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Abstract

We study some generalized metric properties nearto stratifiability. It is shown that every uppe
semicontinuous set-valued map from aG-space into ak-semistratifiable space has a compact ke
at every point of its domain.
 2004 Elsevier B.V. All rights reserved.
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1. Preliminaries

The motivation of this paper is from a classical problem of Choquet on set-valued
To describe this problem, letT :X → 2Y be a set-valued map, andx ∈ X a point, where
2Y is the power set ofY . Recall thatT is upper semicontinuous atx if for each open setV
containingT (x), there exists an open neighborhoodN of x such thatT (N) ⊆ V . And T

is said to beupper semicontinuous onX iff it is upper semicontinuous at every point ofX.
Moreover, a subsetK ⊆ X is said to be akernel ofT at x if for each open setV containing
K, there is a neighborhoodN of x with T (N) ⊆ V ∪ T (x). In [4, p. 70], Choquet state
(without a proof) that ifT is upper semicontinuous atx, X andY are metric spaces, the
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T has a compact kernel atx. In [5,6], Dolecki introduced the notion of theactive boundary
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of T at x, which is denoted by FracT (x), and is defined by

FracT (x) =
⋂

N∈N (x)

T (N) � T (x),

whereN (x) is the set of all neighborhoods ofx andT (N) � T (x) denotes the closure o
T (N) � T (x) in Y . Suppose thatT is upper semicontinuous at a pointx ∈ X which has
a countable local base: Dolecki [5] showed that FracT (x) is compact whenY is a metric
space; Dolecki and Rolewicz [7] showed that FracT (x) is a subset ofT (x) whenY is first
countable; and Dolecki and Lechicki [8] further showed that FracT (x) is a kernel ofT at
x in the case whenY is metric. Thus, we conclude thatT has a compact kernel atx if T is
upper semicontinuous atx, X has a countable local base atx ∈ X andY is a metric space
This is the so-called Choquet–Dolecki theoremin the literature. Some of applications
this theorem can be found in [1]. A general problem which arises in this direction isFor
which classes of topological spaces containingX andY , respectively, can we determin
that an upper semicontinuous set-valued mapT :X → 2Y has compact kernels? In fact,
the metrizability ofY can be reduced to the agelicity, as Hansell et al. showed in
which implies that the range spaceY can be the function spaceCp(Z) for any compact
HausdorffZ. Moreover, Dolecki and Lechicki [8] also showed that FracT (x) is compact
whenY is Dieudonné complete.

In a recent paper, Cao et al. [3] studieda type of topological game, called theG(F)-
game (whereF is a filterbase on a space), and the associated property(∗∗) defined by
this game. It is shown in [3] that ifT is upper semicontinuous from aG-spaceX into a
spaceY with property(∗∗), then FracT (x) is compact at every pointx ∈ X. Furthermore
it is also shown in [3] thatall Dieudonné complete spaces (thus all metrizable space
and all function spacesCp(Z), whereZ is compact Hausdorff, have property(∗∗). It is
natural for us to consider the following question:Can the metrizability of those spaces
the Choquet–Dolecki theorem be weakened to some generalized metric properties i
of [10]? The main goal of the present paper is to consider this question. It is disco
that the class ofk-semistratifiable spaces introducedby Lutzer [12] is important for ou
purpose. In particular, the following theorem shall be proved.

Theorem 1.1. LetT :X → 2Y be an upper semicontinuous set-valued map from aG-space
X into a k-semistratifiable spaceY . ThenT has a compact kernel at every point ofX.

We need the following definition in the sequel.

Definition 1.2 [10,12]. A topological spaceX is said to besemistratifiableif for each
closed setF ⊆ X, we can assign a decreasing sequence(U(n,F ))n∈ω of open subsets o
X such that

(i) F = ⋂
n∈ω U(n,F ),

(ii) U(n,F ) ⊆ U(n,H) for all n ∈ ω, wheneverF andH are closed sets ofX with F ⊆ H .

In addition, if also
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(iii) if K is compact andH is closed withK ∩ H = ∅, then there exists somen ∈ ω with
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K ∩ U(n,H) = ∅,

thenX is calledk-semistratifiable. If (iii) is replaced by

(iii) ′ F = ⋂
n∈ω U(n,F ),

thenX is calledstratifiable.

