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a b s t r a c t

Recently, Kitaev and Remmel posed a conjecture concerning the
generating function for the number of unlabeled (2+2)-free posets
with respect to the number of elements and the number ofminimal
elements. In this paper, we present a combinatorial proof of this
conjecture.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A poset is said to be (2 + 2)-free if it does not contain an induced subposet that is isomorphic to
2 + 2, the union of two disjoint 2-element chains. In a poset, let D(x) be the set of predecessors of an
element x (the strict down-set of x). Formally, D(x) = {y : y < x}. A poset P is (2+ 2)-free if and only
if its sets of predecessors, D(P) = {D(x) : x ∈ P} can be written as

D(P) = {D0,D1, . . . ,Dk}

where ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk; see [1,2]. In such a context, we say that x ∈ P has level i if D(x) = Di.
An element x is said to be aminimal element if x has level 0.

Let pn be the number of unlabeled (2 + 2)-free posets on n elements. EI-Zahar [4] and Khamis [5]
used a recursive description of (2+ 2)-free posets to derive a pair of functional equations that define
the generating function for the number pn. But they did not solve these equations. Recently, using
functional equations and the Kernel method, Bousquet-Mélou et al. [2] showed that the generating
function for the number pn of unlabeled (2 + 2)-free posets on n elements is given by

P(t) =

−
n≥0

pntn =

−
n≥0

n∏
i=1

(1 − (1 − t)i). (1.1)

Note that throughout this paper, the empty product as usual is taken to be 1. In fact, they studied a
more general function of unlabeled (2 + 2)-free posets according to number of elements, number
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of levels and level of minimum maximal elements. Zagier [8] proved that Formula (1.1) is also the
generating function for certain involutions introduced by Stoimenow [7].

Given a sequence of integers x = (x1, x2, . . . , xn), we say that the sequence x has an ascent at
position i if xi < xi+1. The number of ascents of x is denoted by asc(x). A sequence x = (x1, x2, . . . , xn)
is said to be an ascent sequence of length n if it satisfies x1 = 0 and 0 ≤ xi ≤ asc(x1, x2, . . . , xi−1) + 1
for all 2 ≤ i ≤ n. Ascent sequences were introduced by Bousquet-Mélou et al. [2] to unify
three combinatorial structures. Bousquet-Mélou et al. [2] constructed bijections between unlabeled
(2 + 2)-free posets and ascent sequences, between ascent sequences and permutations avoiding
a certain pattern, between unlabeled (2 + 2)-free posets and a class of involutions introduced by
Stoimenow [7].

Recently, Kitaev and Remmel [6] extended the work of Bousquet-Mélou et al. [2]. They found the
generating function for unlabeled (2 + 2)-free posets when four statistics are taken into account,
one of which is the number of minimal elements in a poset. The key strategy used by Bousquet-
Mélou et al. [2] and Kitaev and Remmel [6] is to translate statistics on (2 + 2)-free posets to
statistics on ascent sequences using the bijection between unlabeled (2 + 2)-free posets and ascent
sequences given by Bousquet-Mélou et al. [2]. Let pn,k be the number of (2 + 2)-free posets on n
elements with k minimal elements, with the assumption p0,0 = 1. Under the bijection between
unlabeled (2 + 2)-free posets and ascent sequences, the number of unlabeled (2 + 2)-free posets
on n elements with k minimal elements is equal to that of ascent sequences of length n with k
zeros. Kitaev and Remmel [6] showed that the generating function for the number pn,k is given
by

P(t, z) =

−
n≥0,k≥0

pn,kzktn = 1 +

−
n≥0

zt
(1 − tz)n+1

n∏
i=1

(1 − (1 − t)i),

by counting ascent sequences with respect to the length and the number of zeros. Moreover, they
conjectured that the function P(t, z) can be written in a simpler form.

Conjecture 1.1.

P(t, z) =

−
n≥0,k≥0

pn,kzktn =

−
n≥0

n∏
i=1

(1 − (1 − t)i−1(1 − zt)). (1.2)

The objective of this paper is to give a combinatorial proof of Conjecture 1.1. In order to prove
the conjecture, we need two more combinatorial structures: upper triangular matrices with non-
negative integer entries such that all rows and columns contain at least one non-zero entry, which
was introducedbyDukes andParviainen [3], andupper triangular (0, 1)-matrices inwhich all columns
contain at least one non-zero entry.

