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SUMMARY

Prokaryotic adaptive immunesystemsarecomposed
of clustered regularly interspaced short palindromic
repeats (CRISPR) and CRISPR-associated (Cas) pro-
teins. These systems adapt to new threats by inte-
grating short nucleic acids, termed spacers, into the
CRISPR array. The functional motifs in the repeat
and the mechanism by which a constant repeat size
is maintained are still elusive. Here, through a series
of mutations within the repeat of the CRISPR-Cas
type I-E, we identifymotifs that are crucial for adapta-
tion and show that they serve as anchor sites for two
molecular rulers determining the size of the new
repeat. Adaptation products from various repeat mu-
tants support a model in which two motifs in the
repeat bind to two different sites in the adaptation
complex that are 8 and 16 bp away from the active
site. This model significantly extends our under-
standing of the adaptation process and broadens
the scope of its applications.
INTRODUCTION

Clustered regularly interspaced short palindromic repeats

(CRISPR) and CRISPR-associated (Cas) proteins have been

identified as central components of prokaryotic immune systems

(Barrangou et al., 2007). These intriguing systems are found in up

to 90% of archaeal genomes and in�50% of bacterial genomes

(Sorek et al., 2013) and are analogous to themammalian immune

system (Abedon, 2012; Goren et al., 2012b). Various types of

CRISPR-Cas systems (Makarova et al., 2011, 2015) defend

prokaryotes against viruses and horizontally transferred DNA

(Barrangou et al., 2007; Brouns et al., 2008; Marraffini and Son-

theimer, 2008) and RNA (Abudayyeh et al., 2016; Hale et al.,

2009; Staals et al., 2014). The genetic loci of all systems include

a CRISPR array—short repeated sequences, called ‘‘repeats,’’

that flank similarly sized sequences, called ‘‘spacers.’’ The

spacers are acquired from DNA sequences termed ‘‘proto-

spacers.’’ Their incorporation into the bacterial CRISPR array,

termed ‘‘adaptation,’’ enhances the spacer repertoire of the
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array against foreign elements. The CRISPR array is usually pre-

ceded by a ‘‘leader’’ DNA sequence that is located near a cluster

of cas genes (Deveau et al., 2010; Marraffini and Sontheimer,

2010; Sorek et al., 2008). RNA transcribed from the CRISPR

array (crRNA) is processed by Cas proteins into RNA-based

spacers flanked by partial repeats. These RNA spacers specif-

ically direct Cas interference proteins to target and cleave nu-

cleic acids encoding matching protospacers. Thus, the system

can adaptively and specifically target invaders.

The adaptation process has been thoroughly characterized for

the type I-E CRISPR-Cas system in the model organism Escher-

ichia coli (Sternberg et al., 2016). In vivo, two proteins, Cas1 and

Cas2, are both necessary and sufficient for acquiring new

spacers in this system (Yosef et al., 2012). Expression of these

two proteins from a plasmid results in significant spacer adapta-

tion into CRISPR arrays. Adaptation requiring only Cas1 and

Cas2 proteins is termed ‘‘naive,’’ as opposed to ‘‘primed’’ adap-

tation, which requires additional Cas proteins guided by a target-

ing spacer (Datsenko et al., 2012). These in vivo findings

have been supported in vitro by naive adaptation experiments

comprising Cas1, Cas2, a CRISPR array, and a donor spacer

(Nuñez et al., 2015b; Rollie et al., 2015).

A single repeat of 28 bp is both necessary and sufficient for

adaptation (Goren et al., 2012a; Yosef et al., 2012). The repeat

encodes a heptameric palindrome composed of two inverted re-

peats (IRs) interspaced by 4 nt that can form a stem-loop struc-

ture in a single-strand nucleic acid. This secondary structure in

the mature crRNA is thought to serve as a ‘‘molecular handle’’

for the interference proteins (Gesner et al., 2011; Sashital et al.,

2011). Bioinformatics analysis has shown that the IRs are the

most conserved sequences in the type I-E repeat, whereas the

sequence connecting the IRs is the least conserved (Kunin

et al., 2007). Although the IRs have been shown to be required

for the adaptation step (Arslan et al., 2014), a thorough charac-

terization of the entire repeat element has not been reported

for the type I-E system.

