Stability results for projective modules over blowup rings

Manoj Kumar Keshari
School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India

Received 23 October 2004
Available online 22 April 2005
Communicated by Craig Huneke

Keywords: Affine algebra; Projective modules; Cancellation theorem

1. Introduction

Let R be a normal affine domain of dimension $n \geqslant 3$ over an algebraically closed field k. Suppose char $k=0$ or char $k=p \geqslant n$. Let g, f_{1}, \ldots, f_{r} be a R-regular sequence and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Let P be a stably free A-module of rank $n-1$. Then, Murthy proved that there exists a projective R-module Q such that $Q \otimes_{R} A=P$ and $\bigwedge^{n-1} Q=R$ [9, Theorem 2.10]. As a consequence of Murthy's result, if $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ with $g \neq 0$, then all stably free modules over $\mathbb{C}\left[X_{1}, \ldots, X_{n}, f / g\right]$ of rank $\geqslant n-1$ are free [9 , Corollary 2.11].

In this paper, we prove the following result (3.5), which generalizes the above result of Murthy.

Theorem 1.1. Let R be an affine algebra of dimension $n \geqslant 3$ over an algebraically closed field k. Suppose char $k=0$ or char $k=p \geqslant n$. Let g, f_{1}, \ldots, f_{r} be a R-regular sequence and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Let P^{\prime} be a projective A-module of rank $n-1$ which is extended from R. Let $(a, p) \in \operatorname{Um}\left(A \oplus P^{\prime}\right)$ and $P=A \oplus P^{\prime} /(a, p) A$. Then, P is extended from R.

[^0]Now, we will describe our next result. Let R be an affine algebra over \mathbb{R} of dimension n. Let $g \in R$ be an element not belonging to any real maximal ideal. Let Q be a projective R-module of rank $\geqslant n-1$. Let $(a, p) \in \operatorname{Um}\left(R_{g} \oplus Q_{g}\right)$ and $P=R_{g} \oplus Q_{g} /(a, p) R_{g}$. Then, P is extended from R [5, Theorem 3.10]. This result was proved earlier by Ojanguren and Parimala in case Q is free [11, Theorem]).

In this paper, we prove the following result (4.4), which is similar to 1.1 .
Theorem 1.2. Let R be an affine algebra of dimension $n \geqslant 3$ over \mathbb{R}. Let g, f_{1}, \ldots, f_{r} be a R-regular sequence and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Assume that g does not belong to any real maximal ideal of R. Let P^{\prime} be a projective A-module of rank $\geqslant n-1$ which is extended from R. Let $(a, p) \in \operatorname{Um}\left(A \oplus P^{\prime}\right)$ and $P=A \oplus P^{\prime} /(a, p) A$. Then, P is extended from R. In particular, every stably free A-module of rank n is extended from R.

As a consequence of above result, if $f, g \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with g not belonging to any real maximal ideal, then all stably free modules of rank $\geqslant n-1$ over $\mathbb{R}\left[X_{1}, \ldots, X_{n}, f / g\right]$ are free (4.6).

The proof of the main theorem makes crucial use of results and techniques of [2].

2. Preliminaries

In this paper, all the rings are assumed to be commutative Noetherian and all the projective modules are finitely generated. We denote the Jacobson radical of A by $\mathcal{J}(A)$.

Let B be a ring and let P be a projective B-module. Recall that $p \in P$ is called a unimodular element if there exists a $\psi \in P^{*}=\operatorname{Hom}_{B}(P, B)$ such that $\psi(p)=1$. We denote by $\operatorname{Um}(P)$, the set of all unimodular elements of P. We write $O(p)$ for the ideal of B generated by $\psi(p)$, for all $\psi \in P^{*}$. Note that, if $p \in \operatorname{Um}(P)$, then $O(p)=B$.

Given an element $\varphi \in P^{*}$ and an element $p \in P$, we define an endomorphism φ_{p} of P as the composite $P \xrightarrow{\varphi} B \xrightarrow{p} P$. If $\varphi(p)=0$, then $\varphi_{p}^{2}=0$ and, hence, $1+\varphi_{p}$ is a unipotent automorphism of P.

