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Abstract

We study some generalized metric properties neatratifiability. It is shown that every upper
semicontinuous set-valued map frongapace into &-semistratifiable space has a compact kernel
at every point of its domain.
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1. Preliminaries

The motivation of this paper is from a classical problem of Choquet on set-valued maps.

To describe this problem, léft: X — 2 be a set-valued map, ande X a point, where

2Y is the power set of . Recall thatT is upper semicontinuous atif for each open se¥
containingT (x), there exists an open neighborhasdf x such thatT' (N) C V. And T

is said to baupper semicontinuous a¥i iff it is upper semicontinuous at every point &f
Moreover, a subsdt C X is said to be &ernel ofT at x if for each open se¥ containing

K, there is a neighborhoadl of x with T(N) C V U T (x). In [4, p. 70], Choquet stated
(without a proof) that ifT" is upper semicontinuous at X andY are metric spaces, then
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T has a compact kernel at In [5,6], Dolecki introduced the notion of tteetive boundary
of T at x, which is denoted by Fra€(x), and is defined by

FracT(x)= (| T(N)~T().
NeN (x)

whereN (x) is the set of all neighborhoods efand 7 (N) \ T (x) denotes the closure of
T(N) ~ T(x) in Y. Suppose thal’ is upper semicontinuous at a point X which has

a countable local base: Dolecki [5] showed that Aréac) is compact whery is a metric
space; Dolecki and Rolewicz [7] showed that Ffae) is a subset of" (x) whenY is first
countable; and Dolecki and Lechicki [8] further showed that Hrag is a kernel ofT" at

x in the case whelll is metric. Thus, we conclude thathas a compact kernel atif 7' is
upper semicontinuous at X has a countable local basexa¢ X andY is a metric space.
This is the so-called Choquet—Dolecki theorgmthe literature. Some of applications of
this theorem can be found in [1]. A general problem which arises in this directiéoris:
which classes of topological spaces containkigand Y, respectively, can we determine
that an upper semicontinuous set-valued nfapX — 2' has compact kernelsin fact,
the metrizability ofY can be reduced to the agelicity, as Hansell et al. showed in [11],
which implies that the range spa&ecan be the function spaag,(Z) for any compact
HausdorffZ. Moreover, Dolecki and Lechicki [8] also showed that Frge) is compact
whenY is Dieudonné complete.

In a recent paper, Cao et al. [3] studiadype of topological game, called tiggF)-
game (whereF is a filterbase on a space), and the associated propetjydefined by
this game. It is shown in [3] that i’ is upper semicontinuous from@spaceX into a
spaceY with property(xx*), then Frad (x) is compact at every pointe X. Furthermore,
it is also shown in [3] thatll Dieudonné complete spacess all metrizable spaces)
and all function space€p(Z), whereZ is compact Hausdorff, have propeftys). It is
natural for us to consider the following questi@an the metrizability of those spaces in
the Choquet—Dolecki theorem be weakened to some generalized metric properties in sense
of [10]? The main goal of the present paper is to consider this question. It is discovered
that the class ok-semistratifiable spaces introducley Lutzer [12] is important for our
purpose. In particular, the following theorem shall be proved.

Theorem 1.1. LetT : X — 2¥ be an upper semicontinuous set-valued map frafaspace
X into ak-semistratifiable spaciE. ThenT has a compact kernel at every pointXf

We need the following definition in the sequel.
Definition 1.2 [10,12] A topological spaceX is said to besemistratifiableif for each

closed setF C X, we can assign a decreasing sequdiite:, F)),c, of open subsets of
X such that

() F=yeo U, F),
(i) Un, F)CU(n, H)foralln € w, whenevel" andH are closed sets of with F C H.

In addition, if also
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(i) if K is compact and{ is closed withk N H = @J, then there exists someec « with
KNU@n,H)=0,

thenX is calledk-semistratifiablelf (iii) is replaced by
(i) F=,en, Un, F),
thenX is calledstratifiable

Every stratifiable space ig-semistratifiable, and everg-semistratifiable space is
semistratifiable. However, none of these implications is reversible in general. The proof of
Theorem 1.1 will be given in Section 2. To do this, we shall need some special properties
of k-semistratifiable spaces. In pattiar, we shall show that evekysemistratifiable space
has property(xx). In the last section, we shall give some miscellaneous results- on
semistratifiable spaces, which are by-products of our investigation. Throughout the paper,
all topological spaces are assumed to be regulafand

2. Proof of Theorem 1.1

For a spaceX, let o(X) be the family of all nonempty open subsetsXfin order to
prove Theorem 1.1, we shall first give some useful propertiéssgimistratifiable spaces.

Lemma2.1[9]. A spaceX is k-semistratifiable if and only if there exists a mapw x X —
o(X) such that(i) M, &(n, x) = {x} for everyx € X, and (ii) for any two sequences
(X*n)new aNd (Yn)new IN X with x, — x andx, € g(n, y,) forall n € w, y, — x.

