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Over the past three decades, age-adjusted rates of cardiovascular morbidity and mortality have fallen in
the United States, but the prevalence of obesity and associated metabolic disorders has risen
dramatically. Recent studies have begun to unravel the complex linkages between adipose and vascular
tissues that may accelerate the development of atherosclerosis in the context of obesity. Experimental
models indicate that inflammation and oxidative stress, which mutually amplify each other within the
vasculature and in visceral fat, are key processes that drive the initiation, progression, and subsequent
rupture of the atherosclerotic lesion. Emerging research is further elucidating the contributions made
by chemokines and their receptors, adipokines, and miRNAs to arterial disease. Translation of these
basic science findings to clinical applications represents a tantalizing possibility for reducing the global
burden of obesity-associated atherosclerosis and other cardiovascular diseases. (Am J Pathol 2013,
182: 1474e1481; http://dx.doi.org/10.1016/j.ajpath.2013.01.010)
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A growing body of basic and clinical evidence indicates that
vascular inflammation plays a mediating role at all stages
in the genesis of arterial disease. Experimental studies
in animals have helped elucidate the pathophysiological
inflammatory processes underlying atherosclerotic plaque
development and thrombosis. In addition, the clinical vali-
dation of the acute-phase reactant C-reactive protein (CRP) as
a biomarker associated with increased cardiovascular risk has
lent further strength to the inflammatory hypothesis.1,2

Inflammation can be a manifestation of increased oxidative
stress, and animal studies have also provided compelling
evidence to support the role of oxidative stress in athero-
sclerosis, particularly through oxidative modification of low-
density lipoprotein (LDL).3 Nonetheless, application of the
oxidative stress model to humans remains less straightfor-
ward, given the failure of several large-scale clinical trials
with antioxidants.4 Oxidative stress does, however, remain
an important pathogenic link between inflammation and
atherosclerosis, particularly in the setting of obesity and
associated metabolic disorders. Recent data indicate that
obesity generates chronic low-grade inflammation and in-
creased conditions of oxidative stress, both of which cause
vascular perturbations that can accelerate the pace of ath-
erosclerosis. In this Mini-Review, we provide an overview of
stigative Pathology.

.

the mechanisms linking inflammation and oxidative stress in
vascular and adipose tissues to an increase in the risk for
arterial disease (Figure 1). We also highlight new classes of
molecules that are implicated in the inflammatory and
oxidative stress responses in atherosclerosis and obesity that
may participate in the communication between visceral fat
and the arterial wall.

Progression of Atherosclerotic Vascular Disease

Within the arterial wall, inflammation and oxidative stress
play interconnected and mutually reinforcing roles to acc-
elerate atheroma formation. Oxidative modification of LDL
particles is hypothesized to be an essential early step in the
atherosclerotic process that occurs in a proinflammatory,
pro-oxidant vascular milieu.3 Circulating LDL particles are
retained within the subendothelial extracellular matrix by
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Figure 1 Mechanisms of disease in atherosclerosis and obesity. Pathophysiological processes within the vessel wall lead to the development of
atherosclerosis and may be augmented by obesity-associated effects in adipose tissue. Atherosclerosis begins with the retention and oxidative modification of
LDL, incorporation of oxidized LDL into burgeoning foam cells, triggering of a proinflammatory cascade, and subsequent proliferation of smooth muscle cells as
the plaque progresses. Dendritic cells and T cells are drawn into the lumen by adhesion molecules and are incorporated into the atheroma. In obesity,
macrophages are recruited and infiltrate adipose tissue, which can result in the release of adipokines and generation of a proinflammatory state. Under these
conditions, lipolysis can lead to increased release of nonesterified fatty acids and possibly also to insulin resistance. The resulting increase in oxidative stress,
combined with the action of adipokines, exacerbates the vascular pro-oxidant and proinflammatory environment, worsens endothelial dysfunction and smooth
muscle cell proliferation, and accelerates the atherosclerotic process.