A recent report did thoroughly characterize the repeat element

in Haloarcula hispanica (Wang et al., 2016). However, that study

focused solely on primed adaptation, because there is no sys-

tem for studying naive adaptation in that archaeon (Li et al.,

2014). The study showed that certain substitutions in the

leader-proximal end of the repeat significantly reduce adapta-

tion efficiency. The leader-proximal IR (IR1) was important for
rts 16, 2811–2818, September 13, 2016 ª 2016 The Authors. 2811
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Figure 1. Determination of Essential Ele-

ments in the Repeat

Adaptation assayswere carried out for the different

repeat variants as described in Experimental

Procedures. Each box represents a nucleotide

of the indicated repeat as follows: green, leader-

proximal region; red, IRs; orange, region between

IRs; blue, leader-distal region; X, substitution

mutation. Percentage of adaptation efficiency was

determined by analyzing high-throughput DNA

sequencing products as described in Experimental

Procedures.
adaptation, asmutating it reduced adaptation significantly. Inter-

estingly, the leader-distal IR (IR2) could bemutatedwithout detri-

mental effect on adaptation. A second motif between these two

IRs was found to be important for adaptation, as mutating it

reduced adaptation significantly. This motif was suggested to

serve as an anchor site for amolecular ruler that measures a spe-

cific distance from which the spacer is inserted. This putative

molecular ruler inserted the spacer 8 nt downstream of the end

of this motif regardless of the sequence of the downstream nu-

cleotides. Overall, the study showed that in a primed type I-B

adaptation system, the adaptation machinery probably recog-

nizes two sites (Wang et al., 2016). One site, at the leader-repeat

junction, serves as a docking site for the protein complex, and

the other probably serves as an anchor for a molecular ruler

that measures a specific length, regardless of the downstream

sequence.

In the present study, we searched for motifs in the repeat

that are essential for spacer adaptation in the E. coli type I-E sys-

tem and possibly determine the fidelity of the process and the

maintenance of a constant repeat size. We found that the IRs,

as well as their orientation, are essential for efficient adaptation,

whereas other elements are not. Most significantly, we found

that motifs in these IRs are anchor sites from which a constant

distance is measured to initiate the leader-distal nucleophilic

attack. The differences and similarities between type I-E and

I-B systems are discussed and highlight a mechanism for ‘‘qual-

ity control’’ of size determination in the adaptation process that

ensures a constant repeat size is maintained.

RESULTS

Experimental Setup
To identify motifs in the repeat affecting the efficiency and fidelity

of spacer acquisition, we used a plasmid-based adaptation

assay. The plasmid encoded a leader-repeat sequence as well

as Cas1 and Cas2 expressed from an inducible promoter (Fig-

ure S1). The plasmid was transformed into E. coli BL21-AI, lack-

ing the interference cas genes (Brouns et al., 2008) and deleted

for one of its endogenous CRISPR arrays. Following Cas1 and

Cas2 expression, DNA from a sample of the culture was used
2812 Cell Reports 16, 2811–2818, September 13, 2016
as a template for PCR amplification of

the adapted region. To determine the

extent of adaptation and the size and

sequence of the newly inserted repeats,
the obtained products were analyzed by high-throughput DNA

sequencing, as elaborated in Experimental Procedures. This

system thus allowed us to efficiently monitor adaptation under

naive conditions.

Determining Motifs Required for Adaptation
Analysis of spacer acquisition into a plasmid encoding a wild-

type (WT) repeat indicated that �14% of the templates contain

new spacer-repeat insertions (Figure 1, WT). We tested repeats

having substitution mutations in the leader-proximal end, the re-

gion between the IRs, the leader-distal end, and the IRs. Spacer

acquisition in all mutants outside the IRs was only up to 3-fold

reduced compared to spacer acquisition into theWT repeat (Fig-

ure 1, repeats S1–S3). Conversely, mutations in the IRs reduced

the adaptation efficiency �100-fold compared to the WT repeat

(Figure 1, repeat S4). This reduction was also detected when

each IR was individually mutated (Figure 1, repeats S5 and

S6). Moreover, maintaining the IR sequences but reversing their

orientation also significantly reduced adaptation efficiency (Fig-

ure 1, repeat S7). These results demonstrated that the IR se-

quences, as well as their orientation, are major determinants of

adaptation, whereas other regions of the repeat are less impor-

tant for adaptation efficiency.

