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Abstract

This paper is devoted to the testing and comparison of numerical solutions obtained from higher-order accurate
finite difference schemes for the two-dimensional Burgers’ equation having moderate to severe internal gradients.
The fourth-order accurate two-point compact scheme, and the fourth-order accurate Du Fort Frankel scheme are
derived. The numerical stability and convergence are presented. The cases of shock waves of severe gradient are
solved and checked with the fourth-order accurate Du Fort Frankel scheme solutions. The present study shows
that the fourth-order two-point compact scheme is highly stable and efficient in comparison with the fourth-order
accurate Du Fort Frankel scheme.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The basic fluid flow equations describing unsteady transport problems form a parabolic–hyperbolic
system of partial differential equations. The interaction of the nonlinear terms and the dissipative vis-
cous terms in these equations can result in relatively severe gradients in the solution. In addition, it is
well known that the accuracy of the numerical computations and the computational efficiency are highly
dependent on the numerical schemes used to solve the fluid flow equations. Central finite difference
methods may work well for smooth solutions but they fail when severe gradients or discontinuities are
present. This is common in the shock wave problems[3,7,19,24]. Therefore, they become less suitable.

E-mail address:radwansamirfarid@hotmail.com(S.F. Radwan).

0377-0427/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.05.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82397071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:radwansamirfarid@hotmail.com


384 S.F. Radwan / Journal of Computational and Applied Mathematics 174 (2005) 383–397

Upwinding type finite differences can be a remedy for the numerical oscillations and dispersions, but
they have a large amount of “numerical viscosity” that smoothes the solution in much the same way that
physical viscosity would, but to an extent that is unrealistic[32]. Furthermore, when grid nonuniformity
becomes important, the lower-order upwinding methods can create additional numerical smearing ef-
fects[22]. Standard four-point finite difference methods such as Leonard’s method[20], Quick (18) or
/ SPUDS(16) schemes, are good in their higher-order accuracies and in reducing numerical smearing
effects. However, it is found that Quick(18) and SPUDS(16) schemes generate spurious oscillations or
overshoots in the neighborhood of discontinuities and lack accuracy. The same conclusion is also reported
in [22]. TVD finite difference schemes[12–14,34,37]guarantee oscillation-free solutions, but they are
limited to second-order accuracy. Third-order accurate TVD schemes are reported in[11,22]. The latter
conducted truncation error analysis for a set of schemes including Leonard’s scheme, one-point upstream
scheme and a third-order accurate TVD scheme, for the solution of one-dimensional linear convection
diffusion equation and two-dimensional Burgers’ equation. However, in their comparisons, nonlinearity
was either not present or it played a minor role especially in the two-dimensional test case. Therefore,
the perfect numerical methods should possess both higher-order accuracy and sharp resolution of discon-
tinuities without excessive smearing. Moreover, higher-order accurate numerical methods are attractive
for problems with long computational time or with higher accuracy solutions.
Asmentioned in[23], at thecostof slight additional computational complexity, the fourth-order schemes

achieve results in the 5% accuracy range with approximately half the spatial resolution in each space di-
rection compared with the second-order schemes (i.e., a factor 8 fewer grid points in three dimensions).
But, the objection to the standard higher-order schemes comes from the additional nodes necessary
to achieve the higher-order accuracy. This precludes the use of implicit methods as the resulting ma-
trix is not of tridiagonal form, and it is necessary to use fictitious nodes for the boundary conditions.
Also, the standard higher-order schemes do not allow easily for nonuniform grids, unless at the ex-
pense of the order of accuracy. On the other hand, the compact schemes that treat the function and its
necessary derivatives as unknowns at the grid nodes, like the Pade scheme[21], are fourth-order ac-
curate, and compact in the sense that they are reduced to the tridiagonal form. The compact schemes
generally consist of finite difference schemes which involve two or three grid points. The three-point
schemes consist of methods, which are fourth-order accurate for uniform grids, such as Kreiss scheme
[2,5,17,25], and of methods that allow variable grids such as the cubic spline methods of Rubin and
Graves[1,30,31]. The disadvantage of the higher-order compact schemes involving three nodal points
is that the boundary conditions are no longer sufficient and they do not allow easily for nonuniform
grids, unless at the expense of the order of accuracy. Also, the complexity of the resulting nonlinear finite
difference equations and the associated difficulty in solving them efficiently make these schemes difficult
to use.
On the other hand, the compact scheme with two nodal points, like a second-diagonal Pade scheme,