Inflammation and Oxidative Stress
proteoglycans and then undergo oxidative or other chemical
modifications that render them susceptible to engulfment by
macrophage scavenger receptors.5 The formation of oxidized
LDL and of oxidized LDL components, such as oxidized
phospholipids (OxPL), derails normal endothelial func-
tioning. This can lead to the production of adhesionmolecules
on the vascular surface, including E- and P-selectin, intra-
cellular adhesion molecule 1 (ICAM-1), and vascular cell
adhesion molecule 1 (VCAM-1).6 Furthermore, chemokines
draw leukocytes, dendritic cells, and T cells from the arterial
lumen into the intima, where they are later incorporated into
the burgeoning atheroma. Leukocyte activation generates
the enzyme and emerging biomarker myeloperoxidase which
catalyzes a variety of reactive oxygen species (ROS) that may
contribute to tissue damage, lipid peroxidation, and the in-
flammatory cycle.7

Oxidized phospholipids are novel biomarkers that exert
mixed effects on atherosclerosis, including promotion of
monocyte adhesion to endothelial cells; increased production
of chemokines, proinflammatory cytokines, and growth
factors; suppression of inflammation in leukocytes; and
stimulation of smooth muscle cell proliferation.8 The amount
The American Journal of Pathology - ajp.amjpathol.org
of OxPL present on apolipoprotein B-100 (OxPL/ApoB)
correlates strongly with plasma levels of lipoprotein(a),
which is a major carrier of OxPL in plasma.9 Paradoxically,
increases in OxPL/ApoB have been observed shortly after
initiation of statin therapy, which may be due to efflux
of OxPL from sites of arterial injury.10 Phospholipase A2

enzymes, including secretory PLA2 (sPLA2) and lipoprotein-
associated phospholipase A2 (Lp-PLA2), degrade OxPL to
produce proinflammatory and proatherogenic lipid media-
tors.11 Levels of sPLA2 and Lp-PLA2 mass and activity are
associated with increased cardiovascular risk and have been
shown to decrease after treatment with statin therapy.11

Inhibition of phospholipase A2 enzymes is an experimental,
anti-inflammatory approach to the treatment of atheroscle-
rotic disease.

In the atheroma, oxidized LDL and its components acti-
vate the innate immune system by ligating Toll-like recep-
tors. These interactions spark an intracellular signaling
cascade leading to increased expression of a range of pro-
inflammatory molecules, including cytokines, chemokines,
eicosanoids, proteases, ROS, reactive nitrogen species, and
costimulatory molecules.6 Intracellular pattern-recognition
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receptors form into inflammasomes, which are large multi-
protein complexes that are activated by the uptake of oxidized
LDL through scavenger receptors to secrete IL-1b and IL-18.6

T-cell subtypes secrete cytokines with differential and some-
times overlapping effects: Th1 cells release proinflammatory
cytokines such as interferon g (IFN-g); Th2 cells express
cytokines, such as IL-4, that have an uncertain effect on
inflammation and atherosclerosis; and regulatory T cells
produce anti-inflammatory cytokines such as IL-10 and
transforming growth factor b1 (TGF-b1).1,12 Endothelial cells
engulf oxidized LDLvia the lectin-like oxidized LDL receptor
1 (LOX-1), which renders the cells functionally deficient.13

The overall proinflammatory, pro-oxidant atmosphere disrupts
vascular function, primarily by decreasing the bioavailability of
the vasodilator nitric oxide (NO) and perpetuating conditions of
oxidative stress through excess generation of ROS and reactive
nitrogen species.14 We and others believe that the effects of
established cardiovascular risk factors, including smoking,
dyslipidemia, hypertension, and diabetes, may additionally
contribute to endothelial dysfunction, in part by unsettling the
oxidative balance.15

Within the intimal space, ingestion of oxidized LDL by
macrophages results in the formation of foam cells, the
primary component of the fatty streak. Activated macro-
phages produce ROS and proinflammatory mediators such
as IL-1b and tumor necrosis factor (TNF), further accelerating
the cycle of oxidative stress and inflammation.1 In response to
chemoattractants, smooth muscle cells move into the intima
and proliferate, generating matrix metalloproteinases that can
digest extracellular elastin and collagen. Smooth muscle cells
then encase foam cells with a fibrous cap, and foam cell
apoptosis gives rise to a lipid-rich necrotic core. Proin-
flammatory mediators weaken the thin fibrous cap of
the mature plaque, setting the stage for rupture and subse-
quent thrombosis.