Let An be the collection of upper triangular matrices with non-negative integer entries which sum
to n. A (0, 1)-matrix is a matrix in which each entry is either 0 or 1. Let Mn be the set of (0, 1)-
matrices in An in which all columns contain at least one non-zero entry. Denote by In the set of
matrices in An in which all rows and columns contain at least one non-zero entry. Given a matrix
A, denote by Ai,j the entry in row i and column j. Let dim(A) be the number of rows in matrix A. The
sum of all entries in row i is called the row sum of row i, denoted by rsumi(A). The column sum of
column i, denoted by csumi(A), can be defined similarly. A row is said to be zero if its row sum is
zero.

Let A be a matrix in Mn, define mini(A) to be the least value j such that Aj,i is non-zero. A column
i of A is said to be improper if it satisfies one of the following two cases: (1) csumi(A) ≥ 2; (2) for
1 < i ≤ dim(A), we have csumi(A) = 1, rsumi(A) = 0, and mini(A) < mini−1(A). Otherwise, column
i is said to be proper. Matrix A is said to be improper if there is at least one improper column in A;
otherwise, matrix A is said to be proper. Since each column of a proper matrix must contain exactly
one 1, all propermatrices inMn have dimension n. Given an impropermatrix A ∈ Mn, define index(A)
to be the largest value i such that column i is improper. Note that the index(A) of a matrix A defined
here is different from that introduced by Dukes and Parviainen [3]. Denote by PMn the set of proper
matrices in Mn.
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Example 1.2. Consider the following matrix A ∈ M8:

A =


1 0 1 0 0 1
0 1 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1

 .

We have dim(A) = 6,min1(A) = 1,min2(A) = 2,min3(A) = 1,min4(A) = 2,min5(A) = 2,
min6(A) = 1. There are two improper columns, columns 3 and 6. Hence, we have index(A) = 6.

Denote by PMn,k the set of matrices A ∈ PMn with rsum1(A) = k and In,k the set of matrices
A ∈ In with rsum1(A) = k. Dukes and Parviainen [3] constructed a recursive bijection between the
set In and the set of ascent sequences of length n. Under their bijection, they showed that the number
of upper triangular matrices A ∈ In with rsum1(A) = k is equal to the number of ascent sequences of
length n with k zeros, which implies that the cardinality of In,k is also given by pn,k. In this paper, we
will prove Conjecture 1.1 by showing that the generating function for the number of matrices in In,k
is given by the right-hand side of Formula (1.2).

In Section 2, we present a parity reversing and weight preserving involution on the set Mn \PMn.
In Section 3, we prove that the right-hand side of Formula (1.2) is the generating function for the
number of matrices in PMn,k. Moreover, we show that there is a bijection between the set PMn,k
and the set In,k in answer to Conjecture 1.1.

2. A parity reversing and weight preserving involution

In this section, we will construct a parity reversing and weight preserving involution on the set
Mn \ PMn. Before constructing the involution, we need some definitions.

Given a matrix A ∈ Mn, the weight of matrix A is assigned by zrsum1(A). Given a subset S of the set
Mn, the weight of S, denoted by W (S), is the sum of the weights of all matrices in S. We define the
parity of matrix A to be the parity of the number n − dim(A). Denote by EMn (resp. OMn) the set of
matrices in Mn whose parity is even (resp. odd).

Theorem 2.1. There is a parity reversing and weight preserving involution Φ on the set Mn \ PMn.
Furthermore, we have

W (EMn) − W (OMn) = W (PMn).

Proof. Given amatrixA ∈ Mn\PMn, suppose that index(A) = i.Wenowhave two cases. (1)Wehave
csumi(A) ≥ 2. (2) We have 1 < i ≤ dim(A), csumi(A) = 1, rsumi(A) = 0, and mini(A) < mini−1(A).

