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Abstract

The Mahler measures of certain polynomials of up to five variables are given in terms of
multiple polylogarithms. Each formula is homogeneous and its weight coincides with the
number of variables of the corresponding polynomial.
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1. Introduction

Lately, there has been some interest in finding explicit formulae for the Mahler
measure of polynomials. The (logarithmic) Mahler measure of a polynomial

PeClxy, ..., x,) is defined as
1 dx dx,
P)=—=[ log|P —_— ...
m(P) = s [ g PG S S
where T" = {(z1, ...,z,) €C"| |z1| = --- = |zu| = 1} is the n-torus.
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For the one-variable case, Jensen’s formula
e i0 +
— log |e"” — o] dO = log™ |«]
27T 0

(where log™ x = log x if x>1 and zero otherwise), provides a simple expression of
the Mahler measure as a function on the roots of the polynomial:

Given P(x) = aH (x — ), then m(P) = logla| + Z log™ oy
J J

The two-variable case is much more complicated. Several examples with
explicit formulae have been produced. Boyd [2,3] and Smyth [9] have computed
several examples and expressed some of them in terms of special values of
L-functions of quadratic characters. Also Boyd [3] and Rodriguez Villegas [8]
have obtained analogous results with L-functions of certain elliptic curves.
Further, Boyd and Rodriguez Villegas [4], Maillot [7], and Vandervelde [11] have
produced examples where the Mahler measure is expressed as combinations of
dilogarithms.

There are only a few examples for three variables. Smyth [10] related the measure
of a+bx~'+cy+ (a+bx+cy)z to combinations of trilogarithms and diloga-
rithms. Vandervelde [1] obtained the measure of 1 4+ x + az(x — y) as combinations
of trilogarithms.

In this paper, we express the Mahler measure of some particular cases of up to
five-variable polynomials as combinations of multiple polylogarithms. More
precisely, we determine the Mahler measure of

(T4+w) (L +wy) +a(l =wp)...(1 = w,)y

in Clwy, ..., wy,y] forn =0, 1,2,3. We will refer to these as examples of the first kind.
We also consider

(T+w)..(I+w)(A+x)+a(l —wp)...(1 =wy)(y+2)
in Clwy, ...,wy,x,»,z] for n =0, 1,2 (examples of the second kind).
In addition to these, we use the same method starting from Maillot’s example [7],

in order to compute the Mahler measure of

(T4+w)(1+p)+ (1 —w)(x—y).

2. Summary of the results for the case a = 1

In order to be concrete and for future reference, we summarize the results obtained
for the particular case of a = 1:
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mm((14x) +(1 = x)y) 2L(%-4,2)
wm((1+w)(1 +x) + (1 —w)(1 —x)y) 74(3)

wm((1+ o)1 +w)(1+x)+ (1 =o)(1 —w)1=x)p) | TalB3)+4 o, prtre

m((1+x)+(y +2)) %5(3)
Tm((1+w)(1 +x) + (1 = w)(y +2)) 2PL(1-0:2) + 8 Yoot S
a*m((1 4+ o)1+ w)(1 +x) + (1 —v)(1 — w)(y+2)) 93{(5)
m((1+w)(1+ y) + (1 —w)(x — y)) 2((3) + Z log2
The third and fifth formulae can be also written as
m((1+0)(1+w)(1+x) + (1= 0)(1 = w)(1 - x)y)
= 77T(:(3) + 16(L(X—47X0; 272) - L(X—4,X2—4;272)), (1)

Sm((14+w)(14x) + (1= w)(y + 2))

7
= ERC@) —1610g2 L(y_4,3) + 16(L(x05 145 1,3) — L(X%47X74; 1,3)). (2)

Here y, is the principal character and y_, is the real odd character of conductor 4,
i.e.,

1 if n=1mod4,
1_as(n)=1< —1 if n=—-1mod4,
0  otherwise.