By a transvection, we mean an automorphism of P of the form $1+\varphi_{p}$, where $\varphi(p)=0$ and either $\varphi \in \operatorname{Um}\left(P^{*}\right)$ or $p \in \operatorname{Um}(P)$. We denote by $E(P)$, the subgroup of $\operatorname{Aut}(P)$ generated by all transvections of P. Note that, $E(P)$ is a normal subgroup of $\operatorname{Aut}(P)$.

An existence of a transvection of P pre-supposes that P has a unimodular element. Let $P=B \oplus Q, q \in Q, \alpha \in Q^{*}$. Then, the automorphisms Δ_{q} and Γ_{α} of P defined by $\Delta_{q}\left(b, q^{\prime}\right)=\left(b, q^{\prime}+b q\right)$ and $\Gamma_{\alpha}\left(b, q^{\prime}\right)=\left(b+\alpha\left(q^{\prime}\right), q^{\prime}\right)$ are transvections of P. Conversely, any transvection Θ of P gives rise to a decomposition $P=B \oplus Q$ in such a way that $\Theta=\Delta_{q}$ or $\Theta=\Gamma_{\alpha}$.

Definition 2.1. Let A be a ring and let P be a projective A-module. We say that P is cancellative if $P \oplus A^{r} \simeq Q \oplus A^{r}$ for some positive integer r and some projective A-module Q implies that $P \simeq Q$.

We begin by stating two classical results due to Serre [14] and Bass [1] respectively.

Theorem 2.2. Let A be a ring with $\operatorname{dim} A / \mathcal{J}(A)=d$. Then, any projective A-module P of rank $>d$ has a unimodular element.

Theorem 2.3. Let A be a ring of dimension d and let P be a projective A-module of rank $>d$. Then $E(A \oplus P)$ acts transitively on $\mathrm{Um}(A \oplus P)$. In particular, P is cancellative.

The above result of Bass is best possible in general. But, in case of affine algebras over algebraically closed fields, we have the following result due to Suslin [17].

Theorem 2.4. Let A be an affine algebra of dimension n over an algebraically closed field. Then, all projective A-modules of rank $\geqslant n$ are cancellative.

Remark 2.5. Let P be a finitely generated projective A-module of rank d. Let t be a non-zero divisor of A such that P_{t} is free. Then, it is easy to see that there exits a free submodule $F=A^{d}$ of P and a positive integer l such that, if $s=t^{l}$, then $s P \subset F$. Therefore, $s F^{*} \subset P^{*} \subset F^{*}$. If $p \in F$, then $\Delta_{p} \in E(A \oplus F) \cap E(A \oplus P)$ and if $\alpha \in F^{*}$, then $\Gamma_{s \alpha} \in E(A \oplus F) \cap E(A \oplus P)$.

The following result is due to Bhatwadekar and Roy [3, Proposition 4.1].
Proposition 2.6. Let A be a ring and let J be an ideal of A. Let P be a projective A-module of rank n. Then, any transvection $\tilde{\Theta}$ of $P / J P$, i.e., $\tilde{\Theta} \in E(P / J P)$, can be lifted to a (unipotent) automorphism Θ of P. In particular, if $P / J P$ is free of rank n, then any element $\bar{\Psi}$ of $E\left((A / J)^{n}\right)$ can be lifted to $\Psi \in \operatorname{Aut}(P)$. If, in addition, the natural map $\mathrm{Um}(P) \rightarrow \operatorname{Um}(P / J P)$ is surjective, then the natural map $E(P) \rightarrow E(P / J P)$ is surjective.

Definition 2.7. For a ring A, we say that projective stable range of A is $\leqslant r$ (notation: $\operatorname{psr}(A) \leqslant r)$ if for all projective A-modules P of rank $\geqslant r$ and $(a, p) \in \operatorname{Um}(A \oplus P)$, we can find $q \in P$ such that $p+a q \in \operatorname{Um}(P)$. Similarly, A has stable range $\leqslant r$ (notation: $\operatorname{sr}(A) \leqslant r)$ is defined the same way as $\operatorname{psr}(A)$ but with P required to be free.

The following result is due to Bhatwadekar [2, Corollary 3.3] and is a generalization of a result of Suslin [15, Lemma 2.1]. See [5], for the definition of $E S p_{4}(B)$.

