On a conjecture about enumerating $(2+2)$-free posets

Sherry H.F. Yan
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China

A R T I CLE I N F O

Article history:

Received 16 June 2010
Accepted 12 October 2010
Available online 31 October 2010

Abstract

Recently, Kitaev and Remmel posed a conjecture concerning the generating function for the number of unlabeled ($2+2$)-free posets with respect to the number of elements and the number of minimal elements. In this paper, we present a combinatorial proof of this conjecture.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A poset is said to be $(2+2)$-free if it does not contain an induced subposet that is isomorphic to $2+2$, the union of two disjoint 2-element chains. In a poset, let $D(x)$ be the set of predecessors of an element x (the strict down-set of x). Formally, $D(x)=\{y: y<x\}$. A poset P is $(2+2)$-free if and only if its sets of predecessors, $D(P)=\{D(x): x \in P\}$ can be written as

$$
D(P)=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}
$$

where $\emptyset=D_{0} \subset D_{1} \subset \cdots \subset D_{k}$; see [1,2]. In such a context, we say that $x \in P$ has level i if $D(x)=D_{i}$. An element x is said to be a minimal element if x has level 0 .

Let p_{n} be the number of unlabeled $(2+2)$-free posets on n elements. EI-Zahar [4] and Khamis [5] used a recursive description of $(2+2)$-free posets to derive a pair of functional equations that define the generating function for the number p_{n}. But they did not solve these equations. Recently, using functional equations and the Kernel method, Bousquet-Mélou et al. [2] showed that the generating function for the number p_{n} of unlabeled $(2+2)$-free posets on n elements is given by

$$
\begin{equation*}
P(t)=\sum_{n \geq 0} p_{n} t^{n}=\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-(1-t)^{i}\right) . \tag{1.1}
\end{equation*}
$$

Note that throughout this paper, the empty product as usual is taken to be 1 . In fact, they studied a more general function of unlabeled $(2+2)$-free posets according to number of elements, number

[^0]of levels and level of minimum maximal elements. Zagier [8] proved that Formula (1.1) is also the generating function for certain involutions introduced by Stoimenow [7].

Given a sequence of integers $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we say that the sequence x has an ascent at position i if $x_{i}<x_{i+1}$. The number of ascents of x is denoted by asc (x). A sequence $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is said to be an ascent sequence of length n if it satisfies $x_{1}=0$ and $0 \leq x_{i} \leq \operatorname{asc}\left(x_{1}, x_{2}, \ldots, x_{i-1}\right)+1$ for all $2 \leq i \leq n$. Ascent sequences were introduced by Bousquet-Mélou et al. [2] to unify three combinatorial structures. Bousquet-Mélou et al. [2] constructed bijections between unlabeled $(2+2)$-free posets and ascent sequences, between ascent sequences and permutations avoiding a certain pattern, between unlabeled $(2+2)$-free posets and a class of involutions introduced by Stoimenow [7].

Recently, Kitaev and Remmel [6] extended the work of Bousquet-Mélou et al. [2]. They found the generating function for unlabeled $(2+2)$-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. The key strategy used by BousquetMélou et al. [2] and Kitaev and Remmel [6] is to translate statistics on $(2+2)$-free posets to statistics on ascent sequences using the bijection between unlabeled $(2+2)$-free posets and ascent sequences given by Bousquet-Mélou et al. [2]. Let $p_{n, k}$ be the number of $(2+2)$-free posets on n elements with k minimal elements, with the assumption $p_{0,0}=1$. Under the bijection between unlabeled $(2+2)$-free posets and ascent sequences, the number of unlabeled $(2+2)$-free posets on n elements with k minimal elements is equal to that of ascent sequences of length n with k zeros. Kitaev and Remmel [6] showed that the generating function for the number $p_{n, k}$ is given by

$$
P(t, z)=\sum_{n \geq 0, k \geq 0} p_{n, k} z^{k} t^{n}=1+\sum_{n \geq 0} \frac{z t}{(1-t z)^{n+1}} \prod_{i=1}^{n}\left(1-(1-t)^{i}\right),
$$

by counting ascent sequences with respect to the length and the number of zeros. Moreover, they conjectured that the function $P(t, z)$ can be written in a simpler form.

