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1. Introduction

A poset is said to be (2 + 2)-free if it does not contain an induced subposet that is isomorphic to
2 + 2, the union of two disjoint 2-element chains. In a poset, let D(x) be the set of predecessors of an
element x (the strict down-set of x). Formally, D(x) = {y : y < x}. Aposet P is (2 + 2)-free if and only
if its sets of predecessors, D(P) = {D(x) : x € P} can be written as

D(P) = {Dy, D1, ..., Dy}

where @ = Dy C D1 C --- C Dg; see[1,2]. In such a context, we say that x € P has level i if D(x) = D;.
An element x is said to be a minimal element if x has level 0.

Let p,, be the number of unlabeled (2 + 2)-free posets on n elements. EI-Zahar [4] and Khamis [5]
used a recursive description of (2 + 2)-free posets to derive a pair of functional equations that define
the generating function for the number p,. But they did not solve these equations. Recently, using
functional equations and the Kernel method, Bousquet-Mélou et al. [2] showed that the generating
function for the number p,, of unlabeled (2 4 2)-free posets on n elements is given by

P@O) =) put" =) [J1— -0 (1.1)

n>0 n>0 i=1

Note that throughout this paper, the empty product as usual is taken to be 1. In fact, they studied a
more general function of unlabeled (2 + 2)-free posets according to number of elements, number
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of levels and level of minimum maximal elements. Zagier [8] proved that Formula (1.1) is also the
generating function for certain involutions introduced by Stoimenow [7].

Given a sequence of integers x = (X1, X2, ..., X;), We say that the sequence x has an ascent at
position i if x; < x;11. The number of ascents of x is denoted by asc(x). A sequence x = (X1, X2, ..., Xn)
is said to be an ascent sequence of length n if it satisfiesx; = 0and 0 < x; < asc(xy, X2, ..., X;_1) + 1
forall 2 < i < n. Ascent sequences were introduced by Bousquet-Mélou et al. [2] to unify
three combinatorial structures. Bousquet-Mélou et al. [2] constructed bijections between unlabeled
(2 4+ 2)-free posets and ascent sequences, between ascent sequences and permutations avoiding
a certain pattern, between unlabeled (2 + 2)-free posets and a class of involutions introduced by
Stoimenow [7].

Recently, Kitaev and Remmel [6] extended the work of Bousquet-Mélou et al. [2]. They found the
generating function for unlabeled (2 + 2)-free posets when four statistics are taken into account,
one of which is the number of minimal elements in a poset. The key strategy used by Bousquet-
Mélou et al. [2] and Kitaev and Remmel [6] is to translate statistics on (2 + 2)-free posets to
statistics on ascent sequences using the bijection between unlabeled (2 + 2)-free posets and ascent
sequences given by Bousquet-Mélou et al. [2]. Let p, x be the number of (2 4 2)-free posets on n
elements with k minimal elements, with the assumption ppo = 1. Under the bijection between
unlabeled (2 + 2)-free posets and ascent sequences, the number of unlabeled (2 + 2)-free posets
on n elements with k minimal elements is equal to that of ascent sequences of length n with k
zeros. Kitaev and Remmel [6] showed that the generating function for the number p, \ is given
by

n

_ ken zt i

P(t,z) = Z Pniz't —1+ZWU(]—(1—U),
n>0,k>0 n>0 i=1

by counting ascent sequences with respect to the length and the number of zeros. Moreover, they

conjectured that the function P(t, z) can be written in a simpler form.

Conjecture 1.1.

P(t.2)= Y pudt"=) [[a-a-p""a-z). (1.2)

n>0,k>0 n>0 i=1

The objective of this paper is to give a combinatorial proof of Conjecture 1.1. In order to prove
the conjecture, we need two more combinatorial structures: upper triangular matrices with non-
negative integer entries such that all rows and columns contain at least one non-zero entry, which
was introduced by Dukes and Parviainen [3], and upper triangular (0, 1)-matrices in which all columns
contain at least one non-zero entry.

