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Abstract 

Nowadays, cranes are widely employed in many fields of the industry and its utilization represents a large financial 
influence. The investment on cranes, for example, on docks are mainly associated with the time required for the 
positioning of the cargos. The objective in this experiment was to develop the control of a system to minimize the 
stabilization time of a load swinging due to crane movement using a controller created from a Lyapunov function. A 
metal structure was used with a pendulum, attached to a linear motor. After the controller was designed and 
implemented a series of experiments were done in varied conditions of mass and signal input. The system can be 
moved at high speed with the joystick and a trigger is pressed to quickly stabilize the pendulum. This, compared to 
the traditional methods of controlling this payload oscillation has made evident that the control method associated to 
the use of a joystick can reduce the loading time and also eliminate the need of a highly experienced driver operating 
the crane. 
© 2014 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of organizing committee of the Dynamics and Vibroacoustics of Machines (DVM2014). 
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1. Introduction 

Cranes are essential machinery on modern world and are used to perform tasks which require the movement of 
heavy loads in different fields of industry such as construction, transportation or in manufacturing for the assembly 
of heavy components. There are several types of cranes which are selected according to the specific task to be 
performed. These cranes can be divided in overhead, fixed or mobile cranes. In the categories of fixed or mobile 
categories there are also lots of subdivisions, for example, fixed cranes can be tower cranes, telescopic cranes, 
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gantry cranes, etc. Mobile cranes can be truck-mounted crane, carry deck crane, floating crane among many others. 
The main focus in this project is the study of the overhead cranes [1]. 

The fields in which overhead cranes are more useful are mainly inside factories to move heavy machinery or to 
assembly heavy equipment. This kind of crane is also used for moving containers on harbors [1]. The objective 
when operating a crane is to move an object from one place to another avoiding collision with other objects and 
placing it with the best possible accuracy. However, due to the inertia on the movement of the load, the object being 
moved is subject to oscillation and this is a problem that must be always avoided [2], [3], [4]. 

Many different approaches have been taken in order to mitigate the effects of the sway. A predictive approach 
was used by Singer et al. [12] by input shaping to prevent the load from ever swinging in 1997. A position and 
swinging compensation method was proposed with a proportional-derivative control by Fang et al. [13]. Wen Yu 
proposed a similar controller adding an uncertainty compensation neural network [14]. An observer based control 
was design and tested in a real bridge crane by Aschemann et al. [15]. Ahmad used delayed feedback signal and PD-
type fuzzy logic controllers in a two-dimensional model of a gantry crane [16]. William Singhose et al. developed 
and implemented sway reduction by an input shaping controller compensating the motion induced oscillations [11]. 

The goal in this work is to design a control system that minimizes swinging of the load carried by the crane. A 
Lyapunov-based approach was taken in this research. Since stability can be a crucial factor in any control 
application that was decided to be the starting point for the stabilization of the load. For this a linear motor model 
Siemens 1FN3150 2WC0 (located in LUT’s Laboratory of Intelligent Machines) was used with a metal structure 
attached to it. In this metal structure a pendulum is held and oscillates simulating the crane movement. The used 
equipment is shown in figure 1 (a). Also, the aim is to optimize the process making the movement and stabilization 
of the pendulum as fast and swiftly as possible. 

 
Nomenclature 

m mass of the pendulum  
R  length of the pendulum rod 
x horizontal position of the system 

 angle of the rod 
 position vector 
 velocity vector 

T kinetic energy 
V potential energy 

 friction force 
 friction coefficient 

e error 
 lyapunov function 

2. Control method 

This section describes how the system was modeled into equations which were then used to design and 
implement the controller. Stability is analyzed and ensured introducing the necessary background regarding 
Lyapunov. 

2.1. Mathematical model 

The system can be modeled as shown in Figure 1 (b). A moving cart plays the part of the motor while a mass m 
hanging from a rigid bar of length R simulates the pendulum. The moving motor can be assumed to have no friction 
with the ground. 
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The generalized coordinate  is given to the position of the motor while  is used for the angle formed by the 
hanging masswith respect to the reference point.Therefore the equation of the position of the centre of mass can be 
written as shown in (1) and its time derivative as shown in (2) to express velocity. 

 

Fig. 1. (a) crane model; (b) mechanical model . 