Identifying an Anchor Motif for a Molecular Ruler
We speculated that at least one of these IRs serves as a docking

site for the Cas1–Cas2 integrase, as shown by Xiang and

colleagues for the type I-B system (Wang et al., 2016). We there-

fore generated single-nucleotide deletions across the repeat

sequence as shown in Figure 2A.Weexpected that a deletion up-

stream of such a docking site would simply be duplicated, result-

ing in a 27-bp repeat, which is shorter than the WT repeat due to

the deleted nucleotide. On the other hand, deletion downstream

of thedocking sitewould result in a regular-sized28-bp repeat, as

the molecular ruler would measure a defined distance down-

stream to this site, regardless of the deletion. Therefore, in these

cases, a single nucleotide from the sequence immediately down-

stream of the repeat would be added to the repeat. Indeed, dele-

tions from the leader-proximal end of the repeat up to the leader-

distal IR (IR2) resulted, in over 97% of the cases, in a duplicated
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Figure 2. Determination of Anchor Sites for a Molecular Ruler

Experiment and representation as described for Figure 1 except that arrowheads represent location of a single nucleotide deletion (A) or insertion (B). Percentage

of new repeat length was determined as described in Experimental Procedures.
27-bp repeat (Figure 2A, repeats D1–D6). Deletions of nucleo-

tides downstreamof amotif in the IR2 resulted almost exclusively

(>98%) in a repeat that was extended by a single G nucleotide,

the nucleotide found immediately adjacent to the repeat

(Figure 2A, repeats D7–D10). These results indicated that the

‘‘GCGGG’’motif (or somepart thereof) in IR2 serves as an anchor

site for a molecular ruler. The spacer is inserted 8 nucleotides

downstream of the end of this motif, probably as a result of amo-

lecular ruler that dictates nucleophilic attack of the spacer 8 nt

downstream of the end of this motif (see also Figure 4 for graph-

ical illustrations of these results).

Identifying an Additional Anchor Motif for a Molecular
Ruler
We speculated that single-nucleotide insertions upstream of the

newly identified docking site would result in duplicated 29-bp re-

peats (longer than the 28-bp WT repeats due to the nucleotide

insertion), whereas nucleotide insertions downstream of this
docking site would result in a regular-sized repeat due to themo-

lecular ruler that measures 8 nucleotides downstream of the

motif. Indeed, insertion downstream of the motif resulted in a

regular-sized repeat (Figure 2B, repeats I6–I8). Surprisingly how-

ever, several nucleotide insertions upstream of this motif also re-

sulted in regular-sized repeats (Figure 2B, repeats I3–I5). These

insertions were located between IR2 and the leader-proximal

IR1. Insertions upstream of IR1 resulted in mostly (>76%) dupli-

cated 29 bp repeats (Figure 2B, repeats I1 and I2). These results

suggested that IR1 also encodes a ‘‘CCCCGCG’’ motif (or some

part thereof) that serves as a docking site for another molecular

ruler. The distance measured from the end of this motif to the

spacer-insertion site was 16 nucleotides. Apparently, the mea-

surement of 16 nt from this motif was masked in the repeat dele-

tion mutants shown in Figure 2A. Thus, the ‘‘ruler measurement’’

of IR1 is masked by the ruler activity of IR2 in cases where the

repeat is being lengthened to the regular length but is revealed

when the repeat is being shortened to the regular length. The
Cell Reports 16, 2811–2818, September 13, 2016 2813
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Figure 3. Validation of Anchor Sites

Experiment and representation as described for Figure 2.
dominant ruler is the one that measures the shorter distance in

each case. These results revealed an additional anchor site for

a molecular ruler.

Validation of Both Anchor Sites
We hypothesized that a nucleotide deletion between IR1 and IR2

would be processed to a regular-sized repeat if the IR2 molecu-

lar ruler is disabled. In this case, IR1 would be the only anchor

site for a molecular ruler, and would be unmasked by the molec-

ular ruler of IR2.We therefore constructed a series of substitution

mutants in the IR2motif in repeats having a deletion between IR1

and IR2, and monitored repeat length in the products. As spec-

ulated, we observed that some of the mutations disrupted the

suspected motif in IR2 and have led to repeats lengthened by

1 bp. Specifically, a single A substitution in the second base of

IR2 led to elevation of the percentage of lengthened repeats

from 1.31% in the parental repeat to 45.76% in the mutant (Fig-

ure 3A, D5S2), suggesting that this base is central to the anchor

motif in IR2. In accordance, a mutation that included the same A

substitution, in addition to two A substitutions in its flanking ba-

ses, resulted in >91%of the new repeats being longer (Figure 3A,

D5S6), further suggesting that these mutations disrupted the IR2

anchor motif. These results clearly indicated that, indeed, IR1 is

an anchor for a molecular ruler that is masked by the presence of

the IR2 molecular ruler.