The L functions are defined by

Z Xl(kl)X2(k2)"'Xm(km)
KK

L(Xla cees Xms ML "'7nm) =
O<ky<ky<--<kp

This series is absolutely convergent if Re(n,,)>1 and Re(n;) =1 for i<m.
We would like to point out that all these formulae are new, except for
m((1 4+ x) + (1 — x)y), proved in [9], and m(1 + x + y + z).
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3. Idea of the procedure and some technical steps

Let P,eClxy, ..., Xx,], a polynomial where the coefficients depend polynomially on
a parameter o€ C. We replace a by oc};:: A polynomial P,eClxy, ..., x,,w] is
obtained. The Mahler measure of the new polynomial is a certain integral of the

Mahler measure of the former polynomial. More precisely,

Proposition 1. Let P,eClxy, ..., x,]| as above, then,

N 1 dw
m(P) =5 | (P T (3)
Moreover, if the Mahler measure of P, depends only on |«|, then
< 2 /T“ |oc| dx
m(P,) =— m(Py) —. 4
= [ 2 @

Proof. Equality (3) is a direct consequence of the definition of Mahler measure. In
order to prove equality (4), write w = ¢, Observe that as long as w goes through the
unit circle in the complex plane, 1= goes through the imaginary axis iR, indeed,

’ 1+w
2 = —itan(}). The integral becomes
By—L [Tm(p d0="["m(p do
( ) 7 m( |1tan(g)|) T 0 Wl( ] tan(g)) :
Now make x = |o|tan(9), then d = 2'1“‘1'2,

m(P,) = 2 /00C m(Py) M.

x2 + |oc\2

Our idea is to integrate the Mahler measure of some polynomials in order
to get the Mahler measure of more complex polynomials. We will need the
following:

Proposition 2. Let P, with a>0 be a polynomial as before, (its Mahler measure
depends only on |a)), such that

Fla) if a<l,

m(Fa) = {G(a) if a>1.
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Then
~ 2 ! adx 2 ! 1 adx
P)y== [ Flx)>—s+= —)
m(FPa) n/o (x)x2+az+n/0 G(x> a’x? + 1 ()

Proof. The proof is the same as for Eq. (4) in Proposition 1, with an additional
change of variables x—% in the integral on the right. [

Recall the definition for polylogarithms which can be found, for instance, in
Goncharov’s papers [5,6]:

Definition 3. Multiple polylogarithms are defined as the power series

ky ko

Fon

Li (X X )._ X Xy e X
Nyl 1y eveyAm) — knlkn2 kn,”
O<ky<ky<--<hy 172 t==tm

which are convergent for |x;/<1. The weight of a polylogarithm function is the
number w =n; + -+ +n,.

Definition 4. Hyperlogarithms are defined as the iterated integrals

L (@ o s apy)

o—o,,

Am+1 dl dl‘ dl‘ d[ dl’ dt dl dt dt
o t—art Tt t—at Tt T t—ayt Tt

ny np Ny

where n; are integers, a; are complex numbers, and

/bk+l dt d / dt dty,
0 t_bl t_bk 0<t1 < <t <bgy h _bl tk_bk.

The value of the integral above only depends on the homotopy class of the path
connecting 0 and @, on C\{ay, ...,a,}. To be concrete, when possible, we will
integrate over the real line.

It is easy to see (for instance, in [6]) that

Ly n @i ooty apgr) = (—l)mLinhwnm<

Lin, oy (X150 Xm) = (= 1)Ly, (31, ...,xm)_l et xy;l 1)

ap das aym Am
Ty Ty ey ) )
ay a Am—1 am
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which gives an analytic continuation to multiple polylogarithms. For instance, with
the above convention about integrating over a real segment, simple polylogarithms
have an analytic continuation to C\[1, o0).

There are modified versions of these functions which are analytic in larger sets, like
the Bloch—Wigner dilogarithm,

D(z) = Im(Lix(z)) + log |z]arg(l —z) zeC\[l, ) (6)

which can be extended as a real analytic function in C\{0, 1} and continuous in C.
We will eventually use some properties of D(z):

D(z)=-D(z) (= D|p=0) (7)
= /0 ' og [2sin dldt = D) = 2: Smiﬂ (8)

More about D(z) can be found in [12].

