the construction above with (1�2d ) m instead of
m, and with (1�22d�(d&1)) = instead of =, and take the convex hull of the
patches.

Observe that the Ym and the Y(m) we have constructed are cir-
cumscribed. In order to have inscribed polytopal hypersurfaces, the only
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additional step to do is to get the patches inside K ; namely, instead of
being the image of .: , they are the image of .:+=�m2�(d&1) (see (ii)).

Now the polytopal hypersurfaces constructed for $H are also suitable for
$BM , $w and $1 . Q.E.D.

Note that (11) is related to the fact that the affine surface area can be
defined with the help of the so called floating body (see [31]). Similar
ideas about the way how to use cap covering for approximation problems
are contained in [1].

2.2. Theorem A and the Corollary

Here we combine Corollary 1 in [3] and Corollary 2 in [4] as

Lemma 2. Let $( } , } ) be any of the metrics above. Assume that K is a
convex body with C 2 boundary, and X is a non-empty, Jordan measurable
open subset of �K such that }(x)>0 for x # cl X. For large m, denote by
Ym the polytopal hypersurface with at most m vertices which has minimal
distance from X with respect to $( } , } ). Then

$(X, Ym)tc } \|X
*(x) dx+

#0

}
1

m# ,

where c, #0 , and # are the suitable constants. Similar statement holds if Ym is
assumed to be inscribed or circumscribed, or if the number of facets is bounded.

Proof of Theorem A. We use the notation of Lemma 2. First we present
the proof if the number of facets is bounded.

Let =>0, and denote by P(n) the best approximating polytope with at
most n facets. First we prove that for large n,

$(K, P(n))>(1&O(=)) } c } \|�K
*(x) dx+

#0

}
1
n# . (14)

Since }(x)=0 is equivalent with *(x)=0, there exists a Jordan measurable,
open subset X of �K such that }(x) is positive on cl X and

|
X

*(x) dx>(1&=) } |
�K

*(x) dx.

Denote by Y the part of �P(n) approximating X. Since Y has at most n
facets, (14) follows by Lemma 2.
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Next for large n, we construct a polytope Q(n) with at most n facets such
that

$(K, Q(n))<(1+O(=)) } c } \|�K
*(x) dx+

#0

}
1
n# . (15)

Choose 0<{, =0<1 such that

1
(1&{)#<1+=

and

=0

{#<= } c } \|�K
*(x) dx+

#0

.

Assume that 7=7(+) is the Jordan measurable open set on �K provided
by Lemma 1 with this =0 and m={n. Finally, choose a Jordan measurable
open subset X of �K which covers �K"7 and }(x)>0 for x # cl X.

For large n, consider the polytopal hypersurface Y({n) with at most {n
facets whose distance from 7 is minimal, and the polytopal hypersurface
Y((1&{) n) with at most (1&{) n facets whose distance from X is minimal.
Now the Q(n) which is the intersection of the half spaces corresponding to
Y({n) and Y((1&{) n) satisfies (15) by Lemmas 1 and 2. Here no problem
occurs for the distances related to the Hausdorff metric; namely, for
$H , $BM and $SCH . In case of $w or $1 , the distance of 7 & X from the
corresponding part of Q(n) is at most the sum of the distances of the corre-
sponding parts of Y{n and Y(1&{) n , and hence (15) still holds. Finally, (14)
and (15) yield Theorem A.

If the polytope should be inscribed or circumscribed then the same
argument works.

Now let us consider the problem if the number of vertices is bounded. If
$ is not $w then the argument is the same with the obvious change of
notions, only one takes the convex hull of Y{n and Y(1&{) n at the very end.
If $=$1 then still the distance of 7 & X from the corresponding part of Qn

is at most the sum of the distances of the corresponding parts of Y{n and
Y(1&{) n .

So assume that $=$S , and we need extra care when piecing Y{n and
Y(1&{) n . If n is large then we may assume by Lemma 2 about the part Y0

of Y(1&{) n which approximates X & 7 that

$S(X & 7, Y0)<= } ldeld&1 } \|�K
}(x)1�(d+1) dx+

(d+1)�(d&1)

}
1

n2�(d&1) .
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Now Proposition 5.1 in [4] states that if Y is the part of Qn approxi-
mating X & 7 then $S(X & 7, Y )<c1 } ($S(X & 7, Y0)+$S(7, Y{n)) where
c1 depends only on d. Therefore

$S(X & 7, Y )=O(=) } ldeld&1 } \|�K
}(x)1�(d+1) dx+

(d+1)�(d&1)

}
1

n2�(d&1) ,

and hence the analogue of (15) holds again.
Similar arguments work if $S is replaced by $w . With this, the proof of

Theorem A is complete. Q.E.D.

We have not used the fact that �K is closed (except for $BM where for
general locally convex hypersurfaces we have to forget about the affine
transformation). Therefore applying the conditions on the approximating
polytopal hypersurface described at the beginning of Section 2, we have

Corollary 1. Let $( } , } ) be any of the metrics above. Assume that K
is a convex body with C2 boundary, and X is a non-empty, Jordan
measurable open subset of �K such that }(x)>0 for some x # X. For large
n, denote by Yn the polytopal hypersurface with at most n vertices which has
minimal distance from �K with respect to $( } , } ). Then

$(X, Yn)tc } \|X
*(x) dx+

#0

}
1
n# ,

where c, #0 , and # are the suitable constants. Similar statement holds if Yn

is inscribed or circumscribed, or if the number of facets is bounded.