Proposition 2.8. Let B be a ring with $\operatorname{psr}(B) \leqslant 3$ and let I be an ideal of B. Let P be a projective B-module of rank 2 such that $P / I P$ is free. Then, any element of $S L_{2}(B / I) \cap$ $E S p_{4}(B / I)$ can be lifted to an element of $\operatorname{SL}(P)$.

Remark 2.9. In [2, Corollary 3.3], Proposition 2.8 is stated with the assumption that $\operatorname{dim} B=2$. However, the proof works equally well in above case.

The following result is due to Mohan Kumar, Murthy and Roy [8, Theorem 3.7] and is used in 3.6.

Theorem 2.10. Let A be an affine algebra of dimension $d \geqslant 2$ over $\overline{\mathbb{F}}_{p}$. Suppose that A is regular when $d=2$. Then $\operatorname{psr}(A) \leqslant d$.

The following two results are due to Lindel ([7, Theorem] and [6, Theorem 2.6]). Recall that a ring A is called essentially of finite type over a field k, if A is the localisation of an affine algebra over k.

Theorem 2.11. Let A be a regular ring which is essentially of finite type over a field k. Then, every projective $A[X]$-module is extended from A.

Theorem 2.12. Let B be a ring of dimension d and let $R=B\left[T_{1}, \ldots, T_{n}\right]$. Let P be a projective R-module of rank $\geqslant \max (2, d+1)$. Then $E(P \oplus R)$ acts transitively on $\operatorname{Um}(P \oplus R)$.

The following result is due to Suslin [16, Theorem 2]. The special case, namely $n=2$ was proved earlier by Swan and Towber [20].

Theorem 2.13. Let A be a ring and $\left[a_{0}, a_{1}, \ldots, a_{n}\right] \in \operatorname{Um}_{n+1}(A)$. Then, there exists $\Gamma \in$ $S L_{n+1}(A)$ with $\left[a_{0}^{n!}, a_{1}, \ldots, a_{n}\right]$ as the first row.

The next three results are due to Suslin [15, Propositions 1.4, 1.7 and Corollary 2.3] and are very crucial for the proof of our main theorem (see also [9, Remark 2.2]). Here "cd" stands for cohomological dimension (see [13] for definition).

Proposition 2.14. Let X be a regular affine curve over a field k and let l be a prime with $l \neq$ char k. Suppose that $\mathrm{cd}_{l} k \leqslant 1$. Then, the group $S_{1}(X)$ is l-divisible.

Proposition 2.15. Let X be a regular affine curve over a field k of characteristic $\neq 2$ and $\operatorname{cd}_{2} k \leqslant 1$. Then, the canonical homomorphism $K_{1} S p(X) \rightarrow S K_{1}(X)$ is an isomorphism.

Proposition 2.16. Let A be a ring and $\left[a_{1}, \ldots, a_{n}\right] \in \operatorname{Um}_{n}(A)(n \geqslant 3)$. Let $I=\sum_{i \geqslant 3} A a_{i}$ and $J=\sum_{i \geqslant 4} A a_{i}$ be ideals of A. Let $b_{1}, b_{2} \in A$ be such that $A b_{1}+A b_{2}+I=A$. Let "bar" denotes reduction mod I. Suppose that
(i) $\operatorname{dim} A / I \leqslant 1$ and $\operatorname{sr}(A / J) \leqslant 3$,
(ii) there exists an $\bar{\alpha} \in S L_{2}(\bar{A}) \cap \operatorname{ESp}(\bar{A})$, such that $\left[\bar{a}_{1}, \bar{a}_{2}\right] \bar{\alpha}=\left[\bar{b}_{1}, \bar{b}_{2}\right]$.

Then, there exists a $\gamma \in E_{n}(A)$ such that $\left[a_{1}, \ldots, a_{n}\right] \gamma=\left[b_{1}, b_{2}, a_{3} \ldots, a_{n}\right]$.
Using above results, Suslin proved the following cancellation theorem [15, Theorem 2.4].