Often we will write polylogarithms evaluated in arguments of modulo greater than
1, meaning an analytic continuation given by the integral. Although the value of
these multivalued functions may not be uniquely defined, we will always get linear
combinations of these functions which are one-valued, since they represent Mahler
measures of certain polynomials.

Now recall Eq. (4). If the Mahler measure of P, is a linear combination of multiple

polylogarithms, and if we write =2, = é( L xili‘M), then it is likely that the

X2 +|af? xtio] T
Mahler measure of P, will be also a linear combination of multiple polylogarithms.
This will be the basis of our work.
In order to express the results more clearly, we will establish some notation.

Definition 5. Let
G=<(01,00, 1ty (=Z/2287/22872/27)
an abelian group generated by the following actions in the set (R*)zz
o1:(a,b)—(—a,b),

oy : (a,b)— (a,—b),

r:(a,b)n—»(é, %)

Also consider the following multiplicative character:

2:G=o{=1,1},

wo1) = =1 y(o2) = y(x) = 1.
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Definition 6. Given (a,b)eR?, a#0, define,

log (a,b) =log|a].

Definition 7. Let aeR*, x,yeC,
Z¢(x) = Li,(xa) — Li,(—xa),

2,(x) = log | a|(Li,(xa) — Li,(~xa)).

21,600 = ¥ to)ties((e(a 1)),

geCG

L (x,3) = x(o)log (a, 2) Lir.,x<(x,y)o(a, ;) )

geCG

where

(x1,01)0(x2,32) = (x1x2, y132)
is the component-wise product.
Observation 8. Let acR*, x,yeC, then,
Lr(x,y) = L1 (x,—y) = =L (=x,p)
and analogously with & |

Observe also that the weight of any of the functions above is equal to the sum of
its subindexes.
We will need some technical propositions:

Proposition 9. Given aeR+

1—w

| dw
[0S = —anzr, )+ 2,0, )

Proof. By definition,

allze| . dw / T =w . Sl —=w dw
n == L —Li [ —
T! @) w T! b 1 1+w | T 1+w w
N R .. 2adx
= 2l‘/0 (Ll,,(lx) — Lln(—l.x)) m (10)

(which can be proved in the same way as Eq. (4) in Proposition 1).
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Recall that

using this and the fact that z+_‘ — L = —2%, the integral in (10) becomes
dt, dt dt, ad
s/ R e (1)
O<n<ncn<t B2+ 106 th X* +a
But
/w ax dx B /m 1 1 ax dx
o B2+D(2+ad) Sy \2+42 xX2+at) a2 -1
a X247\ "
= log !
2(8a% - 1) x2+ad )|,
1
a ds aloga
) Ly 12
lfa2—1/,1 S+Z%a2—l (12)

The integral in (11) becomes

8 /ldS adt; db dtn
0<n<no<n<idy S B —1106 "1,

—810ga/ adt, db &
0

<h<b<n<l G —1 b Iy

Although the sum of these two integrals is well defined, each of them is not defined

for a>1 if we choose the real segment [0, 1] as the integration path. We choose a

different integration path, such as y(0) = +1 for —n<0<0.

. 2a 1 14 tr d
By using 71%612 = t1+" and fl L= [0+ + ft 5 we get

4n(1,,+1 (1 1) L (%; 1)> _4loga<ln <l 1) 1, (_1 1))
— —4n(Li,1(a) - Li,i(—a)) + 4log a(Liy(a) — Li,(—a)
—4ngt (1) +42°,(1) O

Observe that we will only use the above proposition for the case n = 2
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Proposition 10. For z = ¢, ae R,
b a b a I a o s
A gn(z)de‘i‘ A gn(z)mdxzigml(lz,l). (13)

Proof. By definition, the sum of the integrals is equal to

1
. . a a
/0 (Liy(zx) — Li,(—zx)) <x2 7 t s " 1)dx. (14)
Use that
1
dt dt dt dty dt, dt,
0o I—= t r 0<n< - <f<x I1— 7 15} ty
The term in (14) with ¢ is equal to