Conjecture 1.1.

$$
\begin{equation*}
P(t, z)=\sum_{n \geq 0, k \geq 0} p_{n, k} z^{k} t^{n}=\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-(1-t)^{i-1}(1-z t)\right) . \tag{1.2}
\end{equation*}
$$

The objective of this paper is to give a combinatorial proof of Conjecture 1.1. In order to prove the conjecture, we need two more combinatorial structures: upper triangular matrices with nonnegative integer entries such that all rows and columns contain at least one non-zero entry, which was introduced by Dukes and Parviainen [3], and upper triangular (0,1)-matrices in which all columns contain at least one non-zero entry.

Let \mathscr{A}_{n} be the collection of upper triangular matrices with non-negative integer entries which sum to n. A (0,1)-matrix is a matrix in which each entry is either 0 or 1 . Let \mathcal{M}_{n} be the set of $(0,1)$ matrices in \mathscr{A}_{n} in which all columns contain at least one non-zero entry. Denote by ℓ_{n} the set of matrices in \mathscr{A}_{n} in which all rows and columns contain at least one non-zero entry. Given a matrix A, denote by $A_{i, j}$ the entry in row i and column j. Let $\operatorname{dim}(A)$ be the number of rows in matrix A. The sum of all entries in row i is called the row sum of row i, denoted by $\operatorname{rsum}_{i}(A)$. The column sum of column i, denoted by $\operatorname{csum}_{i}(A)$, can be defined similarly. A row is said to be zero if its row sum is zero.

Let A be a matrix in \mathcal{M}_{n}, define $\min _{i}(A)$ to be the least value j such that $A_{j, i}$ is non-zero. A column i of A is said to be improper if it satisfies one of the following two cases: (1) $\operatorname{csum}_{i}(A) \geq 2$; (2) for $1<i \leq \operatorname{dim}(A)$, we have $\operatorname{csum}_{i}(A)=1, \operatorname{rsum}_{i}(A)=0$, and $\min _{i}(A)<\min _{i-1}(A)$. Otherwise, column i is said to be proper. Matrix A is said to be improper if there is at least one improper column in A; otherwise, matrix A is said to be proper. Since each column of a proper matrix must contain exactly one 1, all proper matrices in \mathcal{M}_{n} have dimension n. Given an improper matrix $A \in \mathcal{M}_{n}$, define index (A) to be the largest value i such that column i is improper. Note that the index (A) of a matrix A defined here is different from that introduced by Dukes and Parviainen [3]. Denote by $\mathcal{P} \mathcal{M}_{n}$ the set of proper matrices in \mathcal{M}_{n}.

Example 1.2. Consider the following matrix $A \in \mathcal{M}_{8}$:

$$
A=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

We have $\operatorname{dim}(A)=6, \min _{1}(A)=1, \min _{2}(A)=2, \min _{3}(A)=1, \min _{4}(A)=2, \min _{5}(A)=2$, $\min _{6}(A)=1$. There are two improper columns, columns 3 and 6 . Hence, we have index $(A)=6$.

Denote by $\mathcal{P} \mathcal{M}_{n, k}$ the set of matrices $A \in \mathcal{P} \mathcal{M}_{n}$ with $\operatorname{rsum}_{1}(A)=k$ and $\ell_{n, k}$ the set of matrices $A \in \ell_{n}$ with $\operatorname{rsum}_{1}(A)=k$. Dukes and Parviainen [3] constructed a recursive bijection between the set ℓ_{n} and the set of ascent sequences of length n. Under their bijection, they showed that the number of upper triangular matrices $A \in \ell_{n}$ with $\operatorname{rsum}_{1}(A)=k$ is equal to the number of ascent sequences of length n with k zeros, which implies that the cardinality of $\ell_{n, k}$ is also given by $p_{n, k}$. In this paper, we will prove Conjecture 1.1 by showing that the generating function for the number of matrices in $\ell_{n, k}$ is given by the right-hand side of Formula (1.2).