Theorem 2.17. Let A be an affine algebra of dimension $d \geqslant 2$ over an infinite perfect field k. Suppose $\mathrm{cd} k \leqslant 1$ and $d!\in k^{*}$. Let $\left[a_{0}, a_{1}, \ldots, a_{d}\right] \in \operatorname{Um}_{d+1}(A)$ and let r be a positive integer. Then, there exists $\Gamma \in E_{d+1}(A)$ such that $\left[a_{0}, a_{1}, \ldots, a_{d}\right] \Gamma=\left[c_{0}^{r}, c_{1}, \ldots, c_{d}\right]$. As a consequence, every stably free A-module of rank d is free (Theorem 2.13).

The following result is due to Bhatwadekar [2, Theorem 4.1] and is a generalisation of above result of Suslin.

Theorem 2.18. Let A be an affine algebra of dimension $d \geqslant 2$ over an infinite perfect field k. Suppose $\operatorname{cd} k \leqslant 1$ and $d!\in k^{*}$. Then, every projective A-module P of rank d is cancellative.

The following result is very crucial for our main theorem and the proof of it is contained in [2, Theorem 4.1].

Proposition 2.19. Let A be a ring and let P be a projective A-module of rank d. Let $s \in A$ be a non-zero-divisor such that P_{s} is free. Let $F=A^{d}$ be a free submodule of P with $F_{s}=$ P_{s} and $s P \subset F$. Let e_{1}, \ldots, e_{d} denote the standard basis of F. Let $(a, p) \in \operatorname{Um}(A \oplus P)$ be such that
(1) $a=1 \bmod A s$,
(2) $p \in F \subset P$ with $p=c_{1}^{d} e_{1}+c_{2} e_{2}+\cdots+c_{d} e_{d}$, for some $c_{i} \in A$,
(3) every stably free $A / A a$-module of rank $\geqslant d-1$ is free.

Then, there exists $\Delta \in \operatorname{Aut}(A \oplus P)$ such that $(a, p) \Delta=(1,0)$.
The following result is used to prove our second result (4.4) and is due to Ojanguren and Parimala [11, Propositions 3 and 4].

Proposition 2.20. Let $\mathcal{C}=\operatorname{Spec} C$ be a smooth affine curve over a field k of characteristic 0 . Suppose that every residue field of \mathcal{C} at a closed point has cohomological dimension $\leqslant 1$. Then, $S K_{1}(C)$ is divisible and the natural homomorphism $K_{1} S p(C) \rightarrow S K_{1}(C)$ is an isomorphism.

3. Main theorem 1

In this section, we will prove our first result (3.5). We begin with the following result, the proof of which is similar to [9, Corollary 2.8].

Lemma 3.1. Let R be an affine algebra of dimension $n \geqslant 3$ over a field k. Let g, f_{1}, \ldots, f_{r} be a R-regular sequence and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Let P be a projective A-module of rank $\geqslant n-1$ and $(a, p) \in \operatorname{Um}(A \oplus P)$. Then, there exists $\Psi \in S L(A \oplus P)$ such that $(a, p) \Psi=(1,0) \bmod A g$.

Proof. Since g, f_{1}, \ldots, f_{r} is a R-regular sequence, $A=R\left[X_{1}, \ldots, X_{r}\right] / I$, where $I=$ ($g X_{1}-f_{1}, \ldots, g X_{r}-f_{r}$). Let "bar" denote reduction modulo $A g$. Then $\bar{A}=\bar{R}\left[X_{1}\right.$, $\left.\ldots, X_{r}\right]$, where $\bar{R}=R /\left(g, f_{1}, \ldots, f_{r}\right)$. Since $\operatorname{dim} \bar{R} \leqslant n-2$, by 2.12 , there exists $\bar{\Psi} \in$ $E(\bar{A} \oplus \bar{P})$ such that $(\bar{a}, \bar{p}) \bar{\Psi}=(1,0)$. By 2.6, we can lift $\bar{\Psi}$ to $\Psi \in S L(A \oplus P)$. Hence, we have $(a, p) \Psi=(1,0) \bmod A g$.

Lemma 3.2. Let R be an affine algebra of dimension $n \geqslant 3$ over a field k. Let $g, f_{1}, \ldots, f_{r} \in R$ with g a non-zero-divisor and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Let $S=1+g R$ and $B=A_{S}$. Let P be a projective B-module of rank $\geqslant n-1$ which is extended from R_{S}. Let $(a, p) \in \operatorname{Um}(B \oplus P)$ with $(a, p)=(1,0) \bmod B g$. Then, we have the followings:
(1) there exists $s \in R$ such that P_{s} is free and
(2) there exists $\Delta \in \operatorname{Aut}(B \oplus P)$ such that $(a, p) \Delta=(1,0) \bmod B s g$.

