Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On a conjecture about enumerating (2 + 2)-free posets

Sherry H.F. Yan

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China

ARTICLE INFO

Article history: Received 16 June 2010 Accepted 12 October 2010 Available online 31 October 2010

ABSTRACT

Recently, Kitaev and Remmel posed a conjecture concerning the generating function for the number of unlabeled (2+2)-free posets with respect to the number of elements and the number of minimal elements. In this paper, we present a combinatorial proof of this conjecture.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A poset is said to be (2 + 2)-free if it does not contain an induced subposet that is isomorphic to 2 + 2, the union of two disjoint 2-element chains. In a poset, let D(x) be the set of *predecessors* of an element x (the strict down-set of x). Formally, $D(x) = \{y : y < x\}$. A poset P is (2 + 2)-free if and only if its sets of predecessors, $D(P) = \{D(x) : x \in P\}$ can be written as

$$D(P) = \{D_0, D_1, \ldots, D_k\}$$

where $\emptyset = D_0 \subset D_1 \subset \cdots \subset D_k$; see [1,2]. In such a context, we say that $x \in P$ has *level i* if $D(x) = D_i$. An element *x* is said to be a *minimal* element if *x* has level 0.

Let p_n be the number of unlabeled (2 + 2)-free posets on n elements. EI-Zahar [4] and Khamis [5] used a recursive description of (2 + 2)-free posets to derive a pair of functional equations that define the generating function for the number p_n . But they did not solve these equations. Recently, using functional equations and the Kernel method, Bousquet-Mélou et al. [2] showed that the generating function for the number p_n of unlabeled (2 + 2)-free posets on n elements is given by

$$P(t) = \sum_{n \ge 0} p_n t^n = \sum_{n \ge 0} \prod_{i=1}^n (1 - (1 - t)^i).$$
(1.1)

Note that throughout this paper, the empty product as usual is taken to be 1. In fact, they studied a more general function of unlabeled (2 + 2)-free posets according to number of elements, number

E-mail address: huifangyan@hotmail.com.

0195-6698/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2010.10.010

of levels and level of minimum maximal elements. Zagier [8] proved that Formula (1.1) is also the generating function for certain involutions introduced by Stoimenow [7].

Given a sequence of integers $x = (x_1, x_2, ..., x_n)$, we say that the sequence x has an ascent at position i if $x_i < x_{i+1}$. The number of ascents of x is denoted by $\operatorname{asc}(x)$. A sequence $x = (x_1, x_2, ..., x_n)$ is said to be an *ascent sequence of length* n if it satisfies $x_1 = 0$ and $0 \le x_i \le \operatorname{asc}(x_1, x_2, ..., x_{i-1}) + 1$ for all $2 \le i \le n$. Ascent sequences were introduced by Bousquet-Mélou et al. [2] to unify three combinatorial structures. Bousquet-Mélou et al. [2] constructed bijections between unlabeled (2 + 2)-free posets and ascent sequences, between ascent sequences and permutations avoiding a certain pattern, between unlabeled (2 + 2)-free posets and a class of involutions introduced by Stoimenow [7].

Recently, Kitaev and Remmel [6] extended the work of Bousquet-Mélou et al. [2]. They found the generating function for unlabeled (2 + 2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. The key strategy used by Bousquet-Mélou et al. [2] and Kitaev and Remmel [6] is to translate statistics on (2 + 2)-free posets to statistics on ascent sequences using the bijection between unlabeled (2 + 2)-free posets and ascent sequences given by Bousquet-Mélou et al. [2]. Let $p_{n,k}$ be the number of (2 + 2)-free posets on n elements with k minimal elements, with the assumption $p_{0,0} = 1$. Under the bijection between unlabeled (2 + 2)-free posets and ascent sequences, the number of unlabeled (2 + 2)-free posets on n elements with k minimal elements is equal to that of ascent sequences of length n with k zeros. Kitaev and Remmel [6] showed that the generating function for the number $p_{n,k}$ is given by

$$P(t,z) = \sum_{n \ge 0, k \ge 0} p_{n,k} z^k t^n = 1 + \sum_{n \ge 0} \frac{zt}{(1-tz)^{n+1}} \prod_{i=1}^n (1-(1-t)^i),$$

by counting ascent sequences with respect to the length and the number of zeros. Moreover, they conjectured that the function P(t, z) can be written in a simpler form.

