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Abstract--Circulant matrices possess unusual and interesting properties. These properties have 
been exploited to obtain the transient solution in closed form for a circulant queuing network that 
models a distributed query processing system. The sojourn time of a customer in the circulant queuing 
network is determined. A semi-Markov generalisation of this network is also studied. (~) 2002 Eisevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Queuing networks are extensively used to analyse and design computer, communication, man- 
ufacturing, and transportation systems [1,2]. In these models, jobs or customers move through 
various stations of the network, queuing up in a buffer at each station until they are processed 
by the server. Queuing networks have been analysed and solved under different assumptions and 
constraints. Various classes of queuing networks have product form solutions, and efficient algo- 
rithms have been developed [3,4] to exactly study their performance. Jackson networks belong to 
this class of product-form networks wherein the stationary solution of the network is expressed 
in the form of a product of the marginal distributions of each node. 

In this paper, we consider a circulant queuing network where the nodes are placed in a circular 
manner. The customers arrive to the system through any of the nodes, and the customers are 
routed probabilisticaily to other nodes or out of the system and these transition probabilities of 
the Markov chain form the routing matrix of the network. This routing matrix has a specific form 
called a circulant matrix. Such a matrix possesses a rich mathematical structure [5], and this 
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makes it possible to derive the transient measures explicitly for the queuing network. Circulant 
matrices have many connections with problems in physics, image processing, probability and 
statistics, communication systems, number theory, and geometry. 

As an application of this circulant queuing network, we consider a distributed query processing 
system wherein data are horizontally partitioned, vertically partitioned, and/or mirrored among 
a group of distributed servers, A typical query processing requires data access from multiple 
servers. In an unstructured distributed data processing environment over the Internet, it may be 
required to search all the servers, in the group, to service a given query which is often expensive 
when the group size increases. However, an important observation is that  a typical querying user 
is often interested in partial data rather than complete data. In such environments, probabilistic 
query processing plays a vital role wherein the query is processed by a subset of servers selected 
at random rather than by all the servers. As a result, the outcome of a query is either no data, 
partial data, or complete data depending on the availability of the requested data at these servers. 
The servers can be modelled as nodes of a queuing network and can be analysed to obtain various 
performance measures such as the query processing time. 

Our main objective is to study the time-dependent behaviour of this circulant queuing network. 
Studying the transient behaviour of queuing systems analytically is usually difficult. Although 
in the study of queuing systems and .networks, the emphasis had been on obtaining steady-state 
solutions, in many potential applications, steady-state measures of system performance simply 
do not make sense when the practitioner needs to know how the system will operate up to some 
specified time. Transient solutions are available for a wider class of problems and contribute to 
a more fine tuned analysis of the costs and benefits of the systems. For example, when buffers 
are allocated in real time by a central processor, the equilibrium distribution of buffer content 
may be used to determine the required number of buffers, but the fluctuations will determine the 
load on the central processor for buffer allocation [6]. Many types of applications in computer 
and communication systems require time-dependent analysis [7]. 

The rest of the paper is organised as follows. Section 2 gives some properties of the circulants, 
Section 3 obtains the transient solution for the circulant network, Section 4 computes sojourn 
time of a customer in the network, and finally in Section 5, a generalisation of this network is 
studied. 

2. C I R C U L A N T S  

The built-in periodicity indicates that  circulants tie in with Fourier analysis and group the- 
ory. Practically every matrix theoretic question involving circulants may be resolved in a closed 
form [5,8]. For example, in the study of time series, it is often desirable to be able to diagonalize 
a covariance matrix in a simple manner [9]. 

A circulant of order N is of the form 

A = circ(ao, a l  . . . .  , a N - i )  "~ 

ao a l  a2  " ' "  a N - l |  
I 

a N - 1  ao a l  • • .  a N - 2  | I 
[aN-2 aN-l  a° "" aN-3[ " " "*o i 

L a l  a2  a3  • • • ao  J 

Due to their inherent pattern, circulants possess a number of interesting properties. If A and B 
are circulants of order N and (~k are scalars, then A T, A* (conjugate transpose of A), (~ 1A +c~2B, 

r k AB,  and ~k=0  °~kA a r e  circulants. Moreover, A and B commute. I f A  is nonsingular, its inverse 

is a circulant. 
Let w = e x p ( 2 ~ r i / N )  = cos 2 ~ r / N  + i sin 2 7 r / N  be a primitive N th root of unity. We use the 

following properties in our analysis: w N = 1, wffJ = 1, ffjk = W - k  = w N - k ,  1 + W + W 2 -4- . - .  + 
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w g - 1  = 0, and  if N is even, w g/2  = - 1 .  Also, 

N - 1  f N, k = n, 
w( -k)J = / ( 2 . i )  

j=o O, k ~ n .  