Further, given any ideal J of R of height $\geqslant 1$ with $\operatorname{ht}(g, J) R \geqslant 2$, we can choose s such that $s \in J$.

Proof. Choose $s_{1} \in J$ such that ht $s_{1} R=1$ and $\operatorname{ht}\left(s_{1}, g\right) R \geqslant 2$. By replacing (a, p) by ($a+$ $\alpha(p), p$) for some $\alpha \in P^{*}$, if necessary, we may assume that ht $a B=1$ and $\operatorname{ht}\left(a, s_{1}\right) B \geqslant 2$. Suppose $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ are minimal primes of $g R_{S} ; \tilde{\mathfrak{p}}_{1}, \ldots, \tilde{\mathfrak{p}}_{t^{\prime}}$: minimal primes of R_{S} and $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{t^{\prime \prime}}$: minimal primes of $a B$. Since P is extended from R_{S}, P_{Σ} is free, where

$$
\Sigma=R_{S} \backslash \bigcup_{i=1}^{t} \mathfrak{p}_{i} \bigcup_{j=1}^{t^{\prime}} \tilde{\mathfrak{p}}_{j} \bigcup_{l=1}^{t^{\prime \prime}}\left(\mathfrak{q}_{l} \cap R_{S}\right)
$$

(any projective module over a semi local ring is free). Hence, there exists some $s_{2} \in \Sigma$ such that $P_{s_{2}}$ is free. We may assume $s_{2} \in R$. Hence ht $R s_{2} \geqslant 1$, ht $\left(s_{2}, g\right) R_{S} \geqslant 2$ and $\operatorname{ht}\left(a, s_{2}\right) B \geqslant 2$.

Write $s=s_{1} s_{2}$. Then $\operatorname{ht}(g, s) R_{S} \geqslant 2$ and $\operatorname{ht}(a, s) B \geqslant 2$. Since $\operatorname{dim} R_{S} /\left(\mathcal{J}\left(R_{S}\right), s\right) \leqslant$ $n-2$ and P is extended from R_{S}, by $2.2, P / s P$ has a unimodular element. Write $B_{1}=$ $B / B s, P / s P=B_{1} \oplus P_{1}$ and $\left(b, p_{1}\right)$ as the image of p in $P / s P$.

Let "bar" denotes reduction modulo the ideal $B_{1} a$. Since $a=1 \bmod B g$ and $\operatorname{ht}(s, a) B \geqslant 2, \operatorname{dim} \bar{B}_{1} \leqslant n-3$. Note that, $\bar{p}=\left(\bar{b}, \bar{p}_{1}\right) \in \operatorname{Um}\left(\bar{P}=\bar{B}_{1} \oplus \bar{P}_{1}\right)$. Since rank of $\bar{P} \geqslant n-1$, by 2.3 , there exists $\bar{\Phi} \in E(\bar{P})$ such that $\left(\bar{b}, \bar{p}_{1}\right) \bar{\Phi}=(1,0)$. In general, the natural map $\operatorname{Um}\left(B_{1} \oplus P_{1}\right) \rightarrow \operatorname{Um}\left(\bar{B}_{1} \oplus \bar{P}_{1}\right)$ is surjective. Hence, by 2.6 , we can lift $\bar{\Phi}$ to some element $\Phi \in E\left(B_{1} \oplus P_{1}\right)$. Let $\left(b, p_{1}\right) \Phi=\left(c, p_{2}\right)$. Then $\left(c, p_{2}\right)=(1,0) \bmod B_{1} a$.