Let +, be the collection of upper triangular matrices with non-negative integer entries which sum
to n. A (0, 1)-matrix is a matrix in which each entry is either 0 or 1. Let M, be the set of (0, 1)-
matrices in 4, in which all columns contain at least one non-zero entry. Denote by {, the set of
matrices in +, in which all rows and columns contain at least one non-zero entry. Given a matrix
A, denote by A; ; the entry in row i and column j. Let dim(A) be the number of rows in matrix A. The
sum of all entries in row i is called the row sum of row i, denoted by rsum;(A). The column sum of
column i, denoted by csum;(A), can be defined similarly. A row is said to be zero if its row sum is
zero.

Let A be a matrix in M, define min;(A) to be the least value j such that A; ; is non-zero. A column
i of A is said to be improper if it satisfies one of the following two cases: (1) csum;(A) > 2; (2) for
1 < i < dim(A), we have csum;(A) = 1, rsum;(A) = 0, and min;(A) < min;_;(A). Otherwise, column
i is said to be proper. Matrix A is said to be improper if there is at least one improper column in A;
otherwise, matrix A is said to be proper. Since each column of a proper matrix must contain exactly
one 1, all proper matrices in .M, have dimension n. Given an improper matrixA € M, define index(A)
to be the largest value i such that column i is improper. Note that the index(A) of a matrix A defined
here is different from that introduced by Dukes and Parviainen [3]. Denote by & .M, the set of proper
matrices in M,.
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Example 1.2. Consider the following matrix A € Mg:

1010 01
010110
4_|0 00000
~lo 000 0 1
000000
00000 1

We have dim(A) = 6, min;(A) = 1, miny(A) = 2, min3(A) = 1, ming(A) = 2, mins(A) = 2,
ming(A) = 1. There are two improper columns, columns 3 and 6. Hence, we have index(A) = 6.

Denote by &M, the set of matrices A € $ M, with rsum;(A) = k and 4, x the set of matrices
A € 4, with rsum;(A) = k. Dukes and Parviainen [3] constructed a recursive bijection between the
set 4, and the set of ascent sequences of length n. Under their bijection, they showed that the number
of upper triangular matrices A € {, with rsum; (A) = k is equal to the number of ascent sequences of
length n with k zeros, which implies that the cardinality of £, x is also given by p, k. In this paper, we
will prove Conjecture 1.1 by showing that the generating function for the number of matrices in {, x
is given by the right-hand side of Formula (1.2).

In Section 2, we present a parity reversing and weight preserving involution on the set M, \ M.
In Section 3, we prove that the right-hand side of Formula (1.2) is the generating function for the
number of matrices in # M, . Moreover, we show that there is a bijection between the set £ M,
and the set {, x in answer to Conjecture 1.1.

2. A parity reversing and weight preserving involution

In this section, we will construct a parity reversing and weight preserving involution on the set
M, \ P M,.Before constructing the involution, we need some definitions.

Given a matrix A € M,, the weight of matrix A is assigned by z"*“™®_ Given a subset S of the set
M, the weight of S, denoted by W (S), is the sum of the weights of all matrices in S. We define the
parity of matrix A to be the parity of the number n — dim(A). Denote by & M, (resp. O M) the set of
matrices in M, whose parity is even (resp. odd).

Theorem 2.1. There is a parity reversing and weight preserving involution @ on the set My \ P My.
Furthermore, we have

W(EM,) —W(OM,) = W(PM,).

Proof. GivenamatrixA € M,\P M, suppose thatindex(A) = i. We now have two cases. (1) We have
csum;(A) > 2.(2) We have 1 < i < dim(A), csum;(A) = 1, rsum;(A) = 0, and min;(A) < min;_q(A).

For Case (1), we obtain a new matrix @ (A) from matrix A in the following way. In A, replace the
entry in row min;(A) of column i with zero. Then, insert a new zero row between row i and row i + 1
and insert a new column between column i and i 4+ 1. Let the new column be filled with all zeros
except that the entry in row min;(A) is filled with 1. In this case, we have ®(A) € M, \ M, with
index(®(A)) =i+ 1, dim(®(A)) = dim(A) + 1 and rsum;(® (A)) = rsum; (A).