Associate  with the  N- tup le  (ao, a i , . . . ,  a N - l )  the  polynomial ,  known as the  represen ter  poly- 

nomia l  of the  circulant,  
p(x )  = ao + a l x  -b " "  q- a N - l X  N - 1 .  

Then  the eigenvalues of A are p(1), p(w) ,  p ( w  2) . . . .  , p ( w  N -  i ). 

Circulants  have an interest ing diagonal izat ion in terms of Fourier  matrices,  v/z., 

A = F * A F ,  (2.2) 

where A = diag(p(1),  p(  w ) , p(  w 2) . . . . .  p (  w N -  I ) ) , and 

1 1 1 . . .  
1 w w 2 . . .  

1 1 W 2 W 4 • • • 

i . . . . .  
1 W N - 1  W 2 N - 2  • • • 

1 1 1 . . .  
1 w w 2 . . .  

1 w2 w4 ~ - - ~  1 " '" 

1 W N - 1  W N - 2  • • • 

1 
w N - 1  

w 2 N - 2  

w ( N - i )  ~ 

1 
w N - 1  

w N - 2  

W 

( 2 . 3 )  

(2.4) 

Observe tha t  F is symmetr ic  and unitary,  i.e., F -1 = F*. Conversely, if A = d i ag (a0 , a l ,  

• . . ,  a N - l ) ,  then F * A F  is a circulant,  and this may be useful to s tudy  inverse problems.  

3 .  T R A N S I E N T  S O L U T I O N  

We consider an open Markovian network where the N nodes, numbered as 0, 1, 2 , . . . ,  N - 1, 

are placed on a circle to which the customers arrive, which then move from node to node or out  

of sys tem according to the  following continuous t ime Markov chain: a customer  at  any node at  

t ime t will have moved to a node tha t  is j s teps to it  clockwise,  for j = 1,2 . . . .  , N  - 1, by t ime 
t + A t  with probabi l i ty  A jAt  + o ( A t )  (moving j s teps clockwise is the  same as moving N - j 

s teps counterclockwise),  and a customer at  node i at  t ime t will have moved out  of the  sys tem 

by t ime t + A t  wi th  probabi l i ty  p A t  + o(At) .  Suppose tha t  the  system s tar t s  wi th  ai customers  

at  node i a t  t ime zero, and in addit ion,  suppose tha t  new customers arrive at  the  sys tem a s  a 

Poisson s t ream with  ra te  a i  a t  node i and let a = a0 + ai + . . -  + OlN-1. We assume tha t  the  
capaci t ies  of the  nodes are infinite and all the  customers in the  sys tem are assumed to behave 

independent ly  of one another  in the  sense tha t  the  original customers present  in the  sys tem at  the  
ini t ial  t ime zero will subsequent ly  behave independent ly  of all the  new customers who will enter  

the  sys tem after t ime zero. The analysis is similar to the  one used by Purdue  [10] for s tochast ic  

compar tmen ta l  models. 
The  solution for the  s ta te  of the  system at  t ime t ( >  0) can be wr i t ten  as a sum of two 

independent  r andom vectors, 

Zo(t) Xo(t) Yo(t) ] Zl(,) x,(,) r,!t) / 
: = . + , ( 3 . i )  

Z v_x(t) XN-I (t) VN-I(t)] 
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where Zi(t)  is the total number  of customers at node i at t ime t, X i ( t )  is the number  of original 
customers at node i at t ime t, and Y~(t) is the number  of new customers (those who entered the 
system after initial t ime) at node i at t ime t. 

First, let us determine the distribution of Xi(t) .  Let Xij (t) be the number  of customers which 
were at  node i at  t ime zero and which are at  node j at t ime t. Then  

N-1 
xj( t)  = ~ x,~(t), 

i--O 

j = 0 ,1 ,2  . . . .  , N -  1, 

with Xij  (t) being binomial with parameters  as and P~j (t), where Pij (t) is the probabil i ty tha t  a 
customer who was at  i at  t ime zero is at  j at t ime t. 

Next,  we have to determine the distribution of Y~ (t). If  Pj (t) is the probabil i ty tha t  a customer 
is, t units of t ime after having entered the system, at node j ,  then 

N-1 
-g- P~j (t). 

i=0 

If  we let 

/o Mj (t) = a Pj (u) du, 

then Y o ( t ) , Y l ( t ) , . . . , Y g - l ( t )  are independent and Yj(t) has a Poisson distribution with 
mean Mj(t). 