Let $\left(c, p_{2}\right)=(1,0)-a\left(c_{1}, p_{3}\right)$ for some $\left(c_{1}, p_{3}\right) \in B_{1} \oplus P_{1}$. Then $\left(a, c, p_{2}\right) \Delta_{\left(c_{1}, p_{3}\right)}=$ $(a, 1,0)$, where $\Delta_{\left(c_{1}, p_{3}\right)} \in E\left(B_{1} \oplus P_{1}\right)$. Recall that $P / s P=B_{1} \oplus P_{1}$. By 2.6, we can lift $(1, \Phi) \Delta_{\left(c_{1}, p_{3}\right)} \in E(B \oplus P / s(B \oplus P))$ to some element $\Psi \in \operatorname{Aut}(B \oplus P)$ such that $(a, p) \Psi=(a, q)$ with $O(q)=B \bmod B s$. Since $a=1 \bmod B g$, there exists $\Psi_{1} \in E(B \oplus P)$ such that $(a, q) \Psi_{1}=(1,0) \bmod B s g$. Let $\Delta=\Psi \Psi_{1}$. Then $(a, p) \Delta=$ $(1,0) \bmod B s g$. This proves the lemma.

Lemma 3.3. Let R be an affine algebra of dimension $n \geqslant 3$ over an algebraically closed field k. Suppose char $k=0$ or char $k=p \geqslant n$. Let $g, f_{1}, \ldots, f_{r} \in R$ with g a non-zerodivisor and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Let $S=1+R g$ and $B=A_{S}$. Let P be a projective B-module of rank $n-1$ which is extended from R_{S}. Let $(a, p) \in \operatorname{Um}(B \oplus P)$ with $(a, p)=$ $(1,0) \bmod B g$. Then, there exists $\Delta \in \operatorname{Aut}(B \oplus P)$ such that $(a, p) \Delta=(1,0)$.

Proof. Without loss of generality, we can assume that R is reduced. Let J_{1} be the ideal of R_{g} defining the singular locus Sing R_{g}. Since R_{g} is reduced, ht $J_{1} \geqslant 1$. Note that $\sqrt{J_{1}}=J_{1}$.

Let $J=J_{1} \cap R$. Then, we may assume that g does not belong to any minimal primes of J and ht $J \geqslant 1$. Hence ht $(g, J) R \geqslant 2$.

Since $(a, p)=(1,0) \bmod B g$, by 3.2, there exists some $s \in J$ and $\Phi \in \operatorname{Aut}(B \oplus P)$ such that P_{s} is free and $(a, p) \Phi=(1,0) \bmod$ Bsg. Hence, replacing (a, p) by $(a, p) \Phi$, we can assume that $(a, p)=(1,0) \bmod B s g$. It is easy to see that we can replace B by $C=A_{T}$, where $T=(1+g k[g]) h$ for some $h \in 1+g R$. Note that, $B=C_{S}$.

Since P_{s} is free of rank $n-1$, there exists a free submodule $F=C^{n-1}$ of P such that $F_{s}=P_{s}$. By replacing s by a power of s, we may assume that $s P \subset F$. Let e_{1}, \ldots, e_{n-1} denote the standard basis of C^{n-1}. Since $(a, p)=(1,0) \bmod C s g, p \in \operatorname{sg} P \subset g F$. Let $p=b_{1} e_{1}+\cdots+b_{n-1} e_{n-1}$, for some $b_{i} \in g C$. Then $\left[a, b_{1}, \ldots, b_{n-1}\right] \in \operatorname{Um}_{n}(C)$. As $1-$ $a \in C s g,\left[a, s b_{1}, \ldots, s b_{n-1}\right] \in \operatorname{Um}_{n}(C)$.

For $n=3$, by Swan's Bertini theorem [19, Theorem 1.3] as quoted in [10, Theorem 2.3], there exists $c_{1}, c_{2} \in C$ such that, if $a^{\prime}=a+s b_{1} c_{1}+s b_{2} c_{2}$, then $C / C a^{\prime}$ is a reduced regular (since $a^{\prime}=1 \bmod C s g$ and $s \in J$) affine $k(g)$-algebra of dimension 1. For $n \geqslant 4$, by prime avoidance, there exists $c_{1}, \ldots, c_{n-1} \in C$ such that, if $a^{\prime}=a+s b_{1} c_{1}+\cdots+s b_{n-1} c_{n-1}$, then $C / C a^{\prime}$ is affine $k(g)$-algebra of dimension $\leqslant n-2$. Note that, $a^{\prime}=1 \bmod C s g$.