Conjecture 1.1.

$$P(t,z) = \sum_{n \ge 0, k \ge 0} p_{n,k} z^k t^n = \sum_{n \ge 0} \prod_{i=1}^n (1 - (1-t)^{i-1}(1-zt)).$$
(1.2)

The objective of this paper is to give a combinatorial proof of Conjecture 1.1. In order to prove the conjecture, we need two more combinatorial structures: upper triangular matrices with non-negative integer entries such that all rows and columns contain at least one non-zero entry, which was introduced by Dukes and Parviainen [3], and upper triangular (0, 1)-matrices in which all columns contain at least one non-zero entry.

Let \mathcal{A}_n be the collection of upper triangular matrices with non-negative integer entries which sum to *n*. A (0, 1)-*matrix* is a matrix in which each entry is either 0 or 1. Let \mathcal{M}_n be the set of (0, 1)matrices in \mathcal{A}_n in which all columns contain at least one non-zero entry. Denote by \mathcal{I}_n the set of matrices in \mathcal{A}_n in which all rows and columns contain at least one non-zero entry. Given a matrix A, denote by $A_{i,j}$ the entry in row *i* and column *j*. Let dim(A) be the number of rows in matrix A. The sum of all entries in row *i* is called the *row sum* of row *i*, denoted by $rsum_i(A)$. The *column sum* of column *i*, denoted by $csum_i(A)$, can be defined similarly. A row is said to be *zero* if its row sum is zero.

Let *A* be a matrix in \mathcal{M}_n , define $\min_i(A)$ to be the least value *j* such that $A_{j,i}$ is non-zero. A column *i* of *A* is said to be *improper* if it satisfies one of the following two cases: (1) csum_i(A) \geq 2; (2) for $1 < i \leq \dim(A)$, we have csum_i(A) = 1, rsum_i(A) = 0, and $\min_i(A) < \min_{i-1}(A)$. Otherwise, column *i* is said to be *proper*. Matrix *A* is said to be *improper* if there is at least one improper column in *A*; otherwise, matrix *A* is said to be *proper*. Since each column of a proper matrix must contain exactly one 1, all proper matrices in \mathcal{M}_n have dimension *n*. Given an improper matrix $A \in \mathcal{M}_n$, define index(A) to be the largest value *i* such that column *i* is improper. Note that the index(A) of a matrix *A* defined here is different from that introduced by Dukes and Parviainen [3]. Denote by $\mathcal{P}\mathcal{M}_n$ the set of proper matrices in \mathcal{M}_n .

Example 1.2. Consider the following matrix $A \in \mathcal{M}_8$:

	Γ1	0	1	0	0	ר1	
A =	0	1	0	1	1	0	
	0	0	0	0	0	0	
	0	0	0	0	0	1	
	0	0	0	0	0	0	
	Lo	0	0	0	0	1	

We have dim(A) = 6, min₁(A) = 1, min₂(A) = 2, min₃(A) = 1, min₄(A) = 2, min₅(A) = 2, min₆(A) = 1. There are two improper columns, columns 3 and 6. Hence, we have index(A) = 6.

Denote by $\mathcal{PM}_{n,k}$ the set of matrices $A \in \mathcal{PM}_n$ with $\operatorname{rsum}_1(A) = k$ and $\mathfrak{l}_{n,k}$ the set of matrices $A \in \mathfrak{l}_n$ with $\operatorname{rsum}_1(A) = k$. Dukes and Parviainen [3] constructed a recursive bijection between the set \mathfrak{l}_n and the set of ascent sequences of length n. Under their bijection, they showed that the number of upper triangular matrices $A \in \mathfrak{l}_n$ with $\operatorname{rsum}_1(A) = k$ is equal to the number of ascent sequences of length n with k zeros, which implies that the cardinality of $\mathfrak{l}_{n,k}$ is also given by $p_{n,k}$. In this paper, we will prove Conjecture 1.1 by showing that the generating function for the number of matrices in $\mathfrak{l}_{n,k}$ is given by the right-hand side of Formula (1.2).

In Section 2, we present a parity reversing and weight preserving involution on the set $\mathcal{M}_n \setminus \mathcal{PM}_n$. In Section 3, we prove that the right-hand side of Formula (1.2) is the generating function for the number of matrices in $\mathcal{PM}_{n,k}$. Moreover, we show that there is a bijection between the set $\mathcal{PM}_{n,k}$ and the set $\mathcal{I}_{n,k}$ in answer to Conjecture 1.1.

2. A parity reversing and weight preserving involution

In this section, we will construct a parity reversing and weight preserving involution on the set $\mathcal{M}_n \setminus \mathcal{PM}_n$. Before constructing the involution, we need some definitions.