We further speculated that mutating the IR1 motif in repeats

having an insertion between IR1 and IR2 would eliminate the

shortening of the repeat to a regular-sized one. This would result

because IR1 is the only anchor site for a molecular ruler that is

found upstream of this insertion, whereas the downstream IR2
2814 Cell Reports 16, 2811–2818, September 13, 2016
does not ‘‘measure’’ such an insertion. We therefore constructed

a mutant having an insertion between IR1 and IR2, in addition to

a 3-A substitution in IR1. This mutant significantly increased the

proportion of repeats that remained long, as predicted. The per-

centage of long repeats increased >10-fold from 0.64% in the

parental repeat (Figure 3B, repeat I4) to 6.89% in these settings

(Figure 3B, repeat I4S1). We hypothesize that the introduced

substitutions did not entirely disable the activity of the IR1 ruler,

and thus repeat shortening remained relatively high. The impor-

tance of this anchor site in adaptation was reflected in the low

acquisition detected from this 3-bp-substitution mutant. This

result further indicated that motifs in both IR1 and IR2 function

as anchors for molecular rulers. Taken together, these results

demonstrate the presence of two independent anchor sites for

two molecular rulers measuring distinct distances.

DISCUSSION

We studied the requirement for each element in the repeat

sequence for efficiency and fidelity of adaptation. We found

that the only essential elements in the repeats are the IRs; the

other elements could be individually mutated. The most impor-

tant finding of this study was that both of the IRs encode motifs

that serve as anchors for two distinct molecular rulers that deter-

mine the distance of the nucleophilic attack on the leader-distal

end. These motifs maintain a constant-sized repeat by length-

ening or shortening an irregular-sized repeat to the regular size.

Xiang and colleagues characterized the type I-B repeats by

substitution, deletion, and insertion mutations in the repeat’s el-

ements followed by Sanger sequencing of several products.



Interestingly, they found that the leader-proximal end of the

repeat is essential for adaptation. Certain substitutions in this

region completely abrogated adaptation, whereas others only

mildly impaired it (Wang et al., 2016). IR1 was essential for adap-

tation and possibly served as a docking site for the protein com-

plex, whereas IR2 was not. In addition, mutating the region be-

tween the two IRs resulted in significantly reduced adaptation.

Thus, a major difference between type I-B and type I-E is that

in the latter, the nucleotides between the IRs are dispensable,

whereas both of the IRs are essential. There are also differences

in the proteins and spacers required for proper adaptation:

currently, type I-B can only be studied in a primed state (Li

et al., 2014), whereas type I-E can be studied in both states (Dat-

senko et al., 2012; Swarts et al., 2012; Yosef et al., 2012). Thus,

type I-B strictly requires the presence of the interference proteins

and a targeting spacer for adaptation of a new spacer (most likely

for generation of spacers, but not for the spacer integration step).

In addition, the type I-B adaptation complex probably requires

the non-interference protein Cas4 for adaptation, whereas type

I-E does not (Li et al., 2014). These differences indicate that sys-

tems of the same type exhibit different mechanisms for spacer

adaptation.

The most significant difference is that type I-E has two anchor

sites for molecular rulers within the IRs, whereas in type I-B, only

a single putative site was found between the two IRs (Wang et al.,

2016). In all cases in the latter study, insertions and deletions up-

stream of this type I-B motif resulted in the expected repeat

duplication. In addition, in most cases, deletions and insertions

downstream of it resulted in lengthened or shortened repeats,

respectively, as expected (Wang et al., 2016).