is fourth-order accurate even for nonuniform spatial grids, and no fictitious points or extra formulae are
needed forDirichlet boundary conditions; see[16,21]. Liniger et al. studied the numerical solutions of stiff
systems of ordinary differential equations using compact two-point implicit methods. They introduced
three main compact schemes with different orders of accuracy, and with some very favorable properties.
In particular, their schemes haveA-stability and they account for the exponential character of the rapidly
decaying solutions directly, which are referred to exponential fittingmethods. Inspite of the fact thatmany
articles have appeared in the literature concerning the applications of the higher-order accurate schemes
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including the compact schemes to fluid dynamics problems, see, for example[4,9,10,15,26,33,36].
However, not much work has been done in the area of application of two-point compact schemes, like
the fourth-order accurate second-diagonal Pade approximation, to multi-dimensional cases. As such, the
present study aims at studying the feasibility of extending the two-point compact scheme to solve the
unsteady two-dimensional Burgers’ equation.
Burgers’ equation retains the nonlinear aspects of the governing equations in many practical transport

problemssuchasvorticity transport, hydrodynamic turbulence, shockwave theory,waveprocesses in ther-
moelastic medium, transport and dispersion of pollutants in rivers and sediment transport[7,8,24,28,35].
Burgers’ equations have the same convective and diffusion form as the incompressible Navier–Stokes
equations. The unsteady two-dimensional Burgers’equation in one unknown variable takes the following
form:

��

�t
= L(�),

L(�)= −�
��

�x
− �

��

�y
+ �

�2�
�x2

+ �
�2�
�y2

,

x0�x�xN, y0�y�yN, t >0 (1.1)

with the initial conditions;

�(x, y,0)= �0(x, y) (1.2)

and the Dirichlet boundary conditions;

�(x0, y, t)= �1(y), �(xN, y, t)= �2(y), (1.3)

�(x, y0, t)= �3(x), �(x, yN, t)= �4(x), (1.4)

where� is equal to 1/Re>0, andReis the Reynolds number. For a small value of�, Burgers’ equation
behaves merely as hyperbolic partial differential equation, and the problem becomes very difficult to
solve as a steep shock-like wave fronts developed, as reported in[18].
In the present study, higher-order accurate two-point compact alternating direction implicit algorithm

is introduced to solve the two-dimensional unsteady Burgers’ equation, for flow problems with moderate
to severe internal and boundary gradients. The method is the natural extension of A-stable fourth-order
accurate second-diagonal Pade approximation to solve multi-dimensional flow problems. Comparison
of the present scheme with the fourth-order Du Fort Frankel scheme is made in terms of accuracy and
computational efficiency.

2. The numerical schemes

In this section, the present numerical schemes; namely the fourth-order accurate compact scheme
and the fourth-order Du Fort Frankel scheme, are derived for the two-dimensional unsteady Burgers’
equation (1).
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2.1. Fourth-order accurate two-point compact alternating direction implicit scheme

Liniger et al.[21] have introduced the following linear one-step formula that is containing real free
parameters (a andb). It takes the following form:

[�i+1 − �i] − �x

2
[(1+ a)�xi+1

+ (1− a)�xi ] + �x2

4
[(b + a)�xxi+1

− (b − a)�xxi ] = eT,

(2.1)

eT = �x3

4

∫ 1

0
[2�2 − 2(1− a)� + (b − a)] �3

�x3
�(x + ��x)d�. (2.2)

For the case ofa = 0 andb = 1
3, the formula has a fourth-order accuracy, which is known as the

two-point second-diagonal Pade approximation:

[�i+1 − �i] − �x

2
[�xi+1

+ �xi ] + �x2

12
[�xxi+1

− �xxi ] = eT, (2.3)

eT = �x5

24

∫ 1

0
�2(� − 1)2

�5

�x5
�(x + ��x)d�, (2.4)

where�x , �xx are the first and the second derivatives of the variable�(x). Using the above-mentioned
scheme, Eq. (2.3) and anADI-type time marching procedure for the temporal derivative, the fourth-order
accurate two-point compact alternating direction implicit algorithm for the Burgers’ equation, can be
obtained by first rewriting Eq. (1.1) as follows:

��

�t
= �

�x

[
�

��

�x
− 0.5�2

]
+ �

�y

[
�

��

�y
− 0.5�2

]
. (2.5)

Then, the alternating direction implicit-type time marching procedure requires, in one full time step, the
solution of
x-sweep:

[�t ]n+1/2 = [(��x − 0.5�2)x]n+1/2 + [g]n, (2.6a)

[�x]n+1/2 = [F ]n+1/2. (2.6b)

y-sweep:

[�t ]n+1 = [(��y − 0.5�2)y]n+1 + [f ]n+1/2, (2.7a)

[�y]n+1 = [G]n+1, (2.7b)

wheref , g are the first and the second term on the right-hand side of Eq. (2.5). The solution procedure
consists of solving, first, Eq. (2.6) in the solution vector[�, F ]T at time leveln + 1

2, (x-sweep), then
solving Eq. (2.7) in the solution vector[�,G]T at time leveln+ 1, (y-sweep). Noting that� = 1/�t , and
in order to apply the compact scheme to the solution in thex-sweep, a vector�Q and its derivatives with
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respect tox, for Eq. (2.6), have been defined as follows:
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whereg andgx are approximated by a fourth-order accurate finite differences. Having substituted the
vector �Q and its derivatives into the above two-point second diagonal Pade approximation, Eq. (2.3), by
replacing�i by the vector�Q, we have two nonlinear coupled finite difference equations in the solution
vector[�, F ]T. Newton’smethod is used to linearize the equations, and the numerical solution is obtained
by iteration. The resulting linearized equations form a block tridiagonal matrix system of orderN, as in
the following form:

ai��i−1 + bi��i + ci��i+1 = �ri, i = 1,2, . . . , N, (2.11)

whereai , bi , andci are block matrices of order two,�� = [��, �F ]T is the change in the solution vector,
andr is the right-hand side vector, each of order two. At each iteration, the LU-factorization algorithm is
used to obtain the solution of system (2.11). Similarly, the solution procedure of the Burgers’ equation in
they-sweep, using Eq. (2.7).

2.2. Fourth-order accurate Du Fort Frankel scheme

Let the interval[x0, xN ] be discretized intoNgrid steps of size�x where�x= (xi−xi−1), i is an index
of any grid-point inxdirection. Similarly, the interval[y0, yM ] is discretized intoM grid steps of size�y,
where�y = (yj − yj−1), j is an index of any grid point iny-direction, andn is an index for the temporal
grid point. The explicit form of the Du Fort Frankel scheme for the two-dimensional unsteady Burgers’
equation, Eq. (1.1), using Kreiss fourth-order accurate approximations[23] for the spatial derivatives,
takes the following form:

[
�n+1
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+ O(�t2 + �x4 + �y4), (2.12)
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where

Dx�ij = 1

2�x
(�i+1j − �i−1j ), (2.13)

�2x�ij = 1

�x2
(�i+1j − 2�ij + �i−1j ). (2.14)

Definecnx=�nij �t/�x, cny=�nij �t/�y to be the local courant numbers inxandydirections,dx=� �t/�x2,

anddy = � �t/�y2. The above-finite difference equation is the fourth-order accurate leap-frog scheme
for Eq. (1.1), and in order to obtain the final form of the fourth-order accurate explicit Du Fort Frankel
scheme for the two-dimensional unsteady Burgers’ equation, the center node value(�i) in the diffusion
terms in Eq. (2.12) are replaced by their average value at time levels(n− 1) and(n+ 1). The final form
of the fourth-order accurate explicit Du Fort Frankel scheme for the two-dimensional unsteady Burgers’
equation, Eq. (1.1), becomes