Property(xx*) in [3] is defined by a topological game called i&F)-gameplayed in a
spaceX, whereF is a (non-trivial) filterbase oix. Now, we briefly recall this game and its
relevant concepts. The players of this gamecasnd 8. Playera goes first (always) and
chooses a pointg € X, theng must respond by choosing a memliere F. Following
this, « must select another (possibly the same) paing Fp and in turng must again
respond to this by choosing a member (possibly the safaey 7. When the players
repeat this procedure infinitely many times, they produce a play

P= {(xna Fy): Xnt1 € Fy, n Ea)}

of the G(F)-game. We shall say that wins this play if the sequencéx,),c, has an
accumulation point inX. Otherwiseg is said to havavonthis play. A strategy fop is
a mapo : Sin(X) — F, whereSin(X) is the set of all finite sequences k. We shall
call a finite sequencéxo, x1, ..., x;) or an infinite sequenceéx,),c, a o-sequencef
Xiy1 € o(xo,...,x;) forall 0<i <k —1oralli e w, respectively. A strategy for
is calleda winning strategyif each infinites-sequence has an accumulation poiniin
Finally, we shall call the paitF, o) a X-filter if F is a filter in X ando is a winning
strategy forg in the G(F)-game. The spac¥ is said to haveproperty (xx) if for every
yfilter (F,o) in X, F has an accumulation point, i.§){F: F € F}# @. It is proved
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in [3] that property(xx) is stable with respect to some basic topological operations: It is
preserved by perfectimages, it is arbitraplpductive and hereditary to closed subspaces.

Lemma 2.2. Let X be a space in which each singleton i€5g-set, and let(x,),c., be an
infinite sequence iX. If every subsequence 6f,),c, has an accumulation point i,
then(x,)»c Must have a convergent subsequence.

Theorem 2.3. Everyk-semistratifiable spac& has property(xx).

Proof. Letg:w x X — o(X) be a map as described in Lemma 2.1. We can further require
thatg(n+1, x) € g(n, x) holds for every(n, x) € w x X. For each nonempty subsétC X
andn € w, as usual, we define(st, n) by

sttA.n) = J{g(n.y): Ang(n.y) #¥andy e x}.
To show thatX has propertyxx), let (F, o) be aX-filter on X.

Claim 1. F,, # ¢ for each sequence,),cq in F.

new

Proof. Fix a sequencéF),),c, in F. Sinceo is a winning strategy for Playe, then there
exists ao-sequencéx, ) <, in X such that for every € w,

Xpt1 €0 (X0, ..., X)) N ( ﬂ Fi)-
0<i<n

It follows that (x,,).c, has an accumulation point € (,c,, F,. O

Claim 2. For each pair(H, n) € F x w, there exist an elemert(H, n) € F and a finite
setA(H,n) C H suchthatF(H,n) Cst(A(H,n),n).

Proof. Suppose that Claim 2 is false. Then there is a pHir, n.) € F x w such that for
eachF e F and each finite set C H,, F Z St(A, n,). We start with any pointo(= yo) €
H,. By assumptiong (xg) N Hy Z St({xo}, nx). Thus, there exist pointg;, y1 € X such
that y1 € o (xg) N Hy < St({xo}, n4) andx1 € o (xg) N H, N g(n4 + 1, y1). Continuing this
procedure inductively, we produce sequengg3;,c, and(y,).co iN X such that

(i) yn+1€H*ﬂ< ﬂ U(Xio,...,Xi,)> ~st({xo, ... Xn}, 14,
0gj<n,
O0<ip<<ijsn

@ weae gt Lyon( ()

0<j<n,
0<io<-<i;<n

G(Xio, .. -»xij))

for everyn € w. Sinceo is a winning strategy for Playeg, each subsequence of
(xn)new Must have an accumulation pointih By Lemma 2.2(x,),c» has a convergent
subsequencer,, )rew, Which is convergent to a pointe X. On the other hand, from (ji),
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X, € g(n, y,) foralln € w. Hence(y,, )kew IS also convergent to. Choose some elements
ko € w such thatx,,, y,, € g(n.,x) for all k > ko. It follows thaty,,, € st({x,.}, n.)
wheneverk > ko. This contradicts with (i). O

Now, fix any pointg € X and putA_; = {q}. Applying Claim 2 to the paito (¢), 0), we
obtain a finite setg C o (¢) and an elemenky € F such thatFy C st(Ag, 0). Repeating
this procedure infinitely many times inductively, one can construct a seqUépge,, in
F and a sequenad@, )<, Of finite sets ofX such that for everyt € w,

(i) A, C ﬂ {o(xio,...,x,-j): (x,-o,...,xij)eA,-Ox...xA,-j},

0<jsn,
—1<ip<<ij<n—1

(iv) F, CSt(A,,n).