In this work, we found two anchor sites for molecular rulers,

each measuring a different distance and eventually coordinating

a nucleophilic attack at the repeat-spacer junction in the WT

repeat. The existence of two docking sites for molecular rulers

may serve as ‘‘quality control’’ for size determination and to

maintain a constant repeat size. The first nucleophilic attack is

dictated by the position of the leader-repeat junction (Nuñez

et al., 2015b; Rollie et al., 2015), and therefore, the rulers deter-

mine the distance to the second nucleophilic attack, at the

leader-spacer junction. In the WT repeat, both rulers deliver

the repeat to the same site, where nucleophilic attack of the

spacer takes place (Figure 4A). In repeats encoding a deletion

or insertion upstream of both IRs, the two molecular rulers

both ‘‘miss’’ the length correction but both deliver the repeat at

the same site for spacer nucleophilic attack (Figure 4B). In re-

peats encoding a deletion or insertion downstream of both IRs,

both molecular rulers correct the size by either extending the

repeat length in the case of a deletion or shortening it in the

case of an insertion (Figure 4C). In repeats encoding a deletion

or insertion between the twomolecular rulers, themolecular ruler

that shortens the repeat dominates (Figure 4D). We speculate

that this is because the repeat cannot be delivered for nucleo-

philic attack at a distance of more than 8 or 16 nt from the anchor

site due to tight docking. It is only when one of these docking

sites is mutated that the other molecular ruler can take over (Fig-

ure 4E).We suppose that in this case, themutatedmotif does not

dock the repeat, and therefore, the other site is allowed to deliver

the repeat for nucleophilic attack at its programmed distance.
Mutating the IR2 allows total domination of IR1, whereas

mutating IR1 allows increased domination of IR2 rather than total

domination. One may speculate that IR1 and the leader-repeat

docking site are on the same protein subunit in the complex

and thus less flexibility is allowed in IR1 substitution, whereas

IR2 is on a different protein subunit in the complex, thus allowing

more flexibility in its substitution. Another possibility is that the

IR1 anchor helps define the first integration site at the leader-

repeat junction, and therefore, its absence is more pronounced

on adaptation.

The integration complex has intrinsic symmetry in its structure

(Nuñez et al., 2015a; Wang et al., 2015). Despite this symmetry,

which suggests that the mechanism of integration would be

symmetrical as well, directional adaptation is observed with re-

gard to the protospacer adjacent motif (PAM) sequence (Nuñez

et al., 2015a; Wang et al., 2015; Yosef et al., 2012). The asym-

metrical mechanism is also reflected in the two molecular rulers

measuring two distinct distances in the same direction, rather

than similar distance in opposite directions. This directionality

is probably dictated by the docking site that is recognized at

the leader-repeat junction, dictating that the measurement

would be to the other end lacking a distinct docking site. Thus,

the asymmetry of the docking sites flanking the repeat probably

dictate the asymmetrical mechanism operating in the integration

machinery.

What is the mechanism maintaining constant repeat size in

other CRISPR-Cas systems? As shown for type I-B, a ruler

that is not located in IR1 or IR2, but rather between these two

motifs serves as a molecular ruler. Other CRISPR-Cas systems,

such as the type II-A in Streptococcus pyogenes, have their IRs

in the extreme ends of the repeat. We speculate that in that case,

the IRs would serve as direct attachment sites to the integration

complex and consequently would be directly involved in the

nucleophilic attack. This mechanism would preserve the repeat

size without molecular rulers. In cases where there are no IRs

in the repeat, we speculate that the leader-repeat junction may

serve as one docking site, and another site will serve as a

docking site for a molecular ruler, as is the case in the type I-B

system. Altogether, we believe that various types of CRISPR-

Cas evolved distinct mechanisms but with similar principles to

maintain the periodicity of the array.

Our observations of adaptation into mutated repeats are ex-

plained by the function of these two motifs, serving as anchor

sites, and substantiate themodel shown in Figure 4F. This model

is based on recent in vitro work and structural studies (Nuñez

et al., 2015a, 2015b; Rollie et al., 2015; Wang et al., 2015). Those

studies revealed that the adaptation proteins Cas1 and Cas2

bind the 50 and 30 ends of the newly inserted spacer during the

integration process, enabling nucleophilic attack at the integra-

tion sites. The structure of these proteins with the repeat and

spacer DNAs has not yet been published. Thus, our study is

important for elucidating one of the remaining unresolved stages

of the adaptation process: the delivery of the repeat to the spacer

for nucleophilic attack. A crystal structure containing the repeat

and spacer should reveal the exact contact residues of the pro-

teins with the repeats. Rational modification of these residues

may produce proteins generating repeats of various lengths,

which in turn will extend the repertoire of adaptation products
Cell Reports 16, 2811–2818, September 13, 2016 2815
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Figure 4. Schematic Summary of the Results Leading to a Proposed Model

(A–C) Schematics of the repeats and spacer-insertion sites. Arrows point to 16 and 8 bp from the end of the IR1 and IR2 motifs, respectively, where most spacer

insertions were observed.