Vascular conditions of oxidative imbalance promote
atherothrombotic disease through other mechanisms besides
oxidation of LDL: by modifying high-density lipoprotein
(HDL) components to form a dysfunctional, proinfla-
mmatory, and pro-oxidant particle; by stimulating platelet
activation; by promoting coagulation through decreased
fibrinolysis and increased expression of tissue factor; and by
altering local hemodynamic forces to disturb blood flow.13

Inflammation and oxidative stress thus play multiple inte-
gral roles in the initiation, progression, and rupture of the
atherosclerotic lesion.
Oxidative Stress and Inflammation in Obesity

Within vascular cells, circulating inflammatory cells and plate-
lets, superoxide may be generated enzymatically by NADPH
oxidase, myeloperoxidase, xanthine oxidase, lipoxygenases,
and nitric oxide synthases, as well as by a byproduct of mit-
ochondrial respiration.13 Subsequent reactions involving
superoxide, NO, and other free radicals can lead to ROS
1476
formation, the effects of which may be mitigated by vascular
antioxidant enzymes including superoxide dismutases, catalase,
glutathione peroxidases, glutathione S-transferases, heme oxy-
genase, and glucose-6-phosphate dehydrogenase.13 Under co-
nditions of oxidative imbalance, ROS generation stimulates
atherogenesis (as described above). In the context of obesity
and associated metabolic disturbances, the pro-oxidant shift
may be even more extreme, because of overfeeding, adiposity,
insulin resistance, and hyperglycemia.
A growing body of evidence indicates that obesity is

accompanied by a state of chronic, low-grade, systemic
inflammation that increases risk for cardiovascular disease by
exacerbating the vascular inflammatory response. Circulating
levels of inflammatory markers released by the liver,
including CRP and serum amyloid A, are elevated in obesity
and have been associated with increased cardiovascular
risk.16 Many of the pathways that lead to the production of
such inflammatory mediators may be initially induced by
oxidative stress. Excessive caloric intake, even before weight
gain, is hypothesized to be a primary trigger of systemic
inflammation and insulin resistance.17 Studies suggest that
a high metabolic load of carbohydrates and/or fats from as
little as one meal can overload cells and causes excessive
mitochondrial oxidation, resulting in increased production of
ROS and other markers of oxidative stress.17e19 The super-
oxide radical generated with overfeeding activates at least
two major proinflammatory transcription factors, nuclear
factor kB (NF-kB) and activator protein 1 (AP-1), and it can
also induce endothelial dysfunction by decreasing NO
bioavailability.17 Reduced macronutrient intake in obese
individuals is associated with decreased levels of oxidative
stress and inflammatory mediators, as are food combinations
incorporating sufficient fiber, fruit, and vegetables. We in-
terpret these findings to indicate that the rapid evolution of
the Western diet over the past 200 years, combined with
increasingly sedentary lifestyles, a rise in cigarette smoking,
and various other socioeconomic factors are major contrib-
utors to the increased prevalence of atherosclerotic vascular
disease.20

Accumulation of visceral fat leads to adverse local and
systemic metabolic effects that collectively increase oxida-
tive stress and inflammation. In a proinflammatory obese
state, lipolysis of adipose tissue is accelerated as adipocytes
become locally insulin-resistant, resulting in increased
levels of nonesterified fatty acids.21 High concentrations of
nonesterified fatty acids may subsequently increase ROS
generation in mononuclear cells and induce insulin resis-
tance in peripheral cells.21 It is hypothesized that, as adipose
tissue enlarges, adipocytes undergo hypertrophy and pos-
sibly hyperplasia. This can lead to ROS production and the
dysfunctional secretion of a variety of proinflammatory and
prothrombotic mediators, including specialized cytokines
and proteins referred to as adipokines.22 In combination
with other factors, adipokines and chemoattractant cyto-
kines such as monocyte chemotactic protein 1 (MCP-1) can
activate circulating monocytes, cause them to adhere to
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Inflammation and Oxidative Stress
endothelial cells, and then draw them into adipose tissue,
where they differentiate into macrophages.23,24