! 1 1 dty dt, a
0 0<H < <ty <X l‘l—‘rz ll—z 15 th, Xx*+a

Writingﬁ—é(1 - 1.),weget

x+ia xX—lia

j 1 1 1 1
i<I,,1<——: —ia: 1) —I,,l( : —ia:l) +In1(— ia: 1) —I,,l(——:iazl))
2 s - ’ 4
if . L . . i . . i
= —(lel <lza, —) — Ll,,l( iza, ) + Li, <lza, ——) — Ll,,l(—lza, ——>>.
2 ’ a ’ a ’ a

The other integral can be computed in a similar way (or taking advantage of the
symmetry a1

<L ( ) Ly, ( ) L, ( ) L, ( ))
2 a ' a “\a ' a

Adding both lines, we get the result. [

Proposition 11. For z = ¢,

1 1w
/ / |al+b| 2dx@+/ / ff’f(z) |a;+v| dx@
T! x2—|—|a1 L| v T Jo |aﬁ| X241 0

=2i(Z;,(z,1) + Z5,.4(2, 1)) (15)

ae R>0,
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Proof. Consider the first integral. By definition, this is

ul
/ / (Li,(zx) — Li,(—zx)) ——%— 1+”| dx@.
™ X+ latz | v

We do the same change of variables as in the proof of Eq. (4) in Proposition 1 and
we get

41/ / (Li,(zx) — Liy(—zx)) =—— ydx _ady . (16)

242yt a?

In the same way as in (12), we have:

/OO aydy _a o a+/1ds
o (Pr0r @) @-2 \FUT L)

Integral (16) becomes

1
1 1 dt dl d d
—4i/ / PR dn =% .. =" (1 ga+/ s>72a o
0 Jo<n<<n<x \I1 T3 11—— h Tty s JXx°—a

This integral decomposes into two summands, one with f; % and the other with
log a. But, as before, when we do this, each summand no longer converges if we
integrate on the real interval [0, 1] and if 0<a<1. So, we will change the path of
integration as we did before, to y(0) = Ew—“ for —n<0<0.

a2 T 2\x—a  x+ta

We first compute the integral with f & By using that - *1<L—L>,

we get

1 1 1 1
2i(1n~2<—:a: 1) —I,,g(——:a: 1) +In_2(——: —a: 1) —I,,_z(—: —-a: 1))
“\z z ’ z z
Ay 1 . 1 . 1 1
= 2i (lez (za,—) — Li,» (—za,—) + Li,» (za, ——) Llnz( za, ——)).
a a ’ a a

The term with log a yields

1 1 1 1
2i10ga(ln71<2:a:1> —Inl(—— a: 1> +1n1<——: —a:l> —In_,l<;: —a:l))
. . 1 . 1 1 1
= 2iloga( Li,, | za,— | — Li, | —za,— | + Lip1 | za,— | — Liy | —za,— | ).
a ’ a a
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The other integral is absolutely analogous, except that we use

/“‘ aydy ______a l/d
o 0PN @ —I\FT s

. U 1
(we can also compute it using the symmetry a«<>). [

4. Examples of the first kind
The Mahler measure of the polynomials that we study in this section depends only
on the absolute value of the parameter «; hence, we will write the formulae with

a = |o in order to simplify notation.
We start with the simple polynomial 1 + ay, whose Mahler measure is

1 [ )
m(H—ay):E/o log |1 + ae| do = log™ a. (17)

The first application of our procedure yields:

Theorem 12. For ae Ry,

m((1+x) +a(l —x)y) = —iL5(3i). (18)

m((1+x) +a(l = x)y)

Proof. By Eq. (4) in Proposition 1,
(1+x)+ 1+ -
=T1m X) + mm a T y
« adz 2a dw
=2 log" z
/ 8 fai T / e 1

_1//ds<1 - )dw (we made z = w™!)
w—|—’ w—4<

= i(Iz(—a: 1) -1 (5: 1)) = —i(Lis(ia) — Liz(—ia)) = —iZ%(). O (19)

Recall that we mean the analytic continuation of Li,. If we want to avoid this and
work with the series, the formula should be stated in the following way:

(143 +a(l -y = | 220 ast 20)
m +x)+all —x e 1
g nloga—i%4 (i) if a>1.
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The a<1 case is clear. For the a>1 case,

m((1+x)+a(l —x)y) =m((1 —x)y+a(l +x))

zloga+m(1(1 —x)y+ (1 —i—x))

a

which proves formula (20).
Now we apply the procedure again:

Theorem 13. For aeR.y,

nzm((l +w)(1+x)+a(l —w)(1 —x)y) =425(1) —2.25,(1). (21)

Proof. By Proposition 9,

1 iz
ﬁm«l+wXLhﬂ+aU—mM1—xW):_§ glﬂgﬁ%
TI

=4924(1) —224.,(1). O

As before, we can express this with the following formula:

m((1+w)(1+x) +a(l —w)(1 —x)y)

_ 475(1) —225,(1) if a<1,
nloga+424 (1) - 225, (1) if a>1.

Note that we could compute the same Mahler measure using formula (20) for the
Mahler measure of m((1 + x) + a(1 — x)y). By doing this, we obtain a different
formula for the Mahler measure of the polynomial considered in Theorem 13:

Theorem 14. For acR.,

m((1+w)(1+x) +a(l —w)(1 = x)y) = —inZ4(i) — 25.1(1,0).
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Proof. We integrate formula (20) and use Proposition 2:

2m((14+w) (14 x) +a(l —w)(1 —x)y)

! 1 a

. o a

The sum of the first and third integrals is ¢5,(—1,i) = =75 (1,i) because of
Proposition 10 with n =2 and z = i.

The second integral is the same as the one that occurs in Eq. (19) and it yields
—in5(i).

Adding the three terms together we prove the statement. [

If we compare the two formulae that we have got for m((1 +w)(1 + x) + a(l —
w)(1 — x)y), we have proved the following equality between multiple polylogarithms:

Corollary 15. For aeR-,
425(1) =225, (1) = —in&5(i) — £5,(1,1). (23)
Proof. This corollary is obtained from the two formulae for the Mahler measure of
(I+w)(1+x)+a(l —w)(1 —x)y. See the appendix for a direct proof. [
Let us do the process of integration one more time.
Theorem 16. For acR.,
m((1 4 v)(1 4+ w)(1 4+ x) + a(l —v)(1 —w)(1 = x)p)
=4n25(1) = 2125, (1) = 2i( L3, 1) + £5,.4 (6, 1)) (24)

Proof. We will integrate Eq. (22) of Theorem 14. The term of higher weight

corresponds to
/ / " = B i N
T! x2 + |al U| v

/ / @f! o
T! ’ X2—|—1 v

We solve this part by Proposition 11, setting z =i and n = 2.
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The third term is
all=| . di
2 [, 20D gm0y - 2men,)
2 ‘[[l v :

by Proposition 9. [
5. Examples of the second kind

In this section, we still have that all the Mahler measures only depend on a = |«|.
We start with a different polynomial, 1 4+ x + ay + az.

Theorem 17. For aeR-,

m(l +x+ay + az) =F(a)

B 274(1) if a<l,
mloga+22¢" (1) if a=1.

Proof. This was proved by Vandervelde [11]. It is also possible to adapt some of the
proofs of m(1 + x + y + z) = 55{(3). For instance, following Smyth [10],

2 0 1
forV=|1 1 0 m(1 + x+ay +az) = m((1 + x + ay + az)")
I 1 1

m(l + x*z 4+ axy + axyz) = m(x~' + ay + (x + ap)z)

:%(Lig,(a) — Liz(—a)) = %yg(l)

for 0<a<l.
Another possibility is to adapt the elementary proof given in Boyd [2]. For
O<a<l:

m(1 +x +ay + az) =w*m(1 + ay + x(1 + aw)) = nzm(

L

1
+ay+x>
1+ aw

1 + ae”

s dt
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= / log |1 + ae"| —log |1 + ae®| ds dt
O<i<s<n