The  major  difficulty is the determination of Pij (t). The  Pij (t)s when considered all together  
satisfy the matr ix  differential equations 

dP( t )  = P ( t ) U ,  
dt 

where P ( t )  is the N x N matr ix  of Pij( t)s  (with P(0)  = I) and the other matr ix  U being defined 

as 
Fh0 -- ~ hl  h2 "'" hN-1  1 
| h N - 1  h 0 - ~  hi . . .  h ~ - 2  ] 

U ~ -  / hN-2  ' h N - I  " h ° - ~  ' " '" " ' .  h N - 3 ]  ' i (3.2) 

L hi h2 ha . . .  h o - ~ J  

with h0 defined implicitly by h0 + hi + h2 + ".. + . . .  + hN-1 = 0. The  solution is given by 

P(t) = e ut 

= e - " t F  * diag (1, e p(w)t, eP(W2)t,... ,e p(wN- ' ) t )  F 

= e - .  t W(i-J)keV(W~)t 
k=O 

where the polynomial p(x) is defined as 

p(x) = h 0 --F hlX -~-... --~ AN-1 xN-1.  

Thus, 
N-1 

1 t P,j(t) = ~ e - "  y:~ w('-J)kep(~) ~ 
k=O 

= N e-" t  [1 + S~j(t)], using p(1) = 0, 

(3.3) 
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where 
N - 1  

s,j(t) = ~ w ( ' - ~ ) ~ e * ( ~ )  ~ 
k=l  

Putting t = 0 in (3.3), we retrieve the initial condition using (2.1). 
The probabilities in (3.3) are indeed real. If N is odd, 

/ s~j(t) = + w(~-J)ke~(W~) ~ 
k=(N÷l)/2] 

( N - l ) / 2  
= ' + ' )  

k=l  

( N - l ) / 2  

= 2  Z RI [w(i-j)keP(W~) t] 
k=l  

I (N-1)/2 2~r(i j)k 
= 2  ~ cos + t ~ - ' ~ r s i n  exp t~-~)~rcos  . 

k~l  r=0 [. r=0 

If N is even, there will be another term without trigonometric functions, and thus, 

S~j(t) = + w(~-3)%P(w~) t + w(~-j)NI2eP(~'N~) t 
\ k=l k=N/2+l/ 

N/2-1 27r( 3)k g - 1  N-1 
"= t Z ~r (--1)i-Je P(-1)t, 2 Z "  cos ~'~ + t  L A r s i n 7  exp cos 7 j  + 

k=l  r=0 r=0 

where p ( - 1 )  = A0 - A1 + )~2 . . . . .  AN-i and we have used wN/2 -= --1. 
It  is interesting to note that  the complete solution can be written in terms of the probabilities 

Pij(t), i , j  = 0, 1, 2 , . . . ,  N - 1. The steady-state distribution of the system is 

N - 1  

lim Pr [Z(t) = n] = 1--I e-°  0n' 
t ---*OO ~ ' 

i=0 

where n = [n0 ,n l , . . .  ,nN-1] T and 0 -- a/(# + A1 + A2 + " "  -t- )~N-1).  

4.  S O J O U R N  T I M E  O F  A C U S T O M E R  

The sojourn time of a customer in queuing networks is a vital performance measure as it 
may represent, for example, the query processing time in the circulant queuing network. In this 
section, we find the probability distribution that  a typical customer having entered the system 
stays within the network at time t using the concept of phase distributions. 

A continuous phase distribution is the distribution of time until absorption in an absorbing 
Markov process [11]. If we consider the movement of a customer in the above analysis, we can see 
that  eventually the customer leaves the system. If we introduce a state, say N, representing the 
absorption state, then the states 0, 1, 2 , . . . ,  N - 1 are transient states. To calculate an equation 
for the distribution function of a phase distribution, let the generator matrix be partitioned as 

U 01' 
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where U is given in (3.2), and A is the N x 1 vector of all #. If P(0) = [/30, ~1 , . . . ,  f iN- - l ,  ~N]  = 

[¢~,~N] and P( t )  = [P0(t), Pl(t),..., PN-I(t),PN(t)], then the solution to the Kolmogorov for- 
ward equations can be written as 

P ( t )  = ~e Ut 

The probability tha t  the customer has not gone out by time t is given by P( t )e .  We can write the 
distribution function of the absorption time, a random variable denoted by X, for the transient 
matrix U as 

Fx(t) = 1 - P ( t ) e  = 1 - ¢~eUte 

N - 1  N - 1  

i=O j =0 

which can be rewritten as 

N-1 N-1 1 t N-~ 
Fx( t )  = 1 -  Z / 3 i  ~ ~ e  -~ ~ w(i-J)ke p(wk)~. 

i=O j=O k=O 

5. A S E M I - M A R K O V  G E N E R A L I S A T I O N  

One of the major  disadvantages of the time-homogeneous open Markovian network model 
discussed in previous sections is tha t  the time spent in each node of the network is an exponential 
random variable. It  is desirable to s tudy a more general setup in which the delays at the nodes 
are general random variables. Such a degree of generality is introduced by using semi-Markov 
processes (see [12] for basic definitions and properties). 