Macrophage recruitment and infiltration in adipose tissue
may contribute to atherosclerosis through enhanced pro-
duction of proinflammatory molecules, including TNF-a and
IL-6.25 Adipokines, some of which may be secreted by
recruited macrophages, can cause a variety of proatherogenic
vascular disturbances, such as inflammation, endothelial
dysfunction, and smooth muscle cell proliferation, as dis-
cussed below.22 In addition, oxidized LDL generated in
adipose tissue can heighten adipocyte hypertrophy and/or
hyperplasia, leading to increased hypoxia, oxidative stress,
and subsequent apoptosis of adipocytes.24 Macrophages
accumulate predominantly around areas of dead adipocytes,
but oxidized LDL inhibits their normal function of phago-
cytic removal. Support for the involvement of oxidized LDL
in adipose tissue is suggested by studies linking obesity and
the metabolic syndrome with elevated levels of circulating
oxidized LDL.26

Obesity and the metabolic syndrome can lead to the
development of insulin resistance and type 2 diabetes. Insulin
resistance exacerbates oxidative stress in part by increasing
the mitochondrial production of ROS from nonesterified
fatty acids, increasing ROS production from other sources,
and inactivating antioxidant enzymes.27 Hyperglycemia in-
duces ROS generation through multiple pathways and can
have direct, deleterious effects on endothelial function.28

Hyperglycemia-induced production of ROS leads to in-
creased levels of advanced glycation end products (AGEs)
and their receptor (RAGE), both of which can activate
pathways leading to further production of ROS.27 Binding
of AGEs to RAGE triggers ROS generation and subsequent
activation of NF-kB, causing increased expression of ICAM-1,
VCAM-1, and the procoagulant proteins plasminogen acti-
vator inhibitor 1 (PAI-1) and tissue factor.28 Uptake of AGEs
by macrophage receptors also accelerates atherosclerosis by
promoting inflammation and smooth muscle cell prolifera-
tion, whereas its uptake by endothelial cells has vasocon-
strictive and prothrombotic effects.27,28 Additional stress in
diabetes arises from a decrease in HDL cholesterol levels and
an increase in the oxidized fatty acid content of HDL, which
impairs the protective, antioxidant, and anti-inflammatory
capacity of the particle.29 Under conditions of oxidative
stress and inflammation, derangement of normal HDL
functioning can lead to increased oxidation of LDL, inter-
ference with NO-mediated endothelial dilation, and impair-
ment of reverse cholesterol transport.30
Emerging Biomarkers and Therapeutic Targets

Although experimental studies indicate that oxidative stress
and inflammation play mutually exacerbating roles within
the vasculature and adipose tissue that may contribute to an
accelerated atherosclerotic disease process, the therapeutic
use of antioxidants has not shown clinical benefit in
The American Journal of Pathology - ajp.amjpathol.org
humans.4 Past trials, which tested primarily vitamin E and
b-carotene, were likely unsuccessful because of an incom-
plete understanding of the mechanisms behind LDL
oxidation, which may have led to the use of the wrong
antioxidant, insufficient strength and/or duration of dosing,
and inappropriate patient selection.3,31 The antioxidants
may also have been unable to localize at vulnerable sites
within the arterial wall. One novel class of antioxidants
currently under development includes small peptide mole-
cules targeted at the inner mitochondrial membrane, which
have shown promise for the potential treatment of the
mitochondrial dysfunction that underlies many cardiorenal,
neurological, and metabolic disorders.32 We believe that
additional basic research is necessary to clarify the specific
site of LDL oxidation, the fate of oxidized LDL in vivo, and
the exact contribution of obesity-associated oxidative stress
to the atherosclerotic process. At the same time, newly
identified classes of molecules that mediate inflammation
and oxidative stress within the vessel wall and in adipose
tissue are emerging as potential biomarkers and therapeutic
targets for atherosclerotic vascular disease.

Chemokines and Chemokine Receptors

Chemokines participate in atherosclerotic plaque develop-
ment by recruiting leukocytes (including neutrophils, mono-
cytes, T and B cells, dendritic cells, and mast cells) from the
lumen into the subendothelial space at sites of inflamma-
tion.33 Chemokinesmay be fixed on the surface of endothelial
cells by an array of proteoglycans and can activate G protein
coupled receptors to produce leukocyte integrins. Alter-
natively, soluble chemokines may steer leukocytes into the
arterial wall directly. Individual chemokines have corre-
sponding receptors, but may bind to multiple receptors,
a characteristic referred to as redundancy. Most chemokines
and their receptors promote inflammation, although some
are thought to be atheroprotective. They also vary in the types
of atherogenic mononuclear cells recruited, the sites of lesion
formation to which leukocytes are drawn, and the stages of
lesion formation in which they are primarily involved.34