For Case (1), we obtain a new matrix Φ(A) from matrix A in the following way. In A, replace the
entry in row mini(A) of column iwith zero. Then, insert a new zero row between row i and row i + 1
and insert a new column between column i and i + 1. Let the new column be filled with all zeros
except that the entry in row mini(A) is filled with 1. In this case, we have Φ(A) ∈ Mn \ PMn with
index(Φ(A)) = i + 1, dim(Φ(A)) = dim(A) + 1 and rsum1(Φ(A)) = rsum1(A).

For Case (2), wemay obtain a newmatrixΦ(A) by reversing the construction for Case (1) as follows.
In A, replace the entry in row mini(A) of column i − 1 with 1. Then remove column i and row i. In
this case, we have Φ(A) ∈ Mn \ PMn with index(Φ(A)) = i − 1, dim(Φ(A)) = dim(A) − 1 and
rsum1(Φ(A)) = rsum1(A).

In both cases, the map Φ reverses the parities and preserves the weights of the matrices. Hence,
we obtain the desired parity reversing and weight preserving involution on the set Mn \ PMn. Note
that if amatrix A ∈ Mn is proper, then there is exactly one 1 in each column. Hence for each A ∈ PMn,
the parity of A is even. By applying the involution, we can deduce that

W (EMn) − W (OMn) = W (PMn). �
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Example 2.2. Consider the following two matrices in M7:

A =

1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1

 , B =


1 1 0 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

 .

For matrix A, we have index(A) = 3. Thus we have

Φ(A) =


1 1 0 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

 ,

where the new inserted row and column are illustrated in bold.
For matrix B, we have index(B) = 4. Thus we have

Φ(B) =

1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1

 .

In fact, we have Φ(A) = B and Φ(B) = A.

3. Proof of Conjecture 1.1

In this section, we will show that the right-hand side of Formula (1.2) is the generating function
for the number of matrices in PMn,k. Furthermore, we prove that there is a bijection between the set
PMn,k and the set In,k, which implies Conjecture 1.1.

Let

A(t, z) =

−
n≥0

n∏
i=1

(1 − (1 − t)i−1(1 − zt)).

With the assumption that the empty product is as usual taken to be 1, we have

A(t, z) = 1 +

−
n≥1

n∏
i=1

i−1−
j=1


i − 1
j


+ z


i − 1
j − 1


(−1)j−1t j.

Define An(z) to be the coefficient of tn in A(t, z) for n ≥ 1, that is

A(t, z) = 1 +

−
n≥1

An(z)tn. (3.1)

Thus we have

An(z) =

n−
d=1

−
n1+n2+···+nd=n

(−1)n−d
d∏

j=1


j − 1
nj


+ z


j − 1
nj − 1


,

where the second summation is over all compositions n1 + n2 + · · · + nd = n such that nj ≥ 1 for
j = 1, 2, . . . , d.

Lemma 3.1. For n ≥ 1, we have

An(z) = W (EMn) − W (OMn).

Proof. Let M(n1, n2, . . . , nd) be the set of matrices in Mn with d columns in which the column sum
of column j is equal to nj for all 1 ≤ j ≤ d. In order to get a matrix A ∈ M(n1, n2, . . . , nd), we should
choose nj places in column j to arrange 1’s for all 1 ≤ j ≤ d. We have two cases. (1) If A1,j = 0,
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then we have


j−1
nj


ways to arrange 1’s in column j. (2) If A1,j = 1, then we have


j−1
nj−1


ways to

arrange the remaining 1’s in column j. In the former case, column j contributes 1 to the weight of A.
While in the latter case, column j contributes z to the weight of A. Altogether, column j contributes

j−1
nj


+ z


j−1
nj−1


to the weight of M(n1, n2, . . . , nd), which implies that

W (M(n1, n2, . . . , nd)) =

d∏
j=1


j − 1
nj


+ z


j − 1
nj − 1


.

It is clear that the parity of each matrix in M(n1, n2, . . . , nd) is the parity of the number n − d. When
d ranges from 1 to n and n1, n2, . . . , nd range over all compositions n1 + n2 + · · · + nd = n such that
nj ≥ 1 for all 1 ≤ j ≤ d, we get the desired result. �

Denote by an,k the cardinality of the set PMn,k. Assume that a0,0 = 1.