In Section 2, we present a parity reversing and weight preserving involution on the set $\mathcal{M}_{n} \backslash \mathcal{P} \mathcal{M}_{n}$. In Section 3, we prove that the right-hand side of Formula (1.2) is the generating function for the number of matrices in $\mathcal{P} \mathcal{M}_{n, k}$. Moreover, we show that there is a bijection between the set $\mathcal{P} \mathcal{M}_{n, k}$ and the set $\ell_{n, k}$ in answer to Conjecture 1.1.

2. A parity reversing and weight preserving involution

In this section, we will construct a parity reversing and weight preserving involution on the set $\mathcal{M}_{n} \backslash \mathcal{P} \mathcal{M}_{n}$. Before constructing the involution, we need some definitions.

Given a matrix $A \in \mathcal{M}_{n}$, the weight of matrix A is assigned by $z^{\text {rsum }_{1}(A)}$. Given a subset S of the set \mathcal{M}_{n}, the weight of S, denoted by $W(S)$, is the sum of the weights of all matrices in S. We define the parity of matrix A to be the parity of the number $n-\operatorname{dim}(A)$. Denote by $\mathcal{E} \mathcal{M}_{n}$ (resp. $\mathcal{O} \mathcal{M}_{n}$) the set of matrices in \mathcal{M}_{n} whose parity is even (resp. odd).

Theorem 2.1. There is a parity reversing and weight preserving involution Φ on the set $\mathcal{M}_{n} \backslash \mathcal{P} \mathcal{M}_{n}$. Furthermore, we have

$$
W\left(\mathcal{E} \mathcal{M}_{n}\right)-W\left(\mathcal{O} \mathcal{M}_{n}\right)=W\left(\mathcal{P} \mathcal{M}_{n}\right) .
$$

Proof. Given a matrix $A \in \mathcal{M}_{n} \backslash \mathcal{P} \mathcal{M}_{n}$, suppose that index $(A)=i$. We now have two cases. (1) We have $\operatorname{csum}_{i}(A) \geq 2$. (2) We have $1<i \leq \operatorname{dim}(A), \operatorname{csum}_{i}(A)=1, \operatorname{rsum}_{i}(A)=0$, and $\min _{i}(A)<\min _{i-1}(A)$.

For Case (1), we obtain a new matrix $\Phi(A)$ from matrix A in the following way. In A, replace the entry in row $\min _{i}(A)$ of column i with zero. Then, insert a new zero row between row i and row $i+1$ and insert a new column between column i and $i+1$. Let the new column be filled with all zeros except that the entry in row $\min _{i}(A)$ is filled with 1 . In this case, we have $\Phi(A) \in \mathcal{M}_{n} \backslash \mathcal{P} \mathcal{M}_{n}$ with $\operatorname{index}(\Phi(A))=i+1, \operatorname{dim}(\Phi(A))=\operatorname{dim}(A)+1$ and $\operatorname{rsum}_{1}(\Phi(A))=\operatorname{rsum}_{1}(A)$.

For Case (2), we may obtain a new matrix $\Phi(A)$ by reversing the construction for Case (1) as follows. In A, replace the entry in row $\min _{i}(A)$ of column $i-1$ with 1 . Then remove column i and row i. In this case, we have $\Phi(A) \in \mathcal{M}_{n} \backslash \mathcal{P} \mathcal{M}_{n}$ with index $(\Phi(A))=i-1, \operatorname{dim}(\Phi(A))=\operatorname{dim}(A)-1$ and $\operatorname{rsum}_{1}(\Phi(A))=\operatorname{rsum}_{1}(A)$.