Chemokines or chemokine receptors that play an estab-
lished role in atherosclerosis include CXCR3 and its ligands,
which recruit effector T cells to plaques; CCR2 and its ligand
CCL2 (alias MCP-1) and CX3CR1 and its ligand CX3CL1,
which draw monocytes to plaques; and CCR5 and its ligand
CCL5, which attract both T cells and monocytes.34 Studies
in mice have shown that genetic deletion of these chemokines
or their receptors protects against atherosclerotic lesion
formation and, in some cases, decreases neointimal hyper-
plasia. In animal models of injury, elevated circulating levels
of CCL2 and CXCL10 have been detected early in the
heart, suggesting that chemokines may play a role in leuko-
cyte recruitment during the postinfarction inflammatory
response.35 Novel chemokines have also been identified
that may recruit neutrophils and monocytes from bone mar-
row, promote monocyte survival within the atherosclerotic
1477
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plaque, control the expansion of regulatory T cells in plaques
and lymph nodes, and prime T cells before drawing them out
from lymph nodes.36 It has recently been recognized that che-
mokine receptors (CXCR2, CCR2, and CXCR4) are present
on cardiac myocytes and are up-regulated after oxidative str-
ess; these receptors may play a role in ischemiaereperfusion
injury and in the pathophysiology of heart failure.35

The chemokine system offers numerous potential targets
to reduce atherosclerotic inflammation, and the CCL2e
CCR2 pathway has been a particular site of investigation.
CCL2 (MCP-1) is synthesized by smooth muscle cells,
endothelial cells, and macrophages in response to lipopoly-
saccharide and TNF, and exposure of endothelial cells to
oxidized LDL strongly up-regulates its production.37 Small-
molecule inhibitors of the CCL2eCCR2 axis have shown
mixed results in animal models, although a monoclonal
antibody (MLN1202) to CCR2was shown to reduce levels of
CRP independent of statin use in a small phase 2 trial.36,37

Additional research is necessary to determine the mecha-
nisms behind this effect, the anatomical location of the
targeted monocytes and macrophages, and the clinical
implications of this approach. Novel classes of chemokine
blockers currently under development include antagonists
generated through structural modification of chemokines
and chemokine-neutralizing proteins isolated from patho-
gens, such as the evasins recently discovered in tick saliva.36

In addition, stem cell therapy approaches to repair infarcted
cardiac tissue by targeting the CXCR4 receptor and its as-
sociated chemokine CXCL12 are under investigation.35

Adipokines

Adipokines are hypothesized to act as a bridge of commu-
nication between adipose and vascular tissues, thereby link-
ing obesity with increased risk for cardiovascular disease.
Most adipokines induce proinflammatory processes in the
vasculature, particularly by activating NF-kB signaling, and
their expression is increased in obesity.22 An important
exception is adiponectin, which is decreased in obese adi-
pose tissue, and has demonstrated insulin-sensitizing, anti-
inflammatory, and antiproliferative properties. Activation of
NF-kB by proinflammatory adipokines may increase the
expression of adhesion molecules ICAM-1, VCAM-1, and
E-selectin, thus promoting the recruitment of monocytes into
the vessel wall. NF-kB activation can also contribute to the
proliferation of intimal smooth muscle cells and can mediate
the expression of proinflammatory molecules by macro-
phages and smooth muscle cells.

The evidence linking adipokines with cardiovascular dis-
ease is strongest for adiponectin and leptin. Adiponectin,
which is considered to be cardioprotective, decreases the
vascular inflammatory response by suppressing TNF-a and
IL-6. This improves endothelial function by increasing
NO production; it also reduces smooth muscle cell prolifer-
ation and migration, and has been associated with improve-
ments in the lipid profile.22 Adiponectin levels are reduced
1478
both in animal models and in patients with obesity and insulin
resistance, possibly because of neuroendocrine alterations
and increased conditions of oxidative stress and inflamma-
tion.16,38 Leptin, which decreases appetite, is thought to be
proatherogenic, although studies linking circulating levels of
leptin with cardiovascular disease have been inconclusive.22