Every stratifiable space isk-semistratifiable, and everyk-semistratifiable space
semistratifiable. However, none of these implications is reversible in general. The pr
Theorem 1.1 will be given in Section 2. To do this, we shall need some special prop
of k-semistratifiable spaces. In particular, we shall show that everyk-semistratifiable spac
has property(∗∗). In the last section, we shall give some miscellaneous results ok-
semistratifiable spaces, which are by-products of our investigation. Throughout the
all topological spaces are assumed to be regular andT1.

2. Proof of Theorem 1.1

For a spaceX, let o(X) be the family of all nonempty open subsets ofX. In order to
prove Theorem 1.1, we shall first give some useful properties ofk-semistratifiable spaces

Lemma 2.1 [9]. A spaceX is k-semistratifiable if and only if there exists a mapg :ω×X →
o(X) such that(i)

⋂
n∈ω g(n, x) = {x} for everyx ∈ X, and (ii) for any two sequence

(xn)n∈ω and(yn)n∈ω in X with xn → x andxn ∈ g(n, yn) for all n ∈ ω, yn → x.

Property(∗∗) in [3] is defined by a topological game called theG(F)-gameplayed in a
spaceX, whereF is a (non-trivial) filterbase onX. Now, we briefly recall this game and i
relevant concepts. The players of this game areα andβ . Playerα goes first (always) an
chooses a pointx0 ∈ X, thenβ must respond by choosing a memberF0 ∈ F . Following
this, α must select another (possibly the same) pointx1 ∈ F0 and in turnβ must again
respond to this by choosing a member (possibly the same)F1 ∈ F . When the players
repeat this procedure infinitely many times, they produce a play

P = {
(xn,Fn): xn+1 ∈ Fn, n ∈ ω

}
of the G(F)-game. We shall say thatβ wins this play if the sequence(xn)n∈ω has an
accumulation point inX. Otherwise,α is said to havewon this play. A strategy forβ is
a mapσ : Sfin(X) → F , whereSfin(X) is the set of all finite sequences inX. We shall
call a finite sequence(x0, x1, . . . , xk) or an infinite sequence(xn)n∈ω a σ -sequenceif
xi+1 ∈ σ(x0, . . . , xi) for all 0 � i � k − 1 or all i ∈ ω, respectively. A strategyσ for β

is calleda winning strategyif each infiniteσ -sequence has an accumulation point inX.
Finally, we shall call the pair(F , σ ) a Σ-filter if F is a filter in X andσ is a winning
strategy forβ in theG(F)-game. The spaceX is said to haveproperty(∗∗) if for every
Σ-filter (F , σ ) in X, F has an accumulation point, i.e.,

⋂{F : F ∈ F} 	= ∅. It is proved



606 J. Cao / Topology and its Applications 146–147 (2005) 603–609

in [3] that property(∗∗) is stable with respect to some basic topological operations: It is
ces.
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preserved by perfect images, it is arbitrarilyproductive and hereditary to closed subspa

Lemma 2.2. Let X be a space in which each singleton is aGδ-set, and let(xn)n∈ω be an
infinite sequence inX. If every subsequence of(xn)n∈ω has an accumulation point inX,
then(xn)n∈ω must have a convergent subsequence.

Theorem 2.3. Everyk-semistratifiable spaceX has property(∗∗).

Proof. Let g :ω×X → o(X) be a map as described in Lemma 2.1. We can further req
thatg(n+1, x) ⊆ g(n, x) holds for every(n, x) ∈ ω×X. For each nonempty subsetA ⊆ X

andn ∈ ω, as usual, we define st(A,n) by

st(A,n) =
⋃{

g(n, y): A ∩ g(n, y) 	= ∅ andy ∈ X
}
.

To show thatX has property(∗∗), let (F , σ ) be aΣ-filter onX.

Claim 1.
⋂

n∈ω Fn 	= ∅ for each sequence(Fn)n∈ω in F .

Proof. Fix a sequence(Fn)n∈ω in F . Sinceσ is a winning strategy for Playerβ , then there
exists aσ -sequence(xn)n∈ω in X such that for everyn ∈ ω,

xn+1 ∈ σ(x0, . . . , xn) ∩
( ⋂

0�i�n

Fi

)
.