�n+1
ij =A�n−1

ij + B�ni+2j + C�ni+1j +D�ni−1j + E�ni−2j

+ F�nij+2 +G�nij+1 +H�nij−1 + L�nij−2, (2.15)

where

A= (1− 2.5dx − 2.5dy)/Q, B = (cnx − dx)/6Q,
C = (−8cnx + 16dx)/6Q, D = (8cnx + 16dx)/6Q,
E = −(cnx + dx)/6Q, F = (cnx − dy)/6Q,
G= (−8cny + 16dy)/6Q, H = (8cny + 16dy)/6Q,
L= −(cnx + dx)/Q, Q= (1+ 2.5dx + 2.5dy). (2.16)

2.3. Numerical stability limits and convergence

The implicit formulation of the two-point compact scheme to the Burgers’ equations is always un-
conditionally stable. In this case, the accuracy of the numerical solution depends on the size of the
discretizations, and higher accuracy can be obtained by finer discretization. Moreover, the present higher-
order scheme allows us to use large discretization in comparison with the second-order schemes. In
addition, it is well known that, for the convection–diffusion equation, the leap-frog scheme is uncondi-
tionally unstable, while the Du Fort Frankel scheme has a stability limit[27]. Therefore, it is necessary
to use Von Neumann stability analysis to define the stability limit. Let the numerical solution�(x, y, t)
be represented by a finite Fourier series, and for linear stability, the behavior of a single term of the series
can be examined, as follows:

�(i�x, j�y, n�t)=G(t)eI[kxi�x+kyj�y], (2.17)

whereG(t) is the amplitude function at time-leveln of this term whose wave numbers in thex andy
directions arekx andky , and I=

√−1. Defining thex andy phase angles as�x = kx�x and�y = ky�y,
then, Eq. (2.17) becomes

�nij =GneI[i�x+j�y ]. (2.18)
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Fig. 1. The computed amplification factors of the numerical solution of two-dimensional unsteady Burgers’ equation (1), using
the explicit fourth-order Du Fort Frankel scheme for different values of|c| andd.

Substituting Eq. (2.18) into Eq. (2.15), we obtain a quadratic equation for the amplification factor�, as
follows:

	2 − 
	 − A= 0. (2.19)

For the special case ofdx=dy=d andcx=cy=c, the modulus of the amplification factor�, is defined
by the following equation:

�(c, d, �x, �y)=max
(∣∣∣12 [
 +

√

2 + 4A]

∣∣∣ , ∣∣∣12 [
 −
√


2 + 4A]
∣∣∣) , (2.20)

where,
=
(c, d,Q, �), andQare defined byEq. (2.16). Themodulus of the amplification factor has been
computed for different values of|c| anddand plotted, as shown inFig. 1. This shows that the fourth-order
accurateDuFortFrankel scheme isunstable for the range:(0.35� |c|�1.0)e.g.,�(1,0.5, �/2, �/2)=1.77.
For small values of|c| andd (|c|<0.35), the instability only occurs for phase angles close to�. Moreover,
for smaller values ofd (d <0.1), the scheme has a neutral stability e.g.,�(0.25,0.01, �, �)= 1.0.
Concerning the consistency of the present schemes, the finite difference equation using the fourth-

order accurate two-point compact alternating direction implicit algorithm is consistent in the sense that
the local truncation error,eT = O[�x5,�t.�x2,�t.�x] tends to zero as�t and�x tend to zero. For
Du Fort Frankel scheme equation, Eq. (2.15), whose truncation error, eT = O[�t2, (�t/�x)2,�x4], the
consistency condition requires the truncation error tends to zero upon(�t/�x)2 approach zero as�t and
�x approach zero. For this reason, and a much smaller time step than allowed by the above stability
limit is implied. This concludes that each of the finite difference approximations to the two-dimensional
unsteady Burgers’ equation, the fourth-order explicit Du Fort Frankel scheme and the compact scheme,
satisfies the consistency condition. Then, the stability of the scheme will be the necessary and sufficient
conditions for convergence, which is true for linear PDEs. But, for the present nonlinear PDEs (1), the
results of the test cases will verify the convergence, but with higher restricted stability limit.
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3. Numerical experiments

3.1. Problem case-1

In the first problem, the one-dimensional unsteadyBurgers’equationwith imposed initial and boundary
conditions provided by the exact solution[35] has been considered, as follows:

�e(x, t)= 1.0− 0.9

[
r1

r1 + r2 + r3

]
− 0.5

[
r2

r1 + r2 + r3

]
,

Fig. 2. The computed solutions of one-dimensional unsteady Burgers’ equation, for� = 0.001 and at times=0.5 and 1.0, using
compact scheme with two-grid sizesN = 20 and 100, and Du Fort Frankel scheme withN = 200: (a) fourth-order accurate
two-point compact scheme and (b) fourth-order accurate Du Fort Frankel scheme.
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Table 1
Comparisonof execution times for computed solutions of one-dimensional unsteadyBurgers’equation at time=1.0and�=0.001

No. of points Fourth compact scheme Fourth Du Fort Frankel scheme

N = 50 �t = 0.1 �t = 0.00001
Ex. time=1.2 s Ex. time=65 s

N = 100 �t = 0.025 �t = 0.00001
Ex. time=5.0 s Ex. time=130 s

N = 200 �t = 0.0025 �t = 0.00002
Ex. time=60 s Ex. time=130 s

where

r1 = exp[−0.05(x − 0.5+ 4.95t)/�],
r2 = exp[−0.25(x − 0.5+ 0.75t)/�],
r3 = exp[−0.5(x − 0.375)/�]. (3.1)

The computed solutions for the case of� = 0.001 and their comparison with the exact solutions are
shown inFig. 2. It can be seen that the solution contains two shocks, one of which is overtaken by the
other. The fourth-order two-point compact scheme is capable of capturing this fact without any numerical
instability or oscillations, even with a few grid points (20 points), compared with the computed solutions
using the fourth-order accurateDuFort Frankel scheme,which requires 200 grid points to have reasonable
accuracy. Moreover, the computed results of Du Fort Frankel scheme exhibit numerical overshoots at the
shock. This indicates that the fourth-order Du Fort Frankel scheme is unstable at the shocks, and a much
smaller time step and grid step sizes than allowed by the linear stability limit are required. To compare the
computational efficiency of the two schemes, the execution times, using a personal computer, necessary
to obtain stable solutions at time=1.0, � = 0.001, and with comparable accuracy for the present two
schemes are listed inTable 1. The two-point compact scheme computations with�tmax= 0.025 required
about 5 s in comparison with 130 s needed by the fourth-order Du Fort Frankel scheme computations
with �tmax = 0.00001 for the same grid and accuracy. This indicates that the fourth-order two-point
compact scheme is efficient and economical for solving the one-dimensional unsteady Burgers’ equation
with severe gradients.

3.2. Problem case-2

The second test case is the solution of two-dimensional unsteady Burgers’ equation that is dominated
by moderate gradients[22]. Eq. (1.1) with the following Dirichlet boundary conditions is solved by the
present two schemes:

�(0, y, t)= 1/[1+ ey/(2�)], �(1, y, t)= 1/[1+ e(1+y)/(2�)],
�(x,0, t)= 1/[1+ ex/(2�)], �(x,1, t)= 1/[1+ e(1+x)/(2�)]
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Fig. 3. The computed steady state solutions of two-dimensional unsteady Burgers’equation for test case 2, using compact scheme
with �t = 0.05 and their comparison with Du Fort Frankel scheme with�t = 0.001.

and the initial condition

�(x, y,0)= 1/[1+ e(x+y)/2�], 0�x�1, 0�y�1. (3.2)

The computed steady state solutions of Eq. (1.1), with the above initial and boundary conditions have
been obtained using the two higher-order schemes for different grid and time step sizes. Comparison of
the computed steady state solutions is shown inFig. 3, for a grid(10× 10), � = 1.0, and at time=0.25.
Each of the present scheme reaches the same steady state solutionwith comparable accuracy. However the
fourth-order compact solution requires a large time step size(�t=0.05), compared with the fourth-order
Du Fort Frankel scheme that required smaller time step size(�t =0.001). Concerning the computational
efficiency, the two schemes are comparable in this case. The computed steady solutions using compact
scheme at time=0.25, with different grid sizes and their comparison with the exact steady solutions are
presented inFig. 4. It is sufficient to obtain convergent steady solutions with only 5 grid points in each
spatial direction.