The vascular effects of leptin include activation of end-
othelial NO synthase (eNOS) to increase NO production
in endothelial cells, increased expression and activity of
inducible NO synthase (iNOS) by smooth muscle cells, and
increased expression of PAI-1 and CRP in endothelial cells.
Leptin may increase oxidative stress through multiple
mechanisms and may contribute to the pathogenesis of
insulin resistance and hypertension as well as atherosclerotic
disease.39

The adipokines TNF-a and migration inhibitor factor
(MIF) are macrophage-associated proinflammatory cyto-
kines that correlate with increased cardiovascular risk.22 Both
may induce migration and proliferation of smooth muscle
cells, and TNF-a additionally promotes endothelial dys-
function, insulin resistance, and lipolysis in adipocytes.16,22

Expression of MIF, which is produced in all cell types
present in atherosclerotic plaques, is triggered by oxidized
LDL and is up-regulated as lesions develop.40

Small lipid-binding proteins, including adipocyte-type
fatty acidebinding protein (A-FAPB), lipocalin-2, and ret-
inol binding protein 4 (RBP-4) are a class of adipokines that
transport lipophilic substances to facilitate their metabolic
processing or to sequester them within the cell.41 Although
their physiological functions in adipose tissue and the vas-
culature are largely uncharacterized, levels of A-FABP and
lipocalin-2 are elevated in patients with obesity, metabolic
syndrome, and coronary heart disease, and these adipokines
have been correlated with various markers of increased
cardiovascular risk, including lipoproteins, adiposity, in-
flammation, endothelial dysfunction, blood pressure, and
insulin resistance.
This is a very interesting set of observations. Studies in

genetically modified mice now indicate that lipocalin-2
deficiency protects against diet-induced elevations in systolic
blood pressure and endothelial dysfunction, whereas admin-
istration of lipocalin-2 attenuated endothelium-dependent
relaxations and instead promoted contractions.42 Similarly,
deletion of the A-FABP gene protects against obesity-
associated insulin resistance and reduces inflammation and
atherosclerotic lesion development in ApoE�/� mice.43 Serum
levels of A-FABP correlate with levels of lipocalin-2, and
expression of lipocalin-2 is induced by proinflammatory
stimuli including lipopolysaccharide, IL-17, TNF-a, hyp-
erglycemia, and IL-1b through activation of NF-kB.41

The effects of the lipid-binding protein RBP-4 appear to be
related mainly to insulin resistance.16 Inhibitors of A-FABP
have shown beneficial effects in rodent models, including
reductions in foam cell formation, proinflammatory cytokines,
and atherosclerotic lesion development, as well as imp-
rovements in endothelial function and insulin sensitivity.41
ajp.amjpathol.org - The American Journal of Pathology
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A variety of proinflammatory interleukins are secreted by
adipose tissue, including IL-1b, IL-8, and IL-18, and these
have been demonstrated to have atherogenic effects on
vascular smooth muscle and endothelial cells, in addition to
inducing the production of other cytokines and chemokines.22

A large clinical trial investigating the effects of IL-1b inhibi-
tion with the monoclonal antibody canakinumab on post-
myocardial infarction patients with elevated CRP levels is
currently underway.44 The anti-inflammatory adipokine IL-10
is thought to have antiatherogenic actions, including inhibi-
tion of IL-6 and IL-8 production in endothelial cells, partial
inactivation of NF-kB leading to reduced smooth muscle cell
infiltration, and increased NO production.22 An upcoming
clinical trial is designed to assess the effects of methotrexate,
an anti-inflammatory agent that reduces levels of IL-6, TNF-a,
and CRP, on cardiovascular events in patients with stable
coronary artery disease (http://clinicaltrials.gov/ct2/show/
NCT01594333, last accessed March 1, 2013).1