(D and E) Same as (A)–(C). Thickness of arrows correlates schematically with spacer insertions at the indicated site (not to scale).

(F) A model depicting the two anchor sites (fully colored boxes) for two molecular rulers (black-marked lines). In accordance with the structure, four Cas1 (light

blue) and two Cas2 (yellow) form a heteromeric complex binding a protospacer substrate (gray strands). We envision that the complex also binds the repeat

(boxed letters) at the two identified anchor sites. The ends of these sites are positioned 8 and 16 bp away from the active site (dark gray half circle) of nucleophilic

attack on the repeat.
used for different applications (e.g., Shipman et al., 2016). Our

results also contribute to such applications as they map the ele-

ments that are permutable and can thus significantly extend the

repertoire of barcoded functional repeats.

EXPERIMENTAL PROCEDURES

Reagents, Strains, Plasmids, and Plasmid Constructions

The above are described in Supplemental Experimental Procedures.

Adaptation Assay

A single colony from each IYB5283 strain harboring the different pCas1+2R

mutant plasmids was inoculated in lysogeny-broth (LB) medium containing

50 mg/ml streptomycin and aerated at 37�C for 16 hr. Each of the overnight cul-
2816 Cell Reports 16, 2811–2818, September 13, 2016
tures was then diluted 1:300 in LB medium containing 50 mg/ml streptomycin

with 0.2% (w/v) L-arabinose + 0.1 mM isopropyl b-D-1-thiogalactopyranoside

(IPTG) and grown for an additional 10–16 hr at 37�C. This procedure was

repeated twice more. A sample from each culture was used as the template

in PCR1 (see Supplemental Experimental Procedures).

PCR Products for Deep Sequencing

PCR1 and PCR2 production are described in Supplemental Experimental

Procedures.

Determination of Adaptation Efficiency and New Repeat Length

Illumina sequencing libraries were prepared using the PCR1 and PCR2 prod-

ucts. The librarieswere sequencedusing the IlluminaMiseqorNextSeq500plat-

forms generating 150-bp reads. Sequenced reads were demultiplexed and

mapped to the E. coli ‘‘BL21-Gold(DE3)pLysS AG’’ genome (NC_012947.1)



andpCas1+2Rplasmidusingblastn (withparameters: -e1e-10 -FF).Adaptation

efficiency was determined as previously described (Levy et al., 2015), except

that new acquisition events were inferred if the read alignment spanned the

old repeat and the sequence downstream of it but did not include the leader up-

stream,meaning that a newsequencehadbeen insertedbetween theold repeat

and the leader.New repeat lengthwas determinedusing thePCR2 library reads.

Readswere identified as representing an acquisition event if they contained two

alignments to the repeat sequence, with a sequence in between thatmaps else-

where in thegenomeor theplasmid (thepotential spacer). The repeat lengthwas

initially determined according to the alignment. Spacers recorded as 34 or 35 nt

in length, with the first nucleotide being a G that was not aligned to the genome,

wereconsideredas33-or34-ntspacers, respectively,derived froma repeat that

was 1 bp longer. Spacers that were 32 nt in length with an upstream C in the

genome were considered to be 33-nt spacers (with C as their first nucleotide)

with a repeat thatwas shorter by 1 bp. Thepercentage of new repeat length pre-

sented in Figures 2 and 3 is based on acquisitions of 33-nt spacers.
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Nuñez, J.K., Lee, A.S., Engelman, A., and Doudna, J.A. (2015b). Integrase-

mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature

519, 193–198.

Rollie, C., Schneider, S., Brinkmann, A.S., Bolt, E.L., and White, M.F. (2015).

Intrinsic sequence specificity of the Cas1 integrase directs new spacer acqui-

sition. eLife 4, e08716.