3.3. Problem case-3

In this case, the solution of the two-dimensional unsteady Burgers’equation with a steep oblique shock
in the domain:−0.1�x�0.1, and−0.05�y�0.05, is considered. The two-dimensional unsteady Burg-
ers’equation, Eq. (1.1), is solved using the following Dirichlet boundary conditions that are set to form an
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Fig. 4. The computed steady state solutions of two-dimensional unsteady Burgers’equation for test case 2, using compact scheme
with different grid sizes, and their comparison with the exact solutions.

“oblique” shock in the domain[29]:

�(x,−0.05, t)= − tanh

[
x + 0.02

2�

]
, �(x,−0.05, t)= − tanh

[
x − 0.02

2�

]
,

�(−0.1, y, t)= − tanh

[−0.1− 0.4y

2�

]
, �(0.1, y, t)= − tanh

[
0.1+ 0.4y

2�

]
,

− 0.1�x�0.1, −0.05�y�0.05. (3.3)

The computed steady state solutions using the two schemes, with� = 0.002, and on two different grids
(80× 40), (20× 10), are shown inFig. 5. Again, the fourth-order two-point compact scheme is ca-
pable of producing convergent and stable solution with steep oblique shock on relatively coarse grid
(20×10), compared with the fourth-order Du Fort Frankel solution that required finer grid(80×40), and
small time step size to be stable. Furthermore, the computational efficiency of the two schemes has been
tested. The execution times, using a personal computer, necessary to obtain stable steady state solutions
at time=0.1 and� =0.002, with comparable accuracy for the present two schemes, are listed inTable 2.
The compact scheme computations with�tmax= 0.05 required about 16 s, compared with 61 s needed
by the fourth-order Du Fort Frankel scheme with�tmax = 0.00025, for the same grid(80× 40) and
accuracy. This indicates that the fourth-order Du Fort Frankel scheme is about four times less econom-
ical than the fourth-order two-point compact scheme. Moreover, the compact scheme efficiently solves
the same problem with steeper oblique shock cases of� = 0.001–0.0002, without any oscillations; see
Fig. 6. This concludes that the fourth-order two-point compact scheme is stable and efficient for solving
the two-dimensional unsteady Burgers’ equation, especially with severe gradients.



394 S.F. Radwan / Journal of Computational and Applied Mathematics 174 (2005) 383–397

Fig. 5. The computed steady state solutions of two-dimensional unsteady Burgers’ equation for an oblique shock case, with
� = 0.002, for two different grid sizes;(80× 40) & (20× 10), using compact scheme and Du Fort Frankel scheme: (a)
fourth-order accurate two-point compact scheme and (b) fourth-order accurate Du Fort Frankel scheme.

4. Conclusion

In conclusion, the fourth-order two-point compact scheme and the fourth-order accurate Du Fort
Frankel scheme are used to solve the two-dimensional unsteady Burgers’ equation having moderate to
severe internal gradients. The compact scheme is found to be efficient and stable when compared with
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Table 2
Comparisonof execution times for computedsolutionsof two-dimensional unsteadyBurgers’equationat time=0.1and�=0.002,
for the oblique shock problem

Grid points Fourth compact scheme Fourth Du Fort Frankel scheme

20× 10 �t = 0.05 �t = 0.00025
Ex. time=1 s Ex. time=4 s

40× 20 �t = 0.05 �t = 0.00025
Ex. time=4 s Ex. time=15 s

80× 40 �t = 0.05 �t = 0.00025
Ex. time=16 s Ex. time=61 s

Fig. 6. The computed steady state solutions of two-dimensional unsteady Burgers’ equation for an oblique shock case, with
� = 0.0005 and grid size(40× 20), using the fourth-order accurate compact scheme.

the other scheme; it has the following features:

(1) It results in finite difference equations that involve only two-nodal points and, therefore, it is formally
fourth-order accurate on all grid points, even for nonuniform grids.

(2) It has A-stability in the sense of Dahlquist, and accounts for the exponential character of rapidly
varying solutions[6,21].
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(3) It utilizes Newton’s method for linearization with a quadratic convergence.
(4) It requires only the given Dirichlet boundary conditions.
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