Novel adipokines that have less clear associations with the
development of atherosclerosis include chemerin, resistin,
visfatin, vaspin, and omentin.16,22 Studies suggest that these
adipokines may be elevated in obesity, could function as
inflammatory mediators, and may modulate insulin sensi-
tivity; however, these adipokines currently lack knockout
or transgenic mouse studies, data are sometimes contradic-
tory, and their relevance in humans remains to be clarified.
Adipokines have been implicated in multiple disease pro-
cesses other than obesity and cardiovascular disease. We
believe that ongoing research may help elucidate the mech-
anisms by which adipokines can affect multiple organs and
tissues. We hope that additional data will be forthcoming
regarding the viability of adipokines as potential therapeutic
targets for obesity-associated atherosclerotic disease, as oth-
ers have suggested.45

miRNAs

miRNAs are abundant in many different cell types, with
recognized contribution toward many biological processes.
miRNAs are single-stranded, noncoding RNAs of approxi-
mately 22 nucleotides that act post-transcriptionally on gene
expression by binding to mRNA target sequences to regu-
late protein translation or mRNA stability.46 miRNAs may
have hundreds of mRNA targets, and are thought to exert
a relatively modest, nuanced effect on mRNA expression,
compared with transcription factors, and some mRNA
targets may be modulated by multiple miRNAs.47 miRNAs
have been associated with various biological processes that
may contribute to the development of atherosclerosis, type 2
diabetes, and cardiovascular disease. Recent studies indicate
that miR-33 isoforms play a role in lipid metabolism by
down-regulating transporters involved in cholesterol efflux;
however, the inhibition of miR-33 in mice caused an
increase in cholesterol efflux and circulating HDL levels.48

Antisense oligonucleotides to miR-33 are being investigated
for the treatment of cardiometabolic disorders, after studies
The American Journal of Pathology - ajp.amjpathol.org
in nonhuman primates demonstrated increases in HDL and
decreases in triglycerides with antisense inhibition.47 Given
the current state of knowledge, it appears that therapeutic
targeting of miR-33 to modulate cholesterol and lipid
homeostasis is one of the most promising areas of investi-
gation in the field of miRNA research.

A number of miRNAs are also thought to participate
in atherogenesis by modulating the vascular inflammatory
response, production of adhesion molecules, monocyte
differentiation and uptake of oxidized LDL, and smooth
muscle cell proliferation.46,49 For example, miR-21 has been
shown to repress superoxide dismutase-2, resulting in in-
creased ROS production and impaired availability of NO.50

In obese adipose tissue, miRNAs are hypothesized to reg-
ulate adipocyte differentiation, oxidative stress, inflamma-
tion, and angiogenesis.46 Preliminary studies indicate that
several miRNAs may play a role in obesity-associated in-
sulin resistance by influencing insulin signaling and glucose
homeostasis.47 For example, miR-223 has been shown to
control macrophage activation in adipose tissue, resulting in
an attenuation of diet-induced inflammation and systemic
insulin resistance.51 It is hypothesized that the pathogenic
processes that occur in obese adipose tissue and in the
vasculature may be linked by several miRNAs that display
similar functions in both tissue types, including regulation
of cell proliferation, angiogenesis, apoptosis, and inflamm-
ation.46 Additionally, adipocytes have been found to secrete
microvesicles that contain miRNAs; intercellular commu-
nication between adipose and vascular tissues could poten-
tially occur through this route.

A major challenge facing the development of miRNA-
based therapeutics is the lack of specificity of individual
miRNAs to metabolic processes, given their relatively modest
effects on mRNA expression and potentially overlapping
actions on multiple mRNA molecules at once. miRNAs that
mediate pathological processes in both vascular and adipose
tissue may be particularly useful targets for the treatment
of obesity-associated vascular diseases.46 Nonetheless, the
development of miRNA-based therapeutics remains primarily
at the preclinical stage, and challenges regarding target iden-
tification, specificity, mode of delivery, and length of action
need to be overcome before testing in clinical trials.48
Conclusion

In the arterial wall, increases in inflammation and oxidative
stress synergize to accelerate atheroma formation and
increase risk for arterial disease. Studies in recent years have
generated a clearer understanding of how obesity-associated
inflammation and oxidative stress could be implicated
in other pathophysiological processes, including endothe-
lial dysfunction, macrophage recruitment and adhesion,
smooth muscle cell proliferation, and insulin resistance, all
of which further contribute to atherosclerotic plaque devel-
opment. New classes of molecules that link obesity and
1479
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atherosclerosis, and inflammation with oxidative stress have
emerged as potential biomarkers and therapeutic targets.
Further research on chemokines and their receptors, adi-
pokines, and miRNAs could, we believe, lead to new
strategies for intervention in the prevention and treatment
of obesity-associated atherosclerosis and other cardiovas-
cular diseases.
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