Given a matrix $A \in \mathcal{M}_n$, the weight of matrix A is assigned by $z^{rsum_1(A)}$. Given a subset S of the set \mathcal{M}_n , the weight of S, denoted by W(S), is the sum of the weights of all matrices in S. We define the parity of matrix A to be the parity of the number $n - \dim(A)$. Denote by \mathcal{EM}_n (resp. \mathcal{OM}_n) the set of matrices in \mathcal{M}_n whose parity is even (resp. odd).

Theorem 2.1. There is a parity reversing and weight preserving involution Φ on the set $\mathcal{M}_n \setminus \mathcal{PM}_n$. Furthermore, we have

$$W(\mathcal{E}\mathcal{M}_n) - W(\mathcal{O}\mathcal{M}_n) = W(\mathcal{P}\mathcal{M}_n).$$

Proof. Given a matrix $A \in \mathcal{M}_n \setminus \mathcal{P}\mathcal{M}_n$, suppose that index(A) = i. We now have two cases. (1) We have $csum_i(A) \ge 2$. (2) We have $1 < i \le dim(A)$, $csum_i(A) = 1$, $rsum_i(A) = 0$, and $min_i(A) < min_{i-1}(A)$.

For Case (1), we obtain a new matrix $\Phi(A)$ from matrix A in the following way. In A, replace the entry in row min_i(A) of column i with zero. Then, insert a new zero row between row i and row i + 1 and insert a new column between column i and i + 1. Let the new column be filled with all zeros except that the entry in row min_i(A) is filled with 1. In this case, we have $\Phi(A) \in \mathcal{M}_n \setminus \mathcal{PM}_n$ with index $(\Phi(A)) = i + 1$, dim $(\Phi(A)) = \dim(A) + 1$ and rsum₁ $(\Phi(A)) = \text{rsum}_1(A)$.

For Case (2), we may obtain a new matrix $\Phi(A)$ by reversing the construction for Case (1) as follows. In *A*, replace the entry in row min_i(*A*) of column i - 1 with 1. Then remove column i and row i. In this case, we have $\Phi(A) \in \mathcal{M}_n \setminus \mathcal{PM}_n$ with $\operatorname{index}(\Phi(A)) = i - 1$, $\dim(\Phi(A)) = \dim(A) - 1$ and $\operatorname{rsum}_1(\Phi(A)) = \operatorname{rsum}_1(A)$.

In both cases, the map Φ reverses the parities and preserves the weights of the matrices. Hence, we obtain the desired parity reversing and weight preserving involution on the set $\mathcal{M}_n \setminus \mathcal{PM}_n$. Note that if a matrix $A \in \mathcal{M}_n$ is proper, then there is exactly one 1 in each column. Hence for each $A \in \mathcal{PM}_n$, the parity of A is even. By applying the involution, we can deduce that

$$W(\mathcal{E}\mathcal{M}_n) - W(\mathcal{O}\mathcal{M}_n) = W(\mathcal{P}\mathcal{M}_n). \quad \Box$$

Example 2.2. Consider the following two matrices in M_7 :

For matrix *A*, we have index(A) = 3. Thus we have

$$\Phi(A) = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

where the new inserted row and column are illustrated in bold. For matrix *B*, we have index(B) = 4. Thus we have

$$\Phi(B) = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

In fact, we have $\Phi(A) = B$ and $\Phi(B) = A$.

3. Proof of Conjecture 1.1

In this section, we will show that the right-hand side of Formula (1.2) is the generating function for the number of matrices in $\mathcal{PM}_{n,k}$. Furthermore, we prove that there is a bijection between the set $\mathcal{PM}_{n,k}$ and the set $\mathcal{I}_{n,k}$, which implies Conjecture 1.1.

Let

$$A(t,z) = \sum_{n \ge 0} \prod_{i=1}^{n} (1 - (1 - t)^{i-1} (1 - zt)).$$

With the assumption that the empty product is as usual taken to be 1, we have

$$A(t,z) = 1 + \sum_{n \ge 1} \prod_{i=1}^{n} \sum_{j=1}^{i-1} \left(\binom{i-1}{j} + z \binom{i-1}{j-1} \right) (-1)^{j-1} t^{j}.$$

Define $A_n(z)$ to be the coefficient of t^n in A(t, z) for $n \ge 1$, that is

$$A(t,z) = 1 + \sum_{n \ge 1} A_n(z)t^n.$$
(3.1)

Thus we have

$$A_n(z) = \sum_{d=1}^n \sum_{n_1+n_2+\dots+n_d=n} (-1)^{n-d} \prod_{j=1}^d \left(\binom{j-1}{n_j} + z \binom{j-1}{n_j-1} \right),$$

where the second summation is over all compositions $n_1 + n_2 + \cdots + n_d = n$ such that $n_j \ge 1$ for $j = 1, 2, \ldots, d$.