For Case (2), we may obtain a new matrix @ (A) by reversing the construction for Case (1) as follows.
In A, replace the entry in row min;(A) of column i — 1 with 1. Then remove column i and row i. In
this case, we have @ (A) € M, \ P M, with index(®(A)) = i — 1,dim(®(A)) = dim(A) — 1 and
rsumq (@ (A)) = rsumq(A).

In both cases, the map & reverses the parities and preserves the weights of the matrices. Hence,
we obtain the desired parity reversing and weight preserving involution on the set M, \ #M,. Note
that if a matrix A € M, is proper, then there is exactly one 1 in each column. Hence for eachA € P M,
the parity of A is even. By applying the involution, we can deduce that

W(EM,) —W(OM,) =W(EPM,). O
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Example 2.2. Consider the following two matrices in M>:

111 0 1 1 0 1 0
011 0 01 1 0 0
A= , B=]|0 0 1 0 O
0 01O
00 0 1 0 0 00O O
0 0 0 0 1
For matrix A, we have index(A) = 3. Thus we have
1 1 0 10
01 1 0O
®A=|(0 0 1 0 Of,
0 0 0 0 O
0 0 0 0 1

where the new inserted row and column are illustrated in bold.
For matrix B, we have index(B) = 4. Thus we have

1110
0110
2B =19 9 1 0
000 1

In fact, we have @ (A) = Band @ (B) = A.
3. Proof of Conjecture 1.1

In this section, we will show that the right-hand side of Formula (1.2) is the generating function
for the number of matrices in # M, . Furthermore, we prove that there is a bijection between the set
P My i and the set 4, i, which implies Conjecture 1.1.

Let

A(t,7) = Z ]_[(1 —(1—=0"'1 = 2zt)).

n>0 i=1

With the assumption that the empty product is as usual taken to be 1, we have

n i—1 : .
At,2) =1 +Z]‘[Z(<';l) +z (J’: ;>>(_1)jltj'

n>1 i=1 j=1
Define A, (z) to be the coefficient of t" in A(t, z) for n > 1, that is
Alt,2) =14 A@t". (3.1)
n>1
Thus we have
n d . .
_ j—1 j—1
A zZ) = _1 n—d 4 k]
@ ; 2 _( ) H(( nj)+ <”j—1>)
=1 ny+ny+---+ng=n j=1
where the second summation is over all compositions ny + n 4 - -+ + ng = n such that n; > 1 for
j=1,2,...,d.
Lemma 3.1. For n > 1, we have
An(z) = W(EM,) — W(OM,).
Proof. Let M(n1, ny, ..., ng) be the set of matrices in M, with d columns in which the column sum

of columnjj is equal to n; for all 1 < j < d. In order to get a matrix A € M(ny, n, ..., ng), we should
choose n; places in column j to arrange 1's for all 1 < j < d. We have two cases. (1) If A;; = 0,
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j—1

n,q) ways to
arrange the remaining 1’s in column j. In the former case, column j contributes 1 to the weight of A.
While in the latter case, column j contributes z to the weight of A. Altogether, column j contributes

(j;jl) +z (;}:11) to the weight of M(nq, ny, ..., ng), which implies that

d . ;
_ j—1 j—1
W(M(m,nz,...,nd))—g(( - >+Z(nj_1)>'

It is clear that the parity of each matrix in M (nq, ny, . .., ng) is the parity of the number n — d. When
d ranges from 1to nand ny, ny, ..., ng range over all compositions n; 4+ n, + - - - + ng = n such that
n; > 1forall 1 <j < d, we get the desired result. O

then we have (j;jl) ways to arrange 1's in column j. (2) If A;; = 1, then we have (

Denote by a, i the cardinality of the set # .M, x. Assume that ag o = 1.