It follows that(xn)n∈ω has an accumulation pointx∗ ∈ ⋂
n∈ω Fn. �

Claim 2. For each pair(H,n) ∈ F × ω, there exist an elementF(H,n) ∈ F and a finite
setA(H,n) ⊆ H such thatF(H,n) ⊆ st(A(H,n),n).

Proof. Suppose that Claim 2 is false. Then there is a pair(H∗, n∗) ∈ F × ω such that for
eachF ∈F and each finite setA ⊆ H∗, F 	⊆ st(A,n∗). We start with any pointx0(= y0) ∈
H∗. By assumption,σ(x0) ∩ H∗ 	⊆ st({x0}, n∗). Thus, there exist pointsx1, y1 ∈ X such
thaty1 ∈ σ(x0) ∩ H∗ � st({x0}, n∗) andx1 ∈ σ(x0) ∩ H∗ ∩ g(n∗ + 1, y1). Continuing this
procedure inductively, we produce sequences(xn)n∈ω and(yn)n∈ω in X such that

(i) yn+1 ∈ H∗ ∩
( ⋂

0�j�n,
0�i0�···�ij �n

σ (xi0, . . . , xij )

)
� st

({x0, . . . , xn}, n∗
)
,

(ii) xn+1 ∈ H∗ ∩ g(n∗ + n + 1, yn+1) ∩
( ⋂

0�j�n,
0�i0�···�ij �n

σ (xi0, . . . , xij )

)

for every n ∈ ω. Since σ is a winning strategy for Playerβ , each subsequence
(xn)n∈ω must have an accumulation point inX. By Lemma 2.2,(xn)n∈ω has a convergen
subsequence(xnk )k∈ω, which is convergent to a pointx ∈ X. On the other hand, from (ii)
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xn ∈ g(n, yn) for all n ∈ ω. Hence,(ynk )k∈ω is also convergent tox. Choose some elements

f
ny
k0 ∈ ω such thatxnk , ynk ∈ g(n∗, x) for all k � k0. It follows that ynk+1 ∈ st({xnk }, n∗)
wheneverk � k0. This contradicts with (i). �

Now, fix any pointq ∈ X and putA−1 = {q}. Applying Claim 2 to the pair(σ (q),0), we
obtain a finite setA0 ⊆ σ(q) and an elementF0 ∈ F such thatF0 ⊆ st(A0,0). Repeating
this procedure infinitely many times inductively, one can construct a sequence(Fn)n∈ω in
F and a sequence(An)n∈ω of finite sets ofX such that for everyn ∈ ω,

(iii) An ⊆
⋂

0�j�n,
−1�i0�···�ij �n−1

{
σ(xi0, . . . , xij ): (xi0, . . . , xij ) ∈ Ai0 × · · · × Aij

}
,

(iv) Fn ⊆ st(An,n).

Then, by Claim 1, we have
⋂

n∈ω Fn 	= ∅. Next, define the setK of X as

K =
⋂
n∈ω

Fn �

⋂
F∈F

F.

Without loss of generality, we may assume thatK 	= ∅. Otherwise, we obtain
⋂

F∈F F =⋂
n∈ω Fn 	= ∅, and the proof is completed already.

Claim 3. For each pointp ∈ K, there existn(p) ∈ ω, x(p) ∈ An(p) andH(p) ∈ F such
thatp ∈ st({x(p)}, n(p)) andH(p) ∩ st({x(p)}, n(p)) = ∅.

Proof. Suppose that Claim 3 is false. Then there exists a pointp ∈ K such that for each
n ∈ ω and eachx ∈ An with p ∈ st({x}, n) and eachH ∈ F , we have st({x}, n) ∩ H 	= ∅.
Sincep /∈ ⋂

F∈F F , we can choose an elementF∗ ∈ F with p /∈ F∗. By (iv), there exists
a sequence(xn)n∈ω in X such thatxn ∈ An andp ∈ st({xn}, n) for everyn ∈ ω. Therefore,
there exists a sequence(zn)n∈ω in X such thatp,xn ∈ g(n, zn) for eachn ∈ ω. It follows
from Lemma 2.1 thatzn → p. Moreover, by (iii), each subsequence of(xn)n∈ω is a σ -
sequence, thus has an accumulation point inX. Sincep is the only accumulation point o
(zn)n∈ω, we conclude thatxn → p. Next, by applying our assumption inductively, with a
first movey0 of Playerα, we can construct aσ -sequence(yn)n∈ω in X which satisfies the
following condition

yn ∈ st
({xn}, n

) ∩ F∗ ∩
( ⋂

0�j�n−1,
0�i0�···�ij �n−1

σ(yi0, . . . , yij )

