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A short exposition of the most important properties of Rrtifer rings is given, 
The use of the axiom of choice is avoided whenever this is possible. 

In the following we prove some of the properties of Prtifer rings. 

DEFINITION 1. An ideal a in a ring R is called invertible if there exists 
an ideal b C R such that ab = (a), a nonzero principal ideal. 

DEFINITION 2. An integral domain R is called a Priifer ring (multipli- 
cation ring in the older literature) if every finitely generated (f.g.) ideal 
has an inverse. 

If a and b are ideals then their g.c.d. (a, b) = a + b where a + b = 
{a + b; a E a, b E b}. 

If a, b are elements of R then we set 

(4 + (b) = (a, 4. 

In the following small latin or greek letters a, b, c .** a, /3, y .-- will 
denote elements of a ring R while German letters a, 6, c will denote ideals 
of R. 

We shall prove several properties of Prtifer rings. In the proofs of 
(PI)-(P4) R will denote a Prtifer ring. We shall give proofs which avoid 
using the axiom of choice either directly or indirectly. 
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PROPERTY 1 (PI). If a isJg. and a6 = ac then b = c. 

Proof. Let aii = (IX). Then cub = ac hence b = c. 
The property (PI) is called the finite cancellation law (fcl). 
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PROPERTY 2. (PZ). If a 3 b and a is Jg. then a divides b (b = ac for 
some c). 

ProoJ Let iia = (a). Then a 3 b implies (a) 1 Eb. Hence 

sib = (OL)C = aiic 

and by (PI) 
b = ac. 

PROPERTY 3 (p3). If a, b, c arexg. then 

an(b+c)=anb+anc. 

Proof. In any commutative ring R 

(a n b)(a + b) c ab _C a n b. 

If (a, b) = 1 then (2) implies a n b = ab. 
By (P2) and (PI) 

a = (a + b) al , b = (a + b) bl , (a,, b,) = 1. 

In any ring 
(a n b)c C ac n bc. 

Hence in a Prtifer ring 

a n b = ((a + b) a, n (a + b) b,) 1 (a + b)(a, n 6,) 

= (a + b) albl . 

Multiplying this by a + b we get 

(a n b)(a + b) 1 ab 

and on account of (2) 

(a n b)(a + b) = ab. 

Now if a, 6, c are f.g. we have by (4) 

[a n (b + c)](a + b + c) = a(b + c) = ab + 

(3) 

(4) 

ac. (5) 
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Hence a + b + c divides ab + ac and 

a n (b + c) = ab ‘r ac 
a+b+c’ 

It is easily checked by cross multiplication that 

ab + at ab 
+ 

ac 
a+b+c=- afb a+c’ 

(6) 

(7) 

(To establish the identity 

(ab + ac)(a + b)(a + 4 = (ab(a + c> + ac(a + b))ta + b + 4 (8) 

observethatalltermsaibjc*,l ~i~3,O~jd2,O~k~2i+j+k=4 
occur on both sides of (S).) Combining (7), (6), and (4) now gives (1) and 
proves (P3). 

Let F be the quotient field of R and p a maximal ideal of R. Let R, 
consist of all elements of F which may be written with denominator prime 
to p. The ring R, is called the localization of R at p. 

PROPERTY 4 (P4). Every localization of R is a valuation ring. (rf 
a, b E R, then either a divides b or b divides a.) 

Proof. If ab = (E) then a and b are f.g. For 

Hence 

since /& = O(a) for all /3 E 6. Now multiply by a to get 

ala = (0~~ ,..., a&. 

Hence 
a = (cyl ,..., at). 

Now let 
a = (a, b)a, b = (a, b)b 

where a + b = 1 and a and b are f.g. Then either a + p = 1 or 
b + p = (1). We arrange the notation so that b + p = (1). Then b 3 /3 
where p $ p. Let 66 = (/3) then 

a6 = (a, b) ab, b& = (a, b)p; 
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cross multiplication and division by (a, b)ii gives 

This shows that aii is principal a6 = (a) and OL can be chosen so that 

Hence a/b E R, . This proves (P4). 
Each of the Properties (PI)-(P4) characterize Prtifer rings. In proving 

this for (Pl)-(P3) we shall avoid the axiom of choice. Hence we shall not 
assume that every ideal is contained in a maximal ideal. In proving the 
converse of (P4) the axiom of choice will be assumed. 

We first prove the following lemma. 

LEMMA 1. Let R be a commutative ring. If (a, b) has an inverse for any 
a, b E R then everyjg. ideal has an inverse. 

Proof. Let m be generated by m 3 3 elements. Then we may write 

m=a+b+c 

where a, 6, c have at least one and at most m - 2 generators. It is easy 
to check that 

(a 4 b)(a + c)(b + c) = (a + b + c)(ab + at + bc) 

= m(ab + ac + be). 

By induction we may assume that a + b, a + c, b + c have inverses and so 

m(ab + ac + bc)(a + b)-l(a + c)-l(b + c)-l = (r) 

a principal ideal. Q.E.D. 