T T
:/ (n—t)log|1+ae”|dt—/ slog |1 + ae® | ds
0 0

T
—2/ tlog |1 + ae"| dt
0

(here we have used that 0<a<1, and formula (17)).
Now use that

. o0 1 n—1 ] 0 1 n—1 y
log |l + ae”| = Re Z %a"e’m = Z wan (26)
n=1 n=1
and apply integration by parts,
0 -1 n—1 _. P n
7'521’}’1(1 + X+ ay+az) = — 22( ) nzsln(n ) "y

Il
o
Il
)
—~
—
o
—
Q
=
|
—
o
N
S}
S—
\'_/

When a>1, use that
I x
m(l +x+ay +az) =loga+m —totytz). O

If we compare with formula (20), for example, we may wonder whether the
formula in the second case a>1 of (25) is a value of 2.#4(1):

F(x)=225(1), x>1.

Meaning, as always, some branch of the analytic continuation of Lis.
We will see now that this is false. We should have for x> 1,

n?logx +2 <Li3 G) ~ Lis (-i)) < 2(Lis(x) — Lis(—x)).

Differentiating, and using that x Lis’(x) = Lix(x),

2 3(1s(2) () -t



100 M.N. Lalin | Journal of Number Theory 103 (2003) 85-108

Multiplying by x, and differentiating again,

(1) i () = - i

Since x> 1, the left term is
(x + 1>
log
x—1

(using that the principal branch of Li, is equal to —log(1 — x)). The term in the right
is equal to

/1 1 1 0 e

- | — ———dt=— lim —+10g(x+1)
_1 1 P 041

o t—1 141 a1

(we integrated on the path y(0) = GOT“ for —n<6<0).

1 “hx—1
—log (x < ) + llm log (%) +log(x + 1)

(x+1> )
:log —ITm.
x—1

e*iG

for —n<0<0 represents the other homotopy class and in this

=1lo x+1 +in
I W :

Hence, both functions are not equal, which implies that F(x) cannot be expressed
as 2.23(1).

—7(0) =
case, the integral is

Theorem 18. For ac Ry,
Sm((1+w)(1 4 x) +a(l —w)(y + 2)) = —in® Z4(i) + 2175 (i, ). (27)
Proof. Applying Proposition 2 to formula (25),

m((1+w)(1+x) +a(l = w)(y +2))

1 a

+4/0 gg‘(ni” dx. (28)

a?x?+1
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The sum of the first and third integrals is 245 (i, i) because of Proposition 10
withn=3and z=1.

The second term is the same as the one in integral (19) in Theorem 12, equal to
—im> Z4(i).

Adding the three terms together we prove the statement. [

Finally, our result with the maximum number of variables:

Theorem 19. For aeR.,

fm((1+0)(1+w)(1 +x) +a(l = v)(1 = w)(y +2))

=4’ 25(1) = 2225, (1) + 4 (25,(1, 1) + 25 1, (1, 1)). (29)

Proof. We will integrate Eq. (28) of the above theorem as always. The highest weight
term corresponds to

// = // e
T! x2+|a1L T! IU’x2+1 v

which can be evaluated using Proposition 11 setting z =1, n = 3.
Finally,

7.1:2

ali dl)
5[ 0T = s sy -2y, )

by Proposition 9. [

6. Integration of Maillot’s formula

So far we have been considering the cases of 1+ay and (1+x)+a(y+z)
and integrated them several times. We may wonder what happens with an
“intermediate” case, namely 1 4+ x + ay. This case is not so easy to handle, so we
will consider the following variant of the two variable case: 1+ ax+ (1 —a)y,
with aeC. This time the Mahler measure will depend on the argument of
a as well.

According to Maillot [7],

alog|a|+ Blog|b|+ylog|c|+D(|¢e?), A,

(30)
nlogmax{|al,|b].|c [}, not A,

m(a—|—bx+cy):{
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where A stands for the statement that |a|, | b |, and | ¢ | are the lengths of the sides
of a triangle; and «, 8, and 7 are the angles opposite to the sides of lengths |a |, | b |
and | ¢ |, respectively (Fig. 1A).