Theorem 3.2. We have

At )= Y audt" :Zﬁa—(l—t)"*la—zt)).

n>0,k>0 n>0 i=1

Proof. Combining Theorem 2.1 and Lemma 3.1, we deduce that A;,(z) = W(£ M) forn > 1. Note
that W(PM,) = Y ;_, anxz" for n > 1. Hence we have

Alt,z) =1+ ZAn(z)t" = Z an 1 2",

n>1 n>0,k>0
which implies the desired result. O

From Theorem 3.2, in order to prove Conjecture 1.1, it suffices to prove that a,x = pnk. Ina
matrix A, the operation of adding column i to column j is defined by increasing Ay ; by Ay ; for each
k=1,2,...,dim(A). Note that a matrix A € M, is proper if and only if it satisfies

e each column has exactly one 1;
e if rsum;(A) = 0, then we have min;(A) > min;_;(A) for 2 < i < dim(A).

This observation will be essential in the construction of the bijection between the set $ M, \ and the
set ln,k“

Theorem 3.3. There is a bijection between the set P M i and the set { .

Proof. Let A be a matrix in $ M, we now construct a matrix A’ in 4, . If there is no zero row in
A, then we do nothing for A and let A” = A. In this case, the resulting matrix A’ is contained in {,, .
Otherwise, we can construct a new upper triangular matrix A’ by the following removal algorithm.

o Find the least value i such that row i is a zero row. Then we obtain a new upper triangular matrix
by adding column i to column i — 1 and removing column i and row i.

e Repeat the above procedure for the resulting matrix until there is no zero row in the resulting
matrix.

Clearly, the obtained matrix A’ is a matrix in {,. Since the algorithm preserves the sums of entries
in each non-zero row of A, we have rsum;(A") = rsum; (A). Hence, the resulting matrix A’ is in £, .

Conversely, we can construct a matrix in M, ; from a matrix in £, k. Let B be a matrix in £, ;. If
the sum of entries in each column is equal to 1, then we do nothing for B and let B = B. Otherwise,
we can construct a new upper triangular matrix B’ by the following addition algorithm.

o Find the largest value i such that csum;(B) > 2. Then we obtain a new upper triangular matrix by
decreasing the entry in row max;(B) of column i by 1, where max;(B) is defined to be the largest
value j such that B; ; is non-zero. Since B is upper triangular, we have max;(B) < i.
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o Insert one column between column i and column i + 1 and one zero row between row i and row
i+ 1 such that the new inserted column is filled with all zeros except that the entry in row max;(B)
is filled with 1.

e Repeat the above procedure for the resulting matrix until there is no column whose column sum
is larger than 1.

Clearly, the obtained matrix B’ is a matrix in .M,. From the construction of the above algorithm we
know that the column sum of each column in B’ is equal to 1. Furthermore, if row j is a zero row,
then we must have min;(B’) > min;_;(B’). Thus, the resulting matrix B’ is proper. Since the algorithm
preserves the sums of entries in each non-zero row of B, we have rsum;(B") = rsum; (B). Hence, the
resulting matrix B’ is in # .M, . This completes the proof. O

Example 3.4. Consider a matrix A € £ Mg 3. By applying the removal algorithm, we get

11 1
sA=|0 1 0],
0 0 2

where the removed rows and columns are illustrated in bold at each step of the removal algorithm.
Conversely, given A’ € g 3, by applying the addition algorithm, we can get A € Mg 3, where the
inserted new rows and columns are illustrated in bold at each step of the addition algorithm.

cooo o~
cooco O~
cocco~o
coocoOo~
co~oo0oOo
co~oo0oOo
¢
cooo~
=Y — =Yg
R -E=R=1
com~moo
ce~oo
¢
—R=R=R
(==
=0~
oe=0oo

Combining Theorems 2.1, 3.2 and 3.3, we obtain a combinatorial proof of Conjecture 1.1. Note that
specializing z = 1 implies a combinatorial proof of Formula (1.1), which was proved by Bousquet-
Meélou et al. [2] by using functional equations and the Kernel method.
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