3. PROOF OF THEOREM B

Assume that $( } , } ) is any of the metrics above, and Pn is the best
approximating polytope with n vertices. If X/�K is Jordan measurable
then denote by Gn(X ) the family of vertices v of Pn which satisfy at least
one of the following properties:

(i) the projection of v along the normal to �K through v lands in X ;

(ii) there exists an x # �K such that &(x) lies in the normal cone at v;

(iii) if F is a facet of Pn containing v then aff F & �K & X{<.

Similarly, define G(n)(X ) as the suitable family of facets F of P(n) ; namely,
F satisfies (iii), or some point of F satisfies (i) or (ii).
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First, we would like to eliminate the ``effect'' of the boundary of a Jordan
measurable X/�K. We use the notation of Lemma 2.

Proposition 1. Let _/�K be closed with |_|=0. Then for any {>0
there exists an open, Jordan measurable 7/�K containing _ such that
}(x)>0 for x # �K"7, and

*Gn(7), *G(n)(7)<{ } n

holds for large n.

Proof. We present the proof for Pn , the arguments are analogous
for P(n) .

Choose some open, Jordan measurable X/�K such that cl X & _=<,
}(x)>0 for x # cl X, and

\|X
*(x) dx+

#0

>(1&{)#�3 } \|�K
*(x) dx+

#0

. (16)

We claim that 7 can be chosen any open, Jordan measurable subset with
cl 7 & cl X=< and satisfying the conditions above.

Let Y be the part of Pn approximating X. If for large n, Y has at most
(1&{) n vertices then we deduce by Theorem A and Lemma 2 that

$(K, Pn)�$(X, Y )>(1&{)#�3 } c \|X
*(x) dx+

#0

}
1

(1&{)# n# .

This inequality contradicts Theorem A for large n by (16). Since the
diameter of the facets of Pn close to �K"7 tends to zero, we conclude that
*Gn(7)<{ } n. Q.E.D.

Observe that the size of the facets of the best approximating polytope
tends to zero near the boundary points with positive curvature. Therefore
Proposition 1 yields that it makes no difference how the vertices or facets
are projected into �K in the definition of uniform distribution.

In case of the symmetric difference metric, we need some functional
inequalities. Observe that the convexity of the function s&2�(d&1) yields for
any positive t1 , t2 , s1 , s2 the inequality

t1 } s&2�(d&1)
1 +t2 } s&2�(d&1)

2 �(t1+t2)(d+1)�(d&1) (t1s1+t2s2)&2�(d&1).

Since the function s&2�(d&1) is actually strictly convex, we deduce
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Proposition 2. Let =>0 be small, and assume that t1 , t2 , s1 , s2 are
positive numbers. Then there exists a continuous, positive function |=(t1 , t2)
such that if

t1 } s&2�(d&1)
1 +t2 } s&2�(d&1)

2

�(1+|=(t1 , t2)) } (t1+t2) (d+1)�(d&1) (t1s1+t2s2)&2�(d&1)

then s2�(1+=) } s1 and s1�(1+=) } s2 .

Now we are finally prepared for the

Proof of Theorem B. Let X be a Jordan measurable subset of �K.
If $ is one of $H , $SCH or $BM then cover the boundary of X by the 7

given in Proposition 1 for some small {. Then applying Lemma 2 simulta-
neously to X & (�K"cl 7) and to (�K"X ) & (�K"cl 7) yields Theorem B for
this $.

Next, we present the proof for $S and Pn .
Assume first that X1 and X2 are non-empty, open, Jordan measurable

subsets of �K such that cl(X1 _ X2)=�K, and set mi (n)=Gn(Xi), i=1, 2.
Let =>0. We claim that for large n,

1
1+=

}
m1(n)

�X1
}(x)1�(d+1) dx

�
m2(n)

�X2
}(x)1�(d+1) dx

�(1+=) }
m1(n)

�X1
}(x)1�(d+1) dx

.

(17)

In order to prove (17), set

ti=|
Xi

}(x)1�(d+1) dx and si=
mi (n)

�Xi
}(x)1�(d+1) dx

.

If n is large then estimating (see Corollary 1) the volume of the part
between Xi and �Pn , i=1, 2, from below and $S(K, Pn) from above yield
for large n that

t1 } s&2�(d&1)
1 +t2 } s&2�(d&1)

2

�- 1+|=(t1 , t2) } \|�K
}(x)1�(d+1) dx+

(d+1)�(d&1)

}
1

n2�(d&1) .

Now m1(n)+m2(n)<(1+|=(t1 , t2)) (d&1)�4 } n can be assumed by Proposi-
tion 1. Thus Proposition 2 yields (17), and in turn Theorem B has been
verified for $S .

Similar arguments work if the number of facets is bounded, or $S is replaced
by $w or $1 . Therefore Theorem B has been finally verified. Q.E.D.
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Again, we have not used the fact that �K is closed (except for the
obvious restriction on $BM). So replacing Theorem A with Corollary 1 in
the arguments, we have

Corollary 2. Let $( } , } ) be any of the metrics above. Assume that K
is a convex body with C2 boundary, and X is a non-empty, Jordan
measurable open subset of �K such that }(x)>0 for some x # X. For large
n, denote by Yn (Y(n))) the polytopal hypersurface with at most n vertices
( facets) which has minimal distance from X with respect to $( } , } ). Then the
projections of the vertices of Yn (the facets of Y(n)) are uniformly distributed
on X.
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