         (1) 

        (2)
 

In order to obtain the equation of motion using Lagrange’s method we express the kinetic and potential energy as 
shown respectively in (3) and (4) in function of the generalized coordinates. Angular friction is taken into 
consideration by the addition of (5) expressing angular friction force [5]. 

 

       (3) 

         (4) 

           (5) 

 

The Lagrangian is built with (6) and put together with the friction force (5) in Lagrange’s equation (7). The final 
form of the equation of motion is shown (8) [6]. 

           (6) 

a) b) 
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          (7) 

        (8) 

2.2. Lyapunov controller 

Necessary theoretical background is introduced in this section regarding different kinds of stability related to 
lyapunov and definitiveness of functions. The design of the controller itself will be carried out in this section as well 
obtaining the mathematical expression of the control law. 

2.2.1. Lyapunov Stability Analysis 
Lyapunov stabili1y analysis plays an important role in the stability analysis of control systems described by state 

space equations. There are two methods of stability analysis due to Lyapunov, called the first method and the second 
method; both apply to the determination of the stability of dynamic systems described by ordinary differential or 
difference equations. The first method consists entirely of procedure in which the explicit forms of the solutions of 
the differential equations or difference equations are used for the analysis. The second method, on the other hand, 
does not require the solutions of the differential or difference equations. This is the reason the second method is so 
useful in practice [10]. 

Although there are many powerful stabili1y criteria available for control systems, such as the Jury stability 
criterion and the Routh-Hurwitz stability criteria, they are limited to linear time-invariant systems. The second 
method of Lyapunov, on the other hand, is not limited to linear time-invariant systems: it is applicable to both linear 
and nonlinear systems, time-invariant or time-varying.  

In particular, we found that the second method of Lyapunov is indispensable for the stabili1y analysis of 
nonlinear systems for which exact solutions may be unobtainable. (It is cautioned, however, that although the 
second method of Lyapunov is applicable to any nonlinear system. obtaining successful result may not be easy task. 
Experience and imagination may be necessary to carry out the stability analysis of most nonlinear systems.) The 
second method of Lyapunov is also called the direc1 method of Lyapunov [6]. 

2.2.2. Second method of Lyapunov 
From the classical theory of mechanics, we know that a vibratory system is stable if its total energy is 

continua1ly decreasing until an equilibrium state is reached. 
The second method of Lyapunov is based on a generalization of this fact: If the system has an asymptotically 

stable equilibrium state, then the stored energy of the system displaced within a domain of attraction decays with 
increasing time until it finally assumes its minimum value at the equilibrium stale.  

For purely mathematical systems, however there is no simple way of defining an "energy function." In order to 
circumvent this difficulty, Lyapunov introduced the so called Lyapunov function a fictitious energy function. This 
idea is, however, more general than that of energy and more widely applicable. In fact, any scalar function satisfying 
the hypotheses of Lyapunov stability theorems can serve as a Lyapunov function. 

2.2.3. Positive definiteness of scalar function 
A scalar function V(x) is said to be positive definite in a region Ω (which includes the origin of the state spaces) if 

V(x)>0 for all nonzero states x in the region Ω and if V(0)=0. 
A time varying function V(x,t) is said to be positive definite in a region Ω (which includes the origin of the state 

space) if it is bounded from below by a time invariant positive definite function, that is , if there exists a positive 
definite function V(x) such that: 

  
V(x,t) > V(x) for all t ≥ t0 

V(0,t) =0 for all t ≥ t0 
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Negative definiteness of scalar functions: A scalar function V(x) is said to be negative definite if –V(x) is 
positive definite. 

Positive semi definiteness of scalar functions: A scalar function V(x) is said to be positive semi definite if it is 
positive at all states in the region  Ω except at the origin and at certain other states, where it is zero. 

Negative semi definiteness of scalar functions: A scalar function V(x) is said to be negative semi definite if –V(x) 
is positive semi definite. 

Indefiniteness of scalar functions: A scalar function V(x) is said to be indefinite if in the region Ω it assumes both 
positive and negative values, no matter how\v small the region Ω is [6]. 

2.2.4. Lyapunov functions 
The Lyapunov function, scalar function, is a positive definite function, and it is continuous together with its first 

partial derivative (with respect to its arguments) in the region Ω about the origin and has a time derivative which, 
when taken along the trajectory, is negative definite (or negative semi definite). 

Lyapunov functions involve x1 , x2, . . . , xn  , and  possibly t. We denote them by V(x1, x2, . . . ,xn, t), or simply by 
V(x,t). If Lyapunov functions do not include t explicitly, then we denote them by V(x1, x2, . . . ,xn), or V(x). 