Lemma 3.1. For $n \ge 1$, we have

$$A_n(z) = W(\mathcal{E}\mathcal{M}_n) - W(\mathcal{O}\mathcal{M}_n).$$

Proof. Let $\mathcal{M}(n_1, n_2, ..., n_d)$ be the set of matrices in \mathcal{M}_n with *d* columns in which the column sum of column *j* is equal to n_j for all $1 \le j \le d$. In order to get a matrix $A \in \mathcal{M}(n_1, n_2, ..., n_d)$, we should choose n_j places in column *j* to arrange 1's for all $1 \le j \le d$. We have two cases. (1) If $A_{1,j} = 0$,

then we have $\binom{j-1}{n_j}$ ways to arrange 1's in column *j*. (2) If $A_{1,j} = 1$, then we have $\binom{j-1}{n_j-1}$ ways to arrange the remaining 1's in column *j*. In the former case, column *j* contributes 1 to the weight of *A*. While in the latter case, column *j* contributes *z* to the weight of *A*. Altogether, column *j* contributes $\binom{j-1}{n_j} + z\binom{j-1}{n_j-1}$ to the weight of $\mathcal{M}(n_1, n_2, \ldots, n_d)$, which implies that

$$W(\mathcal{M}(n_1, n_2, \ldots, n_d)) = \prod_{j=1}^d \left(\binom{j-1}{n_j} + z \binom{j-1}{n_j-1} \right).$$

It is clear that the parity of each matrix in $\mathcal{M}(n_1, n_2, ..., n_d)$ is the parity of the number n - d. When d ranges from 1 to n and $n_1, n_2, ..., n_d$ range over all compositions $n_1 + n_2 + \cdots + n_d = n$ such that $n_j \ge 1$ for all $1 \le j \le d$, we get the desired result. \Box

Denote by $a_{n,k}$ the cardinality of the set $\mathcal{PM}_{n,k}$. Assume that $a_{0,0} = 1$.

Theorem 3.2. We have

$$A(t,z) = \sum_{n \ge 0, k \ge 0} a_{n,k} z^k t^n = \sum_{n \ge 0} \prod_{i=1}^n (1 - (1-t)^{i-1}(1-zt)).$$

Proof. Combining Theorem 2.1 and Lemma 3.1, we deduce that $A_n(z) = W(\mathcal{P}\mathcal{M}_n)$ for $n \ge 1$. Note that $W(\mathcal{P}\mathcal{M}_n) = \sum_{k=1}^n a_{n,k} z^k$ for $n \ge 1$. Hence we have

$$A(t, z) = 1 + \sum_{n \ge 1} A_n(z) t^n = \sum_{n \ge 0, k \ge 0} a_{n,k} z^k t^n,$$

which implies the desired result. \Box

From Theorem 3.2, in order to prove Conjecture 1.1, it suffices to prove that $a_{n,k} = p_{n,k}$. In a matrix A, the operation of adding column i to column j is defined by increasing $A_{k,j}$ by $A_{k,i}$ for each $k = 1, 2, ..., \dim(A)$. Note that a matrix $A \in \mathcal{M}_n$ is proper if and only if it satisfies

- each column has exactly one 1;
- if $\operatorname{rsum}_i(A) = 0$, then we have $\min_i(A) \ge \min_{i=1}(A)$ for $2 \le i \le \dim(A)$.

This observation will be essential in the construction of the bijection between the set $\mathcal{PM}_{n,k}$ and the set $\mathcal{I}_{n,k}$.

Theorem 3.3. There is a bijection between the set $\mathcal{PM}_{n,k}$ and the set $\mathcal{I}_{n,k}$.

Proof. Let *A* be a matrix in $\mathcal{PM}_{n,k}$, we now construct a matrix *A'* in $\mathcal{I}_{n,k}$. If there is no zero row in *A*, then we do nothing for *A* and let A' = A. In this case, the resulting matrix *A'* is contained in $\mathcal{I}_{n,k}$. Otherwise, we can construct a new upper triangular matrix *A'* by the following *removal* algorithm.

- Find the least value *i* such that row *i* is a zero row. Then we obtain a new upper triangular matrix by adding column *i* to column i 1 and removing column *i* and row *i*.
- Repeat the above procedure for the resulting matrix until there is no zero row in the resulting matrix.