In both cases, the map Φ reverses the parities and preserves the weights of the matrices. Hence, we obtain the desired parity reversing and weight preserving involution on the set $\mathcal{M}_{n} \backslash \mathcal{P} \mathcal{M}_{n}$. Note that if a matrix $A \in \mathcal{M}_{n}$ is proper, then there is exactly one 1 in each column. Hence for each $A \in \mathcal{P} \mathcal{M}_{n}$, the parity of A is even. By applying the involution, we can deduce that

$$
W\left(\mathcal{E} \mathcal{M}_{n}\right)-W\left(\mathcal{O} \mathcal{M}_{n}\right)=W\left(\mathcal{P} \mathcal{M}_{n}\right) .
$$

Example 2.2. Consider the following two matrices in \mathcal{M}_{7} :

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

For matrix A, we have index $(A)=3$. Thus we have

$$
\Phi(A)=\left[\begin{array}{lllll}
1 & 1 & 0 & \mathbf{1} & 0 \\
0 & 1 & 1 & \mathbf{0} & 0 \\
0 & 0 & 1 & \mathbf{0} & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & 0 & \mathbf{0} & 1
\end{array}\right]
$$

where the new inserted row and column are illustrated in bold.
For matrix B, we have index $(B)=4$. Thus we have

$$
\Phi(B)=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

In fact, we have $\Phi(A)=B$ and $\Phi(B)=A$.

3. Proof of Conjecture 1.1

In this section, we will show that the right-hand side of Formula (1.2) is the generating function for the number of matrices in $\mathcal{P} \mathcal{M}_{n, k}$. Furthermore, we prove that there is a bijection between the set $\mathcal{P} \mathcal{M}_{n, k}$ and the set $\ell_{n, k}$, which implies Conjecture 1.1.

Let

$$
A(t, z)=\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-(1-t)^{i-1}(1-z t)\right) .
$$

With the assumption that the empty product is as usual taken to be 1 , we have

$$
A(t, z)=1+\sum_{n \geq 1} \prod_{i=1}^{n} \sum_{j=1}^{i-1}\left(\binom{i-1}{j}+z\binom{i-1}{j-1}\right)(-1)^{j-1} t^{j} .
$$

Define $A_{n}(z)$ to be the coefficient of t^{n} in $A(t, z)$ for $n \geq 1$, that is

$$
\begin{equation*}
A(t, z)=1+\sum_{n \geq 1} A_{n}(z) t^{n} \tag{3.1}
\end{equation*}
$$

Thus we have

$$
A_{n}(z)=\sum_{d=1}^{n} \sum_{n_{1}+n_{2}+\cdots+n_{d}=n}(-1)^{n-d} \prod_{j=1}^{d}\left(\binom{j-1}{n_{j}}+z\binom{j-1}{n_{j}-1}\right),
$$

where the second summation is over all compositions $n_{1}+n_{2}+\cdots+n_{d}=n$ such that $n_{j} \geq 1$ for $j=1,2, \ldots, d$.

Lemma 3.1. For $n \geq 1$, we have

$$
A_{n}(z)=W\left(\mathcal{E} \mathcal{M}_{n}\right)-W\left(\mathcal{O} \mathcal{M}_{n}\right) .
$$

Proof. Let $\mathcal{M}\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ be the set of matrices in \mathcal{M}_{n} with d columns in which the column sum of column j is equal to n_{j} for all $1 \leq j \leq d$. In order to get a matrix $A \in \mathcal{M}\left(n_{1}, n_{2}, \ldots, n_{d}\right)$, we should choose n_{j} places in column j to arrange 1 's for all $1 \leq j \leq d$. We have two cases. (1) If $A_{1, j}=0$,
then we have $\binom{j-1}{n_{j}}$ ways to arrange 1 's in column j. (2) If $A_{1, j}=1$, then we have $\binom{j-1}{n_{j}-1}$ ways to arrange the remaining 1 's in column j. In the former case, column j contributes 1 to the weight of A. While in the latter case, column j contributes z to the weight of A. Altogether, column j contributes $\binom{j-1}{n_{j}}+z\binom{j-1}{n_{j}-1}$ to the weight of $\mathcal{M}\left(n_{1}, n_{2}, \ldots, n_{d}\right)$, which implies that

$$
W\left(\mathcal{M}\left(n_{1}, n_{2}, \ldots, n_{d}\right)\right)=\prod_{j=1}^{d}\left(\binom{j-1}{n_{j}}+z\binom{j-1}{n_{j}-1}\right) .
$$

It is clear that the parity of each matrix in $\mathcal{M}\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ is the parity of the number $n-d$. When d ranges from 1 to n and $n_{1}, n_{2}, \ldots, n_{d}$ range over all compositions $n_{1}+n_{2}+\cdots+n_{d}=n$ such that $n_{j} \geq 1$ for all $1 \leq j \leq d$, we get the desired result.