)

for all n � 1. Choose another sequence(wn)n∈ω in X such thatxn, yn ∈ g(n,wn) for every
n ∈ ω. By k-semistratifiability ofX, wn → p. By the construction of(yn)n∈ω, each of its
subsequences is aσ -sequence, and thus has an accumulation point inX. By Lemma 2.2,
(yn)n∈ω has a convergent subsequence(ynk )k∈ω. Suppose thatynk → y∗. Since(wnk )k∈ω

is convergent top, theny∗ = p. It follows thatp ∈ F∗, asynk ∈ F∗ for everyk ∈ ω. But,
this contradicts with the factp /∈ F∗. �
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Finally, as
⋃

n∈ω An is a countable set, by applying Claim 3, we can choose a sequence
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(Hn)n∈ω in F such that(
⋂

n∈ω Hn)∩K = ∅. For everyn ∈ ω, defineLn = Fn ∩Hn. Then,
by applying Claim 1 again, we obtain⋂

F∈F
F =

⋂
n∈ω

Ln 	= ∅.

Therefore, we have shown that the spaceX has property(∗∗). �
Let X be a space. If Playerβ has a winning strategy in theG(N (x))-game for each

pointx ∈ X, thenX is called aG-space[2].

Theorem 2.4 [3, Theorem 3.3].Let T :X → 2Y be an upper semicontinuous set-valu
map from aG-spaceX into a spaceY with properties(∗∗). If eachT (x) is closed in the
Gδ-topology onY (which is generated by the family of allGδ-sets ofY as a base), then
FracT (x) is a compact kernel forT at eachx ∈ X.

Now, we are ready to prove our main result of this paper which is claimed in Sect

Proof of Theorem 1.1. Let x ∈ X be an arbitrary point. Since everyk-semistratifiable
space has aGδ-diagonal, theGδ-topology onY is the discrete one. This implies thatT (x)

is closed in theGδ-topology onY . On the other hand, by Theorem 2.3,Y has property
(∗∗). Therefore, by applying Theorem 2.4, we conclude that FracT (x) is a compact kerne
of T atx. �

3. Miscellaneous results

In this section, we shall give some results onk-semistratifiable spaces and releva
properties.

Proposition 3.1. Everyk-semistratifiableG-space is stratifiable.

Proof. Let g :ω × X → o(X) be a map as described in Lemma 2.1. Suppose that
are a pointx ∈ X and a closed subsetH in X with x /∈ H , but x ∈ ⋃{g(n, y): y ∈ H }
for everyn ∈ ω. First, we choose some open neighborhoodG of x such thatG ∩ H = ∅.
SinceX is aG-space, Playerβ has a winning strategyσ for theG(N (x))-game. Let Playe
α’s first move bex0. By our assumption, there must exist some pointy0 ∈ H such that
σ(x0) ∩ G ∩ g(0, y0) 	= ∅. Inductively, we can obtain sequences(xn)n∈ω, (yn)n∈ω in X

such that for eachn ∈ ω, yn ∈ H and

xn+1 ∈ G ∩ g(n + 1, yn+1) ∩
( ⋂

0�j�n,
0�i0�···�ij �n

σ (xi0, . . . , xij )

)

for everyn ∈ ω. It follows that each subsequence of(xn)n∈ω is a σ -sequence, and thu
has an accumulation point inX. By Lemma 2.2,(xn)n∈ω has a convergent subsequen



J. Cao / Topology and its Applications 146–147 (2005) 603–609 609

say (xnk )k∈ω. Suppose thatxnk is convergent to some pointx∗ ∈ G. Then, byk-semi-
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stratifiability of X and the construction of(xn)n∈ω and (yn)n∈ω in the above,(ynk )k∈ω

is also convergent tox∗, andx∗ ∈ H . It follows that x∗ ∈ G ∩ H . We have derived a
contradiction. Hence,x /∈ ⋃{g(n, y): y ∈ H } for somen ∈ ω. By [10, Theorem 5.8],X is
stratifiable. �
Corollary 3.2 [12]. Every first countablek-semistratifiable space is stratifiable.
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