Clearly, the obtained matrix A' is a matrix in \mathfrak{l}_n . Since the algorithm preserves the sums of entries in each non-zero row of A, we have $\operatorname{rsum}_1(A') = \operatorname{rsum}_1(A)$. Hence, the resulting matrix A' is in $\mathfrak{l}_{n,k}$.

Conversely, we can construct a matrix in $\mathcal{PM}_{n,k}$ from a matrix in $\mathfrak{I}_{n,k}$. Let *B* be a matrix in $\mathfrak{I}_{n,k}$. If the sum of entries in each column is equal to 1, then we do nothing for *B* and let B' = B. Otherwise, we can construct a new upper triangular matrix *B'* by the following *addition* algorithm.

• Find the largest value *i* such that $csum_i(B) \ge 2$. Then we obtain a new upper triangular matrix by decreasing the entry in row $max_i(B)$ of column *i* by 1, where $max_i(B)$ is defined to be the largest value *j* such that $B_{j,i}$ is non-zero. Since *B* is upper triangular, we have $max_i(B) \le i$.

- Insert one column between column *i* and column i + 1 and one zero row between row *i* and row i + 1 such that the new inserted column is filled with all zeros except that the entry in row max_{*i*}(*B*) is filled with 1.
- Repeat the above procedure for the resulting matrix until there is no column whose column sum is larger than 1.

Clearly, the obtained matrix B' is a matrix in \mathcal{M}_n . From the construction of the above algorithm we know that the column sum of each column in B' is equal to 1. Furthermore, if row j is a zero row, then we must have $\min_j(B') \ge \min_{j-1}(B')$. Thus, the resulting matrix B' is proper. Since the algorithm preserves the sums of entries in each non-zero row of B, we have $\operatorname{rsum}_1(B') = \operatorname{rsum}_1(B)$. Hence, the resulting matrix B' is in $\mathcal{PM}_{n,k}$. This completes the proof. \Box

Example 3.4. Consider a matrix $A \in \mathcal{PM}_{6,3}$. By applying the removal algorithm, we get

<i>A</i> =	-1 0 0 0	1 0 0 0 0	0 1 0 0 0	1 0 0 0 0	0 0 0 1 0	0 0 0 1 0	\leftrightarrow	1 0 0 0	1 1 0 0	1 0 0 0	0 0 1 0 0	0 0 1 0 0	\leftrightarrow	1 0 0 0	1 1 0 0	1 0 1 0	0 0 1 0	$\leftrightarrow A' =$	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	1 1 0	1 0 2
	0	0	Ŏ	0	0	0		[0	0	0	0	0		L	v	v	Ľ				

where the removed rows and columns are illustrated in bold at each step of the removal algorithm. Conversely, given $A' \in \mathcal{I}_{6,3}$, by applying the addition algorithm, we can get $A \in \mathcal{PM}_{6,3}$, where the inserted new rows and columns are illustrated in bold at each step of the addition algorithm.

Combining Theorems 2.1, 3.2 and 3.3, we obtain a combinatorial proof of Conjecture 1.1. Note that specializing z = 1 implies a combinatorial proof of Formula (1.1), which was proved by Bousquet-Mélou et al. [2] by using functional equations and the Kernel method.

Acknowledgements

The author is grateful to the two referees for valuable suggestions on a previous version. This work was supported by the National Natural Science Foundation of China (no. 10901141).

References

- [1] K.P. Bogart, An obvious proof of Fishburn's interval order theorem, Discrete Math. 118 (1993) 239-242.
- [2] M. Bousquet-Mélou, A. Claesson, M. Dukes, S. Kitaev, (2 + 2)-free posets, ascent sequences and pattern avoiding permutations, J. Combin. Theory Ser. A 117 (2010) 884–909.
- [3] M. Dukes, R. Parviainen, Ascent sequences and upper triangular matrices containing non-negative integers, Electron. J. Combin. 17 (2010) R53.
- [4] M.H. El-Zahar, Enumeration of ordered sets, in: I. Rival (Ed.), Algorithms and Order, Kluwer Academic Publishers, Dordrecht, 1989, pp. 327–352.
- [5] S.M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004) 165–175.
- [6] S. Kitaev, J. Remmel, Enumerating (2 + 2)-free posets by the number of minimal elements and other statistics, arxiv:math.CO1004.3220.
- [7] A. Stoimenow, Enumumeration of chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications 7 (1998) 93–114.
- [8] D. Zagier, Vassiliev invariants and a strange identity related to the Dedeking eta-function, Topology 40 (2001) 945–960.