Denote by $a_{n, k}$ the cardinality of the set $\mathcal{P} \mathcal{M}_{n, k}$. Assume that $a_{0,0}=1$.
Theorem 3.2. We have

$$
A(t, z)=\sum_{n \geq 0, k \geq 0} a_{n, k} z^{k} t^{n}=\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-(1-t)^{i-1}(1-z t)\right) .
$$

Proof. Combining Theorem 2.1 and Lemma 3.1, we deduce that $A_{n}(z)=W\left(\mathcal{P} \mathcal{M}_{n}\right)$ for $n \geq 1$. Note that $W\left(\mathcal{P} \mathcal{M}_{n}\right)=\sum_{k=1}^{n} a_{n, k} z^{k}$ for $n \geq 1$. Hence we have

$$
A(t, z)=1+\sum_{n \geq 1} A_{n}(z) t^{n}=\sum_{n \geq 0, k \geq 0} a_{n, k} z^{k} t^{n},
$$

which implies the desired result.
From Theorem 3.2, in order to prove Conjecture 1.1, it suffices to prove that $a_{n, k}=p_{n, k}$. In a matrix A, the operation of adding column i to column j is defined by increasing $A_{k, j}$ by $A_{k, i}$ for each $k=1,2, \ldots, \operatorname{dim}(A)$. Note that a matrix $A \in \mathcal{M}_{n}$ is proper if and only if it satisfies

- each column has exactly one 1 ;
- if $\operatorname{rsum}_{i}(A)=0$, then we have $\min _{i}(A) \geq \min _{i-1}(A)$ for $2 \leq i \leq \operatorname{dim}(A)$.

This observation will be essential in the construction of the bijection between the set $\mathcal{P} \mathcal{M}_{n, k}$ and the set $\ell_{n, k}$.

Theorem 3.3. There is a bijection between the set $\mathcal{P} \mathcal{M}_{n, k}$ and the set $\ell_{n, k}$.
Proof. Let A be a matrix in $\mathcal{P} \mathcal{M}_{n, k}$, we now construct a matrix A^{\prime} in $\ell_{n, k}$. If there is no zero row in A, then we do nothing for A and let $A^{\prime}=A$. In this case, the resulting matrix A^{\prime} is contained in $\ell_{n, k}$. Otherwise, we can construct a new upper triangular matrix A^{\prime} by the following removal algorithm.

- Find the least value i such that row i is a zero row. Then we obtain a new upper triangular matrix by adding column i to column $i-1$ and removing column i and row i.
- Repeat the above procedure for the resulting matrix until there is no zero row in the resulting matrix.

Clearly, the obtained matrix A^{\prime} is a matrix in ℓ_{n}. Since the algorithm preserves the sums of entries in each non-zero row of A, we have $\operatorname{rsum}_{1}\left(A^{\prime}\right)=\operatorname{rsum}_{1}(A)$. Hence, the resulting matrix A^{\prime} is in $\ell_{n, k}$.

Conversely, we can construct a matrix in $\mathcal{P} \mathcal{M}_{n, k}$ from a matrix in $\ell_{n, k}$. Let B be a matrix in $\ell_{n, k}$. If the sum of entries in each column is equal to 1 , then we do nothing for B and let $B^{\prime}=B$. Otherwise, we can construct a new upper triangular matrix B^{\prime} by the following addition algorithm.