Notice that (x, t) is actually the total derivative of V(x, t) with respect to t along a solution of the system. Hence 
(x,t) < 0 implies that V(x, t) is a decreasing function of t. 

 A Lyapunov function is not unique for a given system (For this reason, the second method of Lyapunov is a 
more powerful tool than conventional energy considerations. Note that a system whose energy E decreases on the 
average but not necessary at each instant is stable but that E is not a Lyapunov function.) 

In the second method of Lyapunov, the sign behavior of V(x,t) and that of its time derivative (x,t)=dV(x,t)/dt 
give information about the stability of an equilibrium state without having solution. 

 Note that the simplest positive definite function is of a quadratic form as shown in equation (9): 
 

         (9) 

 

In general, Lyapunov functions may not be of a simple quadratic form. For any Lyapunov function, however, the 
lowest degree terms in V must be even. This can be seen as follows. If we define  as in equation (10) then in the 
neighborhood of the origin the lowest degree terms alone will become dominant and we can write V(x) as (11): 
 

         (10) 

               (11) 

 

If we keep the ‘s fixed, is a fixed quantity, For p odd,  can assume both 
positive and negative values near the origin, which means that V(x) is not positive definite. Hence p must be even. 

2.2.5. System 
The system we consider here is defined by  where x is a state vector (an n-vector) and f(x, t) is an n-

vector whose elements are functions of x1, x2, . . . , xn, and t . We assume that the system equation has a unique 
solution starting at the given initial condition. We shall denote the solution of system equation as (t; x0, t0), where 
x=x0 at t=t0 and t is observed time. Thus (t0; x0, t0)=x0.[6] 

 

2.2.6. Equilibrium State 
In the system equation, a state xe, where f(xe,t) = 0, for all t is called an equilibrium state of the system. If the 

system is linear and time invariant, that is, if f(x, t) = Ax, then there exists only one equilibrium state if A is 
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nonsingular, and there exist infinitely many equilibrium states if A is singular. For nonlinear systems, there may be 
one or more equilibrium states. These states correspond to the constant solutions of the system (x = xe for all t). 

Determination of the equilibrium states does not involve the solution of the differential equation of the system 
equation, but only the solution any isolated equilibrium state (that is, where isolated from each other) can be shifted 
to the origin of the coordinates, or f (0, 1) = 0, by a translation of coordinates [6]. 

 

2.2.7. Controller design 
The controller equation will be obtained assuming an angular feedback with  as reference resulting in (12) as 

error signal. As Lyapunov function (13) is used with r being explained as in (14) leaving  as a tuning parameter for 
future controller optimization. 
 

           (12) 

           (13) 

           (14) 
 

Equations (12) and (14) both ensure that V meets the requirements of a Control-Lyapunov function [5]. Constant 
 is also left for future controller optimization. 

 

           (15) 
 

The combination of (16) and (13) provides with (18) which is also combined with both (8) and (17) resulting in 
the final form of the controller equation using linear acceleration as input into the system as shown in (19). 
 

         (16) 

           (17) 

       (18) 

       (19) 

 

2.3. Stability 

2.3.1. Stability in the Sense of Lyapunov 
In the following, we shall denote a spherical region of radius r about an equilibrium state xe as , 

where  is called the Euclidean Norm and is defined as follows: 
 

 

Let S(δ) consist of all points such that  and let S( ) consist of all points such that   

. 
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An equilibrium state xe of the system equation is said to be stable in the sense of Lyapunov if, corresponding to 
each S( ), there is an S(δ) such that trajectories starting in S(δ) do not leave S( ) as t increases indefinitely. The real 
number δ depends on and, in general, also depends on t0. If δ does not depend on t0, the equilibrium state is said to 
be uniformly stable. 

What we have stated here is that we first choose the region S( ), and for each S( ), there must be a region S(δ) 
such that trajectories starting within S(δ) do not leave S( ) as t increases indefinitely [6]. 