We first prove the converse to (PI). It is easy to see that fcl holds for 
the ideals of an integral domain J if and only if it holds for the fractional 
ideals of its quotient field Q. Let w  E Q. We have 

hence by fcl 

or 
w = c + dw2 c, dE J. 

I = cc& + dw. 
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Therefore, 

and by fcl 

Whence 

cw-l(l, co) = (1 - dw, c) c (1, CO) 

cw-l E (1). 

(1, OJ)(cUJ-1, 6) = (1). 

This proves that (1, OJ) has an inverse and that in general (a, b) has an 
inverse for any a, b E R. Hence by Lemma 1 every f.g. ideal has an inverse. 

It is worth noting that fcl implies integral closure. Suppose that fcl 
holds in J and suppose 5 is integral over J and in the quotient field Q of J. 
Set 

n = (1, e,...). 

Then n is f.g. and n2 = n and fcl implies n = 1, hence f E J. 
The converse to (P2) is obvious. If a 3 01 and is f.g. then ab = (CX) for 

some b if (P2) holds in J. Hence J is a Prtifer ring. 
If (P3) holds in J then a E (a) n (b, a - b) = ((a) n (b), (a) n (a - b)). 

Hence the system of congruences 

x = O(u), x E O(b), x E a(u - 6) (9) 

is solvable for any pair of elements a, b of J. Hence we can find 

x = ha = pb = a + /.~(a - b). 

We then have 

(a, Up, ~1) = a. 

Hence (a, b) has an inverse and by Lemma 1 every finitely generated ideal 
has an inverse. 

To prove that (P4) implies the Prtifer property we shall show that (P4) 
implies (Pl). Suppose 

ab = ac. 

Then for every maximal ideal p 

a,b, = apcp . 

If a is f.g. and R, is a valuation ring then ap is principal hence 

b, = cp 
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for every p. If ,6 E b, we therefore have 

,(Pyj = c(P) 
> s(P) E J, c(P) E c, (s(P), p) = 1. (11) 

Since the s(P) are not all contained in any maximal ideal they must 
(on account of Zorn’s lemma) generate R hence 

where the summation extends over a finite number of maximal ideals. 
Multiplying (11) by h(4) and summing gives 

p E c. 

Hence b C c and similarly c _C b hence b = c. 
We shall now give a short proof of the so-called globalization theorem. 

To prove this theorem in all generality one can extend the definition of 
localization to rings with zero divisors and to all modules. 

Let G be a module over R and let p be a prime ideal of R. We introduce 
fractions g/v with g E G and ( y, p) = 1. We define an equivalence relation 

SIY - gl/Y, * (12) 

If there is an SE R, (S, p) = 1 such that 

We also define 

sY,g - Ml) = 0. 

(g/v> + WYl) = (Ylg + YglYYYl~ 4dY) = @&T/Y) for a E R. 

It is not difficult to check that (12) is indeed an equivalence relation 
and that the equivalence classes form a module G, over R. 

Now assume that A4 and N are modules over R and that we have a 
linear mapping o(M) ---f N. We extend o to a mapping up of MP + Np 
setting 

~p(mly> = omlv. (13) 

We shall prove the following. 

THEOREM 1 (The globalization theorem). Let M and N be modules 
over a commutative ring R and 0 a linear mapping of M into N. Then (T is 
surjective, injective, or 0 if and only if up is surjective, injective, or 0 for each 
maximal ideal P. 
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Proof. If u is surjective or 0 then ap is obviously surjective or 0 for 
every p. If a is injective and a,(m/y) = u(m)/v N 0 then sa(m) = 0 hence 
a(sm) = 0. Therefore sm = 0 for (s, p) = 1 and this means m - 0 in M, . 

We proceed to prove the sufficiency of the conditions of Theorem 1. 
(The axiom of choice and hence Zorn’s lemma will be assumed in the 
proof.) 

Case 1. Let up be surjective then 

up(m/v> - 4 (Y, P) = 1 

is solvable for every n E N. Hence 

s(P)(u(m) - y(Pbz) = 0. 

Since u is a linear mapping this shows that the equation 

u(m) = s%l (14) 

is solvable for m and s(P) in R and (s(P), p) = 1. The s(P) are relatively 
prime in their totality, hence (Zorn’s lemma) 

1 h,s(P’ = 1 (15) 

where the sum extends over a finite number of p. Multiplying (14) by A, 
and summing yields a solution to 

u(m) = n 

with m E R. 

Case 2. Suppose up(m) = 0 for all p. Then we can solve @u(m) = 0, 
with (s(P), p) = 1 and u(m) = 0 follows as in Case 1. 

Case 3. Suppose that u (P) is injective for every p and suppose u(m) = 0. 
Since U(P) is injective for every p we must have 

m-0 

in M, for every p. This means 

,y(P)m = 0 > (s(P), p) = 1 

is solvable for s(P) for every p and it follows as before that m = 0. Hence 
u is injective. 

This completes the proof of Theorem 1. 
Theorem 1 together with (P4) gives almost immediately (P3). The proof 

of Theorem 1 however assumes Zorn’s lemma hence the axiom of choice 
while the proof of (P3) given here is free of this assumption. 