Theorem 3.2. We have

A(t, z) =

−
n≥0,k≥0

an,kzktn =

−
n≥0

n∏
i=1

(1 − (1 − t)i−1(1 − zt)).

Proof. Combining Theorem 2.1 and Lemma 3.1, we deduce that An(z) = W (PMn) for n ≥ 1. Note
thatW (PMn) =

∑n
k=1 an,kz

k for n ≥ 1. Hence we have

A(t, z) = 1 +

−
n≥1

An(z)tn =

−
n≥0,k≥0

an,kzktn,

which implies the desired result. �

From Theorem 3.2, in order to prove Conjecture 1.1, it suffices to prove that an,k = pn,k. In a
matrix A, the operation of adding column i to column j is defined by increasing Ak,j by Ak,i for each
k = 1, 2, . . . , dim(A). Note that a matrix A ∈ Mn is proper if and only if it satisfies

• each column has exactly one 1;
• if rsumi(A) = 0, then we have mini(A) ≥ mini−1(A) for 2 ≤ i ≤ dim(A).

This observation will be essential in the construction of the bijection between the set PMn,k and the
set In,k.

Theorem 3.3. There is a bijection between the set PMn,k and the set In,k.

Proof. Let A be a matrix in PMn,k, we now construct a matrix A′ in In,k. If there is no zero row in
A, then we do nothing for A and let A′

= A. In this case, the resulting matrix A′ is contained in In,k.
Otherwise, we can construct a new upper triangular matrix A′ by the following removal algorithm.

• Find the least value i such that row i is a zero row. Then we obtain a new upper triangular matrix
by adding column i to column i − 1 and removing column i and row i.

• Repeat the above procedure for the resulting matrix until there is no zero row in the resulting
matrix.

Clearly, the obtained matrix A′ is a matrix in In. Since the algorithm preserves the sums of entries
in each non-zero row of A, we have rsum1(A′) = rsum1(A). Hence, the resulting matrix A′ is in In,k.

Conversely, we can construct a matrix in PMn,k from a matrix in In,k. Let B be a matrix in In,k. If
the sum of entries in each column is equal to 1, then we do nothing for B and let B′

= B. Otherwise,
we can construct a new upper triangular matrix B′ by the following addition algorithm.

• Find the largest value i such that csumi(B) ≥ 2. Then we obtain a new upper triangular matrix by
decreasing the entry in row maxi(B) of column i by 1, where maxi(B) is defined to be the largest
value j such that Bj,i is non-zero. Since B is upper triangular, we have maxi(B) ≤ i.
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• Insert one column between column i and column i + 1 and one zero row between row i and row
i+1 such that the new inserted column is filled with all zeros except that the entry in rowmaxi(B)
is filled with 1.

• Repeat the above procedure for the resulting matrix until there is no column whose column sum
is larger than 1.

Clearly, the obtained matrix B′ is a matrix in Mn. From the construction of the above algorithm we
know that the column sum of each column in B′ is equal to 1. Furthermore, if row j is a zero row,
then wemust have minj(B′) ≥ minj−1(B′). Thus, the resulting matrix B′ is proper. Since the algorithm
preserves the sums of entries in each non-zero row of B, we have rsum1(B′) = rsum1(B). Hence, the
resulting matrix B′ is in PMn,k. This completes the proof. �

Example 3.4. Consider a matrix A ∈ PM6,3. By applying the removal algorithm, we get

A =


1 1 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 ↔


1 1 1 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 ↔

1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 0

 ↔ A′
=

1 1 1
0 1 0
0 0 2


,

where the removed rows and columns are illustrated in bold at each step of the removal algorithm.
Conversely, given A′

∈ I6,3, by applying the addition algorithm, we can get A ∈ PM6,3, where the
inserted new rows and columns are illustrated in bold at each step of the addition algorithm.

Combining Theorems 2.1, 3.2 and 3.3, we obtain a combinatorial proof of Conjecture 1.1. Note that
specializing z = 1 implies a combinatorial proof of Formula (1.1), which was proved by Bousquet-
Mélou et al. [2] by using functional equations and the Kernel method.
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