 

2.3.2. Asymptotic Stability 
An equilibrium state xe of the system equation is said to be asymptotically stable if it is stable in the sense of 

Lyapunov and if every solution starting within S(δ) converges, without leaving S( ), to xe  as t increases indefinitely. 
In practice, asymptotic stability is more important than mere stability. Also, since asymptotic stability is a local 

concept, simply to establish asymptotic stability does not necessarily mean that the system will operate properly 
some knowledge of the size of the largest region of asymptotic stability is usually necessary. This region is called 
the domain of attraction. It is that part of the state space in which asymptotically stable trajectories originate. In 
other words, every trajectory originating in the domain of attraction is asymptotically stable [6]. 

2.3.3. Asymptotic Stability in the Large 
If asymptotic stability holds for all states (all points in the state space) from which trajectories originate, the 

equilibrium state is said to be asymptotically stable in the large. That is, the equilibrium state xe  of the system is 
said to be asymptotically stable in the large if it is stable and if every solution converges to xe as r increases 
indefinitely. Obviously, a necessary condition for asymptotic stability in the large is that there is only one 
equilibrium state in the whole state space. 

In control engineering problems, asymptotic stability in the large is a desirable feature. If the equilibrium state is 
not asymptotically stable in the large, then the problem becomes one of determining the largest region of asymptotic 
stability. This is usually very difficult for all practical purposes; however, it is sufficient to determine a region of 
asymptotic stability large enough that no disturbance will exceed it [6].  

 

2.3.4. Instability 
An equilibrium state xeis said to be unstable if for some real number > 0 and any real number δ > 0, no matter 

how small, there is always a state x0 in S(δ) such that the trajectory starting at this state leaves S( ). 

2.3.5. Lyapunov Theorem on Stability 
To prove stability (but not asymptotic stability) of the origin of the system, the following theorem may be 

applied. Suppose a system is described by  = f(x,t) where f(0, 1) = 0 for all t. If there exists a scalar function V(x,t) 
having continuous first partial derivatives and satisfying the conditions 

1. V(x, t) is positive definite. 

2. (x, t) is negative semi definite 

then the equilibrium state at the origin is uniformly stable. 
It should be noted that the negative semi definiteness of (x, t) [ (x, t) ≤0 along the trajectories] means that the 

origin is uniformly stable but not necessarily uniformly asymptotically stable. Hence, in this case the system may 
exhibit a limit cycle operation. 

 

2.3.6. Instability 
If an equilibrium state x = 0 of a system is unstable, then there exists a scalar function W(x, t) that determines the 

instability of the equilibrium state. We shall present a theorem on instability in the following. Suppose a system is 
described by = f(x, t) where f(0,t) = 0, for all t ≥ t0. 
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If there exists a scalar function W(x, t) having continuous first partial derivatives and satisfying the conditions: 
1. W(x, t) is positive definite in some region about the origin. 
2. W(x, t) is positive definite in the same region. 

then the equilibrium state at the origin is unstable [4]. 

2.3.7. Stability in the crane model 
All three conditions for a function to be considered a control-lyapunov function will be proven to be met by the 

controller and therefore its stability.  
 is positive definite as proven in (20) since  is squared only its absolute value plays a role in ’s final value 

therefore ensuring the condition if  and . 
 

        (20) 

 is negative semi definite as shown in (21) for similar reasons as (20). 
 

        (21) 

For every  there’s always a  which reduces . Equation (12) is a linear first order differential equation with a 
solution of the form . We can therefore conclude that the error and error rate both decay exponentially 
to zero. 

3. Controller optimization 

Two methods of optimization will be carried out in this section: first by a simulation to predict an initial value of 
the parameters which will then be followed by experimental tests. The controller optimization was carried out first 
by simulation and afterwards experimentally. The simulation was done with Simulink while the experimental data 
was obtained at the lab [7]. The position PID controller of the system will also be tuned in this section.  

3.1. Gradient based global Stochastic optimization of the simulated system 

Optimization applications are common nowadays and certainly will be much more frequent in the future. Even in 
introductory courses global optimization techniques could be helpful: whenever we make curve or surface fitting, 
for example, an optimization process is in progress, taking into account that we are trying to minimize a specific 
measure of distance between a parametric model (curve or surface) and a set of points, normally obtained through a 
practical experiment - parameters defining the model are chosen so as to get exactly that. 

In many scenarios, optimization problems involve variables that assume integer values only. 
There are several ways to tackle a global optimization problem. Firstly it will be useful to classify the problem at 

hand and, depending on its type, we will have more or less methods and tools available. 
There are many methods aimed at globally optimizing functions, but only a few have gained high popularity. In 

the deterministic and differentiable realm we have the gradient-based ones and its variations, that guide their search 
based on the negative of cost functions’ gradient [6]. 