We consider a queuing network with the same setup as in the previous sections except tha t  
here the sojourn time of a customer at the nodes follows a general distribution. On entering the 
network, a customer's  progress is assumed to be a semi-Markov process. A customer who leaves 
the network is said to be in node N and may not reenter. 

For a given customer, let Xn denote the node entered at the n th transition of the customer 
within the network, and let Tn be the epoch of this transition. Then we h a v e b y  the assumption 

P r { X n + I  = j, Tn+I - Tn <_ t [ Z o , X l , T 1 , . . . , X n  = i, Tn} 
= P r { X , + I  =j, Tn+I-T, <_tIX,=i}  
= Aij (t), (say) 0 < i, j _< g .  

The matrix A(t)  with (i , j) th element A~j(t) is the semi-Markov matrix associated with the 
network. We assume that  

I Oi-iH(t;:Om) i < j a n d i ,  j = 0 , 1 , 2 , . . . , N - 1 ,  01v+j_iH(t), i > j and i,j = 0, 1 ,2 , . . .  , N  - 1, 
N - 1  

Aij(t)= 1 -  H(t), i = 0 , 1 , 2 , . . . , N - l a n d j = N ,  

0, i = N and j = 0 , 1 , 2 , . . . , N -  1, 

H(t), i = N and j = N, 

where H(t) is the distribution function of the length of time the customer spends at a node 
a n d  Om is the conditional probability of moving m steps to the right given that  the customer 
leaves the present node. 

Consider now a customer who enters the system at time zero and let Pij(t) be defined, as 
before, to be the probability tha t  the customer who was at node i at time zero is at node j at 
t ime t. Then we have [12] 

P~j(t) = -- [t[1 - g(t  - x)]R~j (dx), 
J0 
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where Rij (x) is the (i, j) th element of 

oo 

R(t) = ~ A*(")(t), 
n = 0  

with A*(n)(t) defined as 

A*(°)(t) = I, A*(1)(t) = A(t) ,  A*(n)(t) = A * A*(n-1)(t) ,  

and 

In other words, 

where 

t N t "  
A * B o ( t  ) = / E A, ,( t  - x )B, j  (dx). 

dO /=0 

oo 

= n t R o ( t )  ), 
n=O 

Q~j(t) = Pr { X .  = j,  T .  - T . _ ,  <_ t l Xo = i } .  

Obviously, Qlj (t) = Aij (t) and 

( 1, i J, 
Q,° (t) = zo = O, i # j .  ( 

The functions t ~ R o ( t  ) are called Markov renewal functions, and the collection {Rij,  i , j  = 
0, 1, 2 . . . .  , N}  of these functions is called a Markov renewal kernel. 

The  mat r ix  A(t)  here is given by 

0 

0N-1 

A(t)  = H(t)  0N-2 

01 

0 

0 1 ' 

N - I  \ 
01 02 . . .  0N-I  1-  ~ Om 

m-~ l 

N - 1  
0 01 "'" 0 N - 2  1 -  ~ Om 

m = l  

N - 1  

ON_ 1 0 "'" ON_ 3 1 -  ~ Om 
m = l  

: : " . .  : 

N - 1  
02 03 "'" 0 1 -  ~ 0m 

m = l  

0 0 .- .  0 1 

where C is the cyclic matr ix  of order N given by 

C = 

0 01 02 . . .  
0 N - 1  0 01 "'" 

0 N - 2  0 N - 1  0 "'" 

• . . . , ,  

\ 01 02 03 . . .  