In our particular case,

mm(l +ax+ (1 —a)y) =|arga|log|1 —al|+|arg(l —a)|log|a]

{D(a) if Im(a)>0, (31)

D(a) if Tm(a)<O.

since |a|, |1 —a| and 1 are the lengths of the sides of the triangle whose vertices are
0, 1 and a in the complex plane (Fig. 1B). For the argument in the dilogarithm,
y =|arg (@) |, then we have to take a or a so y is always positive.

We will integrate as always. We replace a by %111

Theorem 20. We have the following:

2

m((1+w)(1+p) + (1 —w)(x —y)) =225(1) +%10g 2. (32)

Proof. We will apply Proposition 1 to Eq. (31) and then the change of variables
w =€, which implies {7 = —itan(}). With that change, a will be always pure
imaginary, so |arga| =5 (Fig. 1C).

m((1+w)(1 +p) + (1 = w)(x = y))
1 () = 0 0 0 . 0
=5 /_7Z <210g cos(z)‘ + ‘2 tan(2>‘ +D<z tan(z) D> do.
Using definition (6) of Bloch—Wigner dilogarithm,
1 [/ = 0 .. 0
=5 [ﬂ (—Elog cos (§>‘ + Im (L12 (l tan (E) D)) do.

a 0 1
/2 0/2

log

lc |b]

|a| 0 1 =-itan(06/2)
(A) (B) ©

Fig. 1. (A)Relation among the parameters in Maillot’s formula. (B) Triangle for the general case of
1 +a+ (1 —a)y. (C) Triangle for the case a = —itan (g)
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For the first term, make 7 = “—59, this part becomes

—E/ log\sinr|dr:—z/ (log|2sin 7| — log2) dt
2 Jo 2 Jo

2

T . 7'(2 T
=—D(e¥) +=—1log?2 = —log?2
) (e )+2 og 5 log

by Eq. (8).

For the second term, make x = tan(}), then df = 2%

X+10

the integral becomes

/jc Im(Lia(7] x |)) xzdi 1 :% /Ow(Liz(ix) ~ Lip(—ix) xzd——)iil _2921(1).

The last equality is a particular case of the value computed for expression (10) in
Proposition 9.
Adding both terms we obtain the result. [

7. Concluding remarks

To conclude, let us observe that all the presented formulae share a common
feature. Let us assign weight 1 to any Mahler measure, to 7 and to any logarithmic
function. Then all the formulae are homogeneous, meaning all the monomials have
the same weight, and this weight is equal to the number of variables of the
corresponding polynomial.
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Appendix A. Some additional remarks about the case a = 1

In this appendix, we would like to give some additional details about the
computation of the specific formulae that occur in the table of results for a = 1.
All but two of these formulae can be directly deduced from the theorems
we have proved. These exceptions are: the formula with the term ((5) and
formula (2).

For the formula with the term {(5):
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Theorem A.1. We have the following,

m((1 4 0)(1 4+ w)(1 4+ x) 4+ (1 = 0)(1 — w)(y + 2)) = 93(5). (A1)

Proof. By Theorem 19 we have to prove that
4r 23(1) +4 25,(1,1) = 93((5) (A2)
i.e.,
7n°((3) +8(Lisa(1,1) — Lisa(—1,1) + Lisa(1, —1) — Liza (=1, -1)) = 93 {(5).

Now we use formula (75) of [1], which in this particular case, states that

Lisa(x.3) = — 5 Lis(v2) + Lis(x) Lis(0) + 3Lis(x) + 2Lis(y)

— Lip(xy)(Li3(x) + 2Li3(»))

for x,y = +1.
Taking into account that
. . 1
Lix(1) ={(k) and Lix(-1)= (2k—1 — 1>C(k) (A.3)
we get
. . . . 21 93
Ll3,2(1, 1) — Ll3“’2(—1, 1) + Ll3,2(17 —1) — Ll3_2(—17 —1) = _TC(2)C(3) + §§(5)

We obtain the result by using that {(2) = %2 O
For formula (2) we have the following:

Proposition A.2. We have
(_1)_/+k+l
os<k (T + )’k 4
_4(n
~2log2L(x43)+2 Y. £ (),

0<m<n (m even)