In optimization, gradient method is an algorithm to solve problems of the form  with the search 
directions defined by the gradient of the function at the current point. Examples of gradient method are the gradient 
descent and the conjugate gradient. 

3.2.  Simulation data 

To optimize the controller initially an iterative process was carried out according to the Simulink blocks shown in 
Figure 2. A model of the system was used (implementing the mechanical equation previously obtained) and a pulse 
disturbance was fed into the system. 
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The simulation was run several times and the outputs analyzed so that the best response could be achieved. As 
shown in Figure 3. (last iteration) the optimal values were: . 

 

 

Fig.2. Simulink iteration: blocks layout used in the iterative tuning process. 

 

Fig. 3.Iteration outputs: system’s outputs varying with and . 

3.3. Experimental data 

It was decided to tune the controller also considering the real system and for that a series of tests were carried 
out. Due to shortage of time and resources the experimental results obtained lack accuracy but can still illustrate and 
contrast with the model results. The results obtained from the simulation data were taking into account by trying 
similar or close values in this experiment.  

In Figure 4 different values of   are shown for a fixed  (the simulation optimal). From this figure it can be 
concluded that for that value of  ( )  reaches the best output. Something similar could be said about 
Figure 5 although due to lack of accuracy the results seem inconclusive. Contradicting the simulation results 
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 seems to be the best value for the controller at least considering the amplitude of the first 
oscillation. 

All the experimental results are summarized in Table 1. The table shows the values of  (Amplitude of the first 
oscillation) and  (settling time) for the different experiments conducted. The best amplitude is reached for 

 while the best settling time is reaches by . 

Table 1.: Experimental Results.  

  1 1.5 2 

 

 

 (s)  (s)  (s) 

1 NA NA -15.59 2.21 -22.28 2.69 

1.75 -15.59 2.19 -12.13 1.48 -12.91 1.36 

2 -19.58 2.71 -17.28 1.88 -17.3 1.98 

 

 

Fig.4. Experimental outputs 1: system’s output with fixed optimal kappa. 
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Fig. 5.Experimental outputs 2: system’s output with fixed optimal alpha. 

3.4. Tuning PID controller 

The PID controller parameters were tuned online for a pulse reference input. For this step the Lyapunov 
controller was ignored while only the position controller (PID) was being used. The procedure consisted of 
increasing the proportional gain until the first signs of overshoot appeared, then the integral and derivative gains 
were used to compensate it. Figure 6 shows the best achievable output for the system’s input using the values in 
table 2.  

In the interface used in ControlDesk during the online PID tuning the PID gains could be changed with the 
different numerical inputs and position and position reference were shown in a plotter. Angle and angle reference 
are also being plotted although not used. 

Table 2.PID parameter values. 

    

Pulse 11 1.5 0.7 

 

 

Fig.6.PID output: system’s output with pulse reference. 
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4. Implementation 

In order to introduce the previously designed controller into the real system MATLAB’s Simulink was used. The 
final block diagram is simplified on behalf of easier understanding in Fig.7. A position reference is given by the 
joystick which is then treated by a PID controller and finally fed into the system. When the final destination is 
reached a trigger should be pushed in the joystick which would enable the lyapunov controller (inner loop in Fig. 7) 
using the switch block. 

Values used while implementing the system in the block diagram are presented and described in table 3. 
 

 

Fig.7. Closed-loop: system’s own block layout.  

Table 3. Variable values. 

Variable Value Unit  

 0.46  Length of the pendulum rod 

 9.8  Gravity acceleration 

 0.939  Mass hanging from the pendulum 

 0.1  Angular friction coefficient 

 2  Tuning parameter 

 1.75  Tuning parameter 

5. Experimental results 

After a series of tests aimed at different properties of the system some data was gathered and presented here. To 
transfer data from ControlDesk to MATLAB the following procedure was followed: stopped measuring, right click 
in the plotter and select Save Displayed Data as New Measurement. Then opened the Project window and in 
Measurement data directory selected the new file, double clicked it, then right click and Export selecting .mat file 
[8]. 

5.1. Effect of mass 

This set of tests were aimed at the effect of the mass hanging from the pendulum on the system’s output 
depending on the initial angle. The pendulum was set to 15°, 30° and 45° for each mass and the output recorded. As 
shown in Figure 8 the initial angle was set manually using an analog scale that was implanted in the pendulum. 