ON-1 

0N-2 | 
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and d is a column vector. In order to find R( t ) ,  we first have to  compute  C n which, wi th  the  
help of the  representer  polynomial  r(x) = OlX + 02x 2 + . . .  + ON-lX N-1 of the  ma t r ix  t2, can be 

simplified to 

C n = F* diag ((r(1))n,(r(w))n, . . . ,  (r (wN-1))  n) F 

where F* and w are as defined earlier. Using this result,  we finally deduce tha t  

P ( t )  = (1 - H(t)) * R( t )  

(Poo(t) Pol(t) 
N - 1  

• "" Po,g-l(t)  1 -  • Po.~(t) 

N-1 
Plo(t) Pu(t)  " .  P1,N-I(t) 1 -  E Plm(t) 

r n = l  

: : : " . .  : 

N - 1  
PN-I,0(t) PN-I,I(t) "'" PN-1,N-I(t)  1 - - E  PN-l,m(t) 

m = l  

0 0 . . .  0 1 

where, for i , j  = 0, 1,2 . . . .  , N  - 1, 

N - I  ~ t 

Po(t) = -~ ~ w (i-j)k ~ (r (wk)) n [1 - H(t - x) ]H *(n) (dx). (5.1) 
k = O  n = O  

The  quant i t ies  Pij(t) enable us to find the  d is t r ibut ion  function, G(t) (say), of the  t ime spent  
in the  network by a customer.  Accordingly, we get 

N - 1  

a ( t )  = 
i = 0  

N - 1  N - 1  

= 1 -  E a--i/ E Pi j ( t ) .  
i = 0  j = 0  

We let X (t) denote  the  number  of customers in the  network at  t ime t. Then,  by recognizing X(t)  
as the  number  of customers in an M/G/oo  queue with arrival ra te  a and service t ime densi ty  
function G(t ) ,  for t > 0, we get 

P r { X ( t )  = n [ X(0)  = 0} = 
n~ 

n = 0,1,2 ,  . . . .  

{/o' } exp - a  [1 - G ( x ) ] d x  , (5.2) 

We now consider the  number  of customers at  node i a t  t ime t, say, Xi(t). Let 

N - 1  

-g eo(t), 
i=O 

M3 (t) = a P~ (x) dz, 

and 

j = 0, 1 , 2 , . . . , N -  1, 
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as before. Then,  for each t > 0, X o ( t ) , X I ( t ) , . . . , X N - I ( t )  are independent  random variables 
and X j ( t )  has a Poisson dis t r ibut ion with pa ramete r  M j ( t ) .  

In order  to  find ]imt-~oQ Pr [X( t )  = n], we note tha t  we must  evaluate  fo°°[1 - G(x)] dx. This,  

of course, is the  mean first passage t ime to s ta te  N which we denote  by 3'. Let (I)i denote  the  
mean first passage t ime to N s tar t ing  in s ta te  i and let ~ denote  the  mean t ime spent  in node i. 

Le t t ing  • = ((I)0, ~ 1 , . . . ,  (I)N-1) T, @~ ((I)0, (I)1, . . . ,  (I)~v_l) T, and 

I 0 01 02 ' '"  ON- 1 \ 
ON-1 0 O1 "'" ON-2 

J ~ ON-2 ON-1 0 "'" ON-3 , 

i , , • • 

\ 01 02 Os .." 0 

we have (I, = ( I -  ~ ) - z ~ , ,  where [ I -  ~ ] -1  exists since the  maximal  eigenvalue of qJ is less than  1. 

In our case, not ing tha t  the  representer  polynomial  for the  mat r ix  [I - ~] is 1 - r ( x )  ( r (x)  is the  

representer  polynomial  of (3 defined earlier), we obta in  

[ I  - ~] -1  = [F* diag (1 - r(1),  1 - r ( w )  . . . . .  1 - r (wN-1) )  F ] - 1  

( 1 1 1 ) 
= F* diag 1 - r ( 1 ) '  1 - r ( w )  . . . .  ' 1 - r (w  N - l )  F 

)) = _ _ ( ( Z w ( i _ j )  k 1 
N \ x k = o  1 - r ( w  k) " 

N-1 Clearly, now (I) = Y~i=0 ( a i / a ) ¢ i  and we see, as a corollary to  result  (5.2), 

lim Pr [X( t )  = n] = e - ~  (a¢h)n t--.oo n! ' n = 0 , 1 , 2 , . . . .  

We can use this  result  to de termine  the mean occupat ion t ime of the  network. The  sys tem 
is occupied if there  is a t  least  one customer present in the  system. Let  O denote  the  mean 

occupat ion  time. As a two-s ta te  system, we have an a l ternat ing renewal process with "on" s ta te  
having mean O and "off" s ta te  having mean 1 /a .  Then 

lim Pr [X( t )  = 0] = 1 / a  
t--*oo 0 + 1 / a  

which gives O = (1 /a ) [e  a* - 1]. 

REMARK. If  H ( t )  . . . . . . .  1 e ~t, le t t ing Ai aOi, i 1,2, 3 . . . . .  N 1, and # a(1 ~-~,,~=1N-1 Ore), 

it  can be seen tha t  this  network reduces to the  open Markovian network discussed in previous 

sections. 
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