Then, by Claim 1, we havg)

K:ﬂfj\ﬂi

new FeF

F, # 9. Next, define the sek of X as

new

Without loss of generality, we may assume tiag ¢J. Otherwise, we obtaift) . F =
Mhew F, # ©, and the proof is completed already.

Claim 3. For each pointp € K, there existi(p) € w, x(p) € A,y and H(p) € F such
that p € st({x(p)}, n(p)) and H (p) N st({x(p)}, n(p)) = 0.

Proof. Suppose that Claim 3 is false. Then there exists a goitK such that for each
n € w and eache € A, with p € st({x}, n) and eachH € F, we have st{x},n) N H # @.
Sincep ¢ (\rer F, we can choose an elemefit € F with p ¢ F,. By (iv), there exists

a sequenceéx,),c, in X such thaty,, € A, andp € st({x,}, n) for everyn € w. Therefore,
there exists a sequen¢s,), <, in X such thatp, x, € g(n, z,) for eachn € w. It follows
from Lemma 2.1 that,, — p. Moreover, by (iii), each subsequence @f,),c IS aoc-
sequence, thus has an accumulation poirX irsincep is the only accumulation point of
(zn)new, We conclude that, — p. Next, by applying our assumption inductively, with any
first moveyg of Playera, we can construct a-sequenceéy, ) <, in X which satisfies the
following condition

Yn est({xn},n)ﬂF*ﬂ( ﬂ o(y,-o,...,yi_,-))

0gj<n—1,
O0<ip<-<ij<n—1

forall n > 1. Choose another sequenas,),c., in X such that,, y, € g(n, w,) for every
n € w. By k-semistratifiability ofX, w, — p. By the construction ofy,),c«, €ach of its
subsequences iseaxsequence, and thus has an accumulation poit.iBy Lemma 2.2,
(yn)new has a convergent subsequerieg rc,- Suppose that,, — y.. Since(wn, Jkew
is convergent tg, theny, = p. It follows thatp € F,, asy,, € F; for everyk € w. But,
this contradicts with the fagi ¢ F,. O
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Finally, as J, ., Ax is @ countable set, by applying Claim 3, we can choose a sequence
(Hp)new In F such that(,,.,, H,) N K = 0. For everyn € o, defineL,, = F, N H,. Then,
by applying Claim 1 again, we obtain

(Y F=()L.#2.

FeF new
Therefore, we have shown that the spachas propertyxx). O

Let X be a space. If Playgs has a winning strategy in th@(V (x))-game for each
pointx € X, thenX is called aG-spacd?2].

Theorem 2.4 [3, Theorem 3.3]Let T: X — 2¥ be an upper semicontinuous set-valued
map from aG-spaceX into a spaceY with properties(xx). If eachT (x) is closed in the
Gs-topology onY (which is generated by the family of alls-sets ofY as a basg then
FracT (x) is a compact kernel foF at eachx € X.

Now, we are ready to prove our main result of this paper which is claimed in Section 1.

Proof of Theorem 1.1. Let x € X be an arbitrary point. Since evekysemistratifiable
space has & s-diagonal, theGs-topology onY is the discrete one. This implies tHA{x)
is closed in theGs-topology onY. On the other hand, by Theorem 233 ,has property
(xx). Therefore, by applying Theorem 2.4, we conclude that Fiag is a compact kernel
of Tatx. O

3. Miscellaneousresults

In this section, we shall give some results bisemistratifiable spaces and relevant
properties.

Proposition 3.1. Everyk-semistratifiablej-space is stratifiable.

Proof. Let g:w x X — o(X) be a map as described in Lemma 2.1. Suppose that there
are a pointx € X and a closed subséf in X with x ¢ H, butx € [ J{g(n,y): y € H}

for everyn € w. First, we choose some open neighborh6bdf x such thatG N H = .
SinceX is ag-space, Playes has a winning strategy for theG (N (x))-game. Let Player

a’s first move bexg. By our assumption, there must exist some powe H such that
o(xp) NG N g(0, yo) # ¥. Inductively, we can obtain sequences )ncw, (Vn)new IN X

such that for each € w, y, € H and

Xnp1€GNgm+ 1, ypqr) N ( ﬂ o(xio,...,x,-j)>

0<j<n,
0<io<+<ij<n
for everyn € w. It follows that each subsequence @f,),c» IS ao-sequence, and thus
has an accumulation point iK. By Lemma 2.2 (x,),c has a convergent subsequence,
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say (X, )kew- SUppOse that,, is convergent to some point. € G. Then, byk-semi-
stratifiability of X and the construction ofx,),c, and (yn)reo in the above(y,, )icw
is also convergent ta,, andx, € H. It follows thatx, € G N H. We have derived a
contradiction. Hencey ¢ | J{g(n, y): y € H} for somen € w. By [10, Theorem 5.8]X is
stratifiable. O

Corollary 3.2 [12]. Every first countablé-semistratifiable space is stratifiable.
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