The masses were changed by using the metal parts shown in Figure9. The first mass was made by using only the 
lighter piece on the left, the second was the left and middle ones together and the last experiment with heavier mass 
was conducted with all three masses together. 
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Fig. 8. Analog scale: scaling system used to conduct the mass experiments. 

 

Fig. 9. Experimental masses: different masses available at the laboratory used for the mass experiments. 

The next three graphs show each the system’s output angle with a fixed mass and different initial angles. Figure 
10 shows the first experiment with a mass of roughly , a similar graph is shown in Figure 11 with a 
mass of and figure 12 . 
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Fig. 10. System’s output for the lighter mass: outputs recorded for the lighter mass for different initial angles. 

 

Fig. 11. System’s output for the medium mass: outputs recorded for the medium mass for different initial angles. 



122   Andres Belunce et al.  /  Procedia Engineering   106  ( 2015 )  108 – 125 

 

Fig.12. System’s output for the heavier mass: outputs recorded for the heavier mass for different initial angles. 

Some conclusions can be drawn from Figure 3 and Table 4since as logic would suggest a heavier mass comes 
with a higher oscillating amplitude (  amplitude of the first oscillation) and settling time ( ). A heavier mass 
would make the assumptions when creating a mechanical model more precise since we assumed the pendulum bar 
had no mass and the center of mass was located at the lower end. 

Each of the experiments seems to result in a 10° reduction during the first cycle and a settling time between 2 and 
5 seconds depending on the mass and initial angle. The option of repeating the experiment with the third mass 
should be considered since the results don’t seem to match the tendency of the previous ones. 

Table 4. Experimental data.  

    

  (s)  (s)  (s) 

15° -5.778 1.51 -8.352 2.21 -6.318 2.68 

30° -12.33 2.23 -15.1 3.46 -15.77 3.38 

45° -33.93 2.66 -36.76 4.66 -35.62 4.59 

5.2. Disturbances 

This experimental part consists of a series of tests aimed at the effect of disturbances into the system. At first the 
motor was moved with the joystick from one side to the other and then the Lyapunov controller was enabled. In the 
second tests the Lyapunov controller was enabled from the very beginning and some manual disturbances were fed 
into the system. 

5.2.1. Joystick disturbance 
As previously mentioned the system was moved by joystick control therefore the working controller was the PID 

controller. Then at a given time (around 22 seconds in Figure 14) the swinging compensation was enabled and the 
control signal corresponds to the designed Lyapunov controller. As can be seen in Figure 14 the control signal 
(upper right picture) changes from a semi digital reference given by the joystick to a continuous signal for the 
swinging compensation. 
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Even though in that same figure we can observe that the Lyapunov function (lower right picture) has a value 
different than zero the trigger was not being pushed so therefore that value was not being used. 

 

 

Fig.13. System’s output for 30° initial angle: summary of the experiment with a 30° degree angle. 

 

Fig.14. Joystick disturbance: response of the angle, control signal, position and Lyapunov function value. 

As mentioned earlier the Lyapunov controller was enabled from the beginning and the pendulum was moved 
manually so that the system would try to compensate it. 

As can be seen in Figure 15 the Lyapunov function (lower right picture) has different values depending on the 
amplitude of the given disturbance and the control signal (upper right) has an almost inverse proportional relation 
with the actual angle. 
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Fig.15. Manual disturbance: response of the angle, control signal, position and Lyapunov function value signals. 

6. Conclusion 

This chapter will discuss the procedures conducted and the results obtained. The first assumption was creating a 
mathematical model for the complete real system which was later used for designing, implementing and tuning the 
Lyapunov controller. 

The efficiency and robustness shown by the system after implementing the designed controller regardless of the 
value chosen for its parameters proves Lyapunov’s stability since the system always converges to zero. Figure 16 
shows the convergence of one of the tests ( and ) in an angle-position curve. 

 

 

Fig. 16. Angle vs position: angle-position relation during one of the tests conducted at the laboratory. 
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Everything was done to simulate the overhead crane load swinging problem for which an original approach was 
taken reducing the driver’s role in the compensation of swinging problem allowing 100% manual control until the 
destination is reached and then the designed controller is enabled compensating the swinging automatically. The 
results were satisfactory concluding that implementing this system in real systems (real overhead cranes) could 
greatly improve productivity especially in lack of a skillful crane operator. 
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