- Find the largest value i such that $\operatorname{csum}_{i}(B) \geq 2$. Then we obtain a new upper triangular matrix by decreasing the entry in row $\max _{i}(B)$ of column i by 1 , where $\max _{i}(B)$ is defined to be the largest value j such that $B_{j, i}$ is non-zero. Since B is upper triangular, we have $\max _{i}(B) \leq i$.
- Insert one column between column i and column $i+1$ and one zero row between row i and row $i+1$ such that the new inserted column is filled with all zeros except that the entry in row $\max _{i}(B)$ is filled with 1.
- Repeat the above procedure for the resulting matrix until there is no column whose column sum is larger than 1.
Clearly, the obtained matrix B^{\prime} is a matrix in \mathcal{M}_{n}. From the construction of the above algorithm we know that the column sum of each column in B^{\prime} is equal to 1 . Furthermore, if row j is a zero row, then we must have $\min _{j}\left(B^{\prime}\right) \geq \min _{j-1}\left(B^{\prime}\right)$. Thus, the resulting matrix B^{\prime} is proper. Since the algorithm preserves the sums of entries in each non-zero row of B, we have $\operatorname{rsum}_{1}\left(B^{\prime}\right)=\operatorname{rsum}_{1}(B)$. Hence, the resulting matrix B^{\prime} is in $\mathcal{P} \mathcal{M}_{n, k}$. This completes the proof.

Example 3.4. Consider a matrix $A \in \mathcal{P} \mathcal{M}_{6,3}$. By applying the removal algorithm, we get

$$
A=\left[\begin{array}{llllll}
1 & 1 & \mathbf{0} & 1 & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & \mathbf{0} & 0 & 1 & 1 \\
0 & 0 & \mathbf{0} & 0 & 0 & 0 \\
0 & 0 & \mathbf{0} & 0 & 0 & 0
\end{array}\right] \leftrightarrow\left[\begin{array}{lllll}
1 & 1 & 1 & \mathbf{0} & 0 \\
0 & 1 & 0 & \mathbf{0} & 0 \\
0 & 0 & 0 & \mathbf{1} & 1 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & 0 & \mathbf{0} & 0
\end{array}\right] \leftrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & \mathbf{0} \\
0 & 1 & 0 & \mathbf{0} \\
0 & 0 & 1 & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \leftrightarrow A^{\prime}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right],
$$

where the removed rows and columns are illustrated in bold at each step of the removal algorithm. Conversely, given $A^{\prime} \in \ell_{6,3}$, by applying the addition algorithm, we can get $A \in \mathcal{P} \mathcal{M}_{6,3}$, where the inserted new rows and columns are illustrated in bold at each step of the addition algorithm.

Combining Theorems 2.1, 3.2 and 3.3, we obtain a combinatorial proof of Conjecture 1.1. Note that specializing $z=1$ implies a combinatorial proof of Formula (1.1), which was proved by BousquetMélou et al. [2] by using functional equations and the Kernel method.

Acknowledgements

The author is grateful to the two referees for valuable suggestions on a previous version. This work was supported by the National Natural Science Foundation of China (no. 10901141).

References

[1] K.P. Bogart, An obvious proof of Fishburn's interval order theorem, Discrete Math. 118 (1993) 239-242.
[2] M. Bousquet-Mélou, A. Claesson, M. Dukes, S. Kitaev, $(2+2)$-free posets, ascent sequences and pattern avoiding permutations, J. Combin. Theory Ser. A 117 (2010) 884-909.
[3] M. Dukes, R. Parviainen, Ascent sequences and upper triangular matrices containing non-negative integers, Electron. J. Combin. 17 (2010) R53.
[4] M.H. El-Zahar, Enumeration of ordered sets, in: I. Rival (Ed.), Algorithms and Order, Kluwer Academic Publishers, Dordrecht, 1989, pp. 327-352.
[5] S.M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004) 165-175.
[6] S. Kitaev, J. Remmel, Enumerating $(2+2)$-free posets by the number of minimal elements and other statistics, arxiv:math.CO1004.3220.
[7] A. Stoimenow, Enumumeration of chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications 7 (1998) 93-114.
[8] D. Zagier, Vassiliev invariants and a strange identity related to the Dedeking eta-function, Topology 40 (2001) $945-960$.

[^0]: E-mail address: huifangyan@hotmail.com.
 0195-6698/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.ejc.2010.10.010