Sashital, D.G., Jinek, M., and Doudna, J.A. (2011). An RNA-induced conforma-

tional change required for CRISPR RNA cleavage by the endoribonuclease

Cse3. Nat. Struct. Mol. Biol. 18, 680–687.

Shipman, S.L., Nivala, J., Macklis, J.D., and Church, G.M. (2016). Molecular re-

cordings by directed CRISPR spacer acquisition. Science 353, aaf1175.

Sorek, R., Kunin, V., and Hugenholtz, P. (2008). CRISPR–a widespread system

that provides acquired resistance against phages in bacteria and archaea. Nat.

Rev. Microbiol. 6, 181–186.

Sorek, R., Lawrence, C.M., and Wiedenheft, B. (2013). CRISPR-mediated

adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82,

237–266.
Cell Reports 16, 2811–2818, September 13, 2016 2817

http://dx.doi.org/10.1016/j.celrep.2016.08.043
http://dx.doi.org/10.1016/j.celrep.2016.08.043
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref1
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref1
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref2
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref2
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref2
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref2
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref3
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref3
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref3
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref4
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref4
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref4
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref5
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref5
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref5
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref5
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref6
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref6
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref6
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref7
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref7
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref8
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref8
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref8
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref9
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref9
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref9
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref10
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref10
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref10
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref11
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref11
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref11
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref12
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref12
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref13
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref13
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref13
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref14
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref14
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref14
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref15
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref15
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref15
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref15
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref16
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref16
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref16
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref16
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref17
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref17
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref17
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref18
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref18
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref18
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref19
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref19
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref19
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref20
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref20
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref20
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref21
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref21
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref21
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref22
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref22
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref22
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref23
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref23
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref24
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref24
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref24
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref25
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref25
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref25


Staals, R.H., Zhu, Y., Taylor, D.W., Kornfeld, J.E., Sharma, K., Barendregt, A.,

Koehorst, J.J., Vlot, M., Neupane, N., Varossieau, K., et al. (2014). RNA target-

ing by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol.

Cell 56, 518–530.

Sternberg, S.H., Richter, H., Charpentier, E., and Qimron, U. (2016). Adapta-

tion in CRISPR-Cas Systems. Mol. Cell 61, 797–808.

Swarts, D.C., Mosterd, C., van Passel, M.W.J., and Brouns, S.J.J. (2012).

CRISPR interference directs strand specific spacer acquisition. PLoS ONE

7, e35888.
2818 Cell Reports 16, 2811–2818, September 13, 2016
Wang, J., Li, J., Zhao, H., Sheng, G., Wang, M., Yin, M., and Wang, Y. (2015).

Structural and mechanistic basis of PAM-dependent spacer acquisition in

CRISPR-Cas systems. Cell 163, 840–853.

Wang, R., Li, M., Gong, L., Hu, S., and Xiang, H. (2016). DNA motifs deter-

mining the accuracy of repeat duplication during CRISPR adaptation in Hal-

oarcula hispanica. Nucleic Acids Res. 44, 4266–4277.

Yosef, I., Goren, M.G., and Qimron, U. (2012). Proteins and DNA elements

essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids

Res. 40, 5569–5576.

http://refhub.elsevier.com/S2211-1247(16)31107-X/sref26
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref26
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref26
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref26
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref27
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref27
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref28
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref28
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref28
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref29
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref29
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref29
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref30
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref30
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref30
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref31
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref31
http://refhub.elsevier.com/S2211-1247(16)31107-X/sref31

	Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array
	Introduction
	Results
	Experimental Setup
	Determining Motifs Required for Adaptation
	Identifying an Anchor Motif for a Molecular Ruler
	Identifying an Additional Anchor Motif for a Molecular Ruler
	Validation of Both Anchor Sites

	Discussion
	Experimental Procedures
	Reagents, Strains, Plasmids, and Plasmid Constructions
	Adaptation Assay
	PCR Products for Deep Sequencing
	Determination of Adaptation Efficiency and New Repeat Length

	Accession Numbers
	Supplemental Information
	Author Contributions
	Acknowledgments
	References