Proof. Writing / = 2j+ 1 and / 4+ n = 2k, the left side is equal to

(I=1)+(+n)

(_1)j+k+1 +1

_ - _ 2-4(n)
B NP DI [ )

0<j<k 0</n(l,n odd) 0</,n(l,n odd)
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Now write

1 1 1 1 1

Bitn) Fn B i w1

Using formulae (A.3), we get the first two terms of the statement. We need to look at
the last two terms together in order to ensure convergence,

L—a(n) 1 1
Z n Z (7 e

0<n 0</(/ odd)

B %_a(n) - 1
) = (; =5 —log2 + Z >

0<m(m even)

and the statement follows. [

Formula (2) can be obtained from the above proposition and the fact that
L(X747 1) = %
Appendix B. A direct proof for Corollary 5

Recall the statement:

Corollary 15. For aeR+,

424(1) — 225,(1) = —imL5(0) — L4, (1.1).

Proof. First observe that after the change a<—>%, equality (23) remains the same with

the cancelation of a term of the form n” log @ in each side. Then, it is enough to prove
Eq. (23) for 0<a<1.
Eq. (23) is equivalent to

0 an 0 an
8 Z P 4loga Z o
n=1(odd) n=1 (odd)
? 2 a" Vdt  drt dt dt
= _2j 4 _ R
" 72 P a/o P+1 t <12+a2+a212+1>
n=1 (odd)
. n—1
S
=2n Z 2
n=1 (odd)
1
t
+ 4/ w(z — arctan <£> - arctan(as)) ds. (B.1)
0 s 2 a

Our strategy will be as follows: we will prove the equality for the derivatives and
for the particular case « = 1. In order to prove the equality for the derivatives, we
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will do the same, i.e., we will examine the case « = 1 and differentiate again and

compare the second derivatives.
Let us start with ¢ = 1. The term in (B.1) becomes

© el 1 1 2
(=1)~ arctan s arctan- s
=2n E P +2n i S ds — 8 A —ds

s

Make s = tan x:

1 2 z 2
arctan” s 4 X
——ds = —dx
0 Ky o SINXCoSx
n

= x? log(tan x) |(17; - /4 2 x (log(2 sin x) — log(2 cos x)) dx.
0

The first term is zero. For the second term make y =5 — x

= —/4 2x10g(2sinx)a’x—i—/2 (r —2y)log(2siny) dy
0 §

= - /2 2 slog(2sin s) a’ern/2 log(2 sin ) ds.
0

b4
3

Using properties (7) and (8), of the Bloch—Wigner dilogarithm,

n=1
2l & (=)
== > G > 5
n=1 (odd) n=1 (odd)

Using the power series of ﬁ and integrating, it is easy to see that

/ arctan s zw: T
0

n=1 (od

Putting all of this together in Eq. (B.1), we conclude
) ; . - 1
—iny(i) - £y (1) =8 > —=42)(1)
n
n=1 (odd)

as we expected.
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We differentiate the original Eq. (B.1) and multiply it by a:

o0 n 0 n
4 Z — —4loga Z «
n=1 (odd) n=1 (odd) n
? = : 1 1
=2n 72 p + 4a/0 arctans(s2 i 1) ds. (B.2)
n=1 (odd)
Set a =1, we get
3 . :
415(2) -2 hm1 log a(log(1 + a) — log(1 — a)) = g(log(l + i) —log(1 —i)).

This is an equality, because the first term in the left and the term in the right are
equal to ”72 and the other term is zero.
Apply integration by parts on the last term of (B.2):

1
1 1
4a/O arctans(s2 i 1) ds
1 ! s ds
= n| arctan( — ) — arctan(a) | — 4 (arctan (—) — arctan(as)) s
a 0 a sc+ 1

Now we differentiate (B.2),

o0 5 0 27_[
—4loga Z a7 =2n Z (ia)""

L
=1 (0dd) =1 (0dd) a+1

+4/1 1 n 1 s ds
0o \&+a® A+ 1)s2+1

And this is an equality indeed, which can be seen from the fact:

410ga:4/1 1 sds‘ O
a?—1 o \B+a? $+4a)a’—1
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