Let $e_{1}^{*}, \ldots, e_{n-1}^{*}$ be a dual basis of F^{*} and let $\theta_{i}=c_{i} e_{i}^{*} \in F^{*}$. Then, by $2.5, \Gamma_{s \theta_{i}} \in$ $E(C \oplus P)$ and $\Gamma_{s \theta_{i}}(a, p)=\left(a+s b_{i} c_{i}, p\right)$. Hence, it follows that there exists $\Psi_{1} \in$ $E(C \oplus P)$ such that $\Psi_{1}(a, p)=\left(a^{\prime}, p\right)$.

Let "bar" denote reduction modulo $C a^{\prime}$. Since $C a^{\prime}+C s=C$ and $P_{s}=F_{s}$ is free, the inclusion $F \subset P$ gives rise to equality $\bar{F}=\bar{P}$. In particular, \bar{P} is free of rank $n-1 \geqslant 2$ with a basis $\bar{e}_{1}, \ldots, \bar{e}_{n-1}$ and $\bar{p} \in \operatorname{Um}(\bar{P})$. Recall that \bar{C} is an affine algebra of dimension $n-2$ over a C_{1}-field $k(g)$. Hence, by 2.18 , every projective \bar{C}-module of rank $n-2$ is cancellative.

If $n=3$, then \bar{C} is a regular affine algebra of dimension 1 over a C_{1}-field $k(g)$. Hence, by $2.14,2.15, S K_{1}(\bar{C})$ is a divisible group and the canonical homomorphism $K_{1} S p(\bar{C}) \rightarrow$ $S K_{1}(\bar{C})$ is an isomorphism. Hence, there exists $\Theta^{\prime} \in S L_{2}(\bar{C}) \cap \operatorname{ESp}(\bar{C})$ and $t_{1}, t_{2} \in C$ such that, if $p_{1}=t_{1}^{2} e_{1}+t_{2} e_{2} \in F$, then $\Theta^{\prime}(\bar{p})=\bar{p}_{1}$. We have $\operatorname{dim} B / B g=\operatorname{dim} A / A g=2$ and B_{g} is an $k(g)$-algebra of dimension two. Thus $\operatorname{Spec} B=\operatorname{Spec} B / B g \cup \operatorname{Spec} B_{g}$ with $\operatorname{dim} B / B g=2=\operatorname{dim} B_{g}$. Hence $\operatorname{psr}(B) \leqslant 3$. Hence, by $2.8, \Theta^{\prime} \otimes \bar{B}$ has a lift $\Theta \in S L(P \otimes B)$.

For $n \geqslant 4$. Since \bar{P} is free of rank $n-1, E_{n-1}(\bar{C})=E(\bar{P})$. Hence, by 2.17 , there exists $\tilde{\Theta} \in E(\bar{P})$ and $t_{i} \in C, 1 \leqslant i \leqslant n-1$ such that, if $p_{1}=t_{1}^{n-1} e_{1}+t_{2} e_{2}+\cdots+t_{n-1} e_{n-1} \in F$, then $\tilde{\Theta}(\bar{p})=\bar{p}_{1}$. By 2.6, $\tilde{\Theta}$ can be lifted to an element $\Theta \in S L(P)$.

Write P for $P \otimes B$. Thus, in either case, there exists $q \in P$ such that

$$
\Theta(p)=p_{1}-a^{\prime} q, \quad \text { where } \quad p_{1}=t_{1}^{n-1} e_{1}+t_{2} e_{2}+\cdots+t_{n-1} e_{n-1}
$$

The automorphism Θ of P induces an automorphism $\Lambda_{1}=\left(\operatorname{Id}_{B}, \Theta\right)$ of $B \oplus P$. Let Λ_{2} be the transvection Δ_{q} of $B \oplus P$. Then $\left(a^{\prime}, p\right) \Lambda_{1} \Lambda_{2}=\left(a^{\prime}, p_{1}\right)$.

By 2.19, there exists $\Lambda_{3} \in \operatorname{Aut}(B \oplus P)$ such that $\left(a^{\prime}, p_{1}\right) \Lambda_{3}=(1,0)$. Let $\Delta=$ $\Psi_{1} \Lambda_{1} \Lambda_{2} \Lambda_{3}$. Then $\Delta \in \operatorname{Aut}(B \oplus P)$ and $(a, p) \Delta=(1,0)$. This proves the result.

Remark 3.4. Let A be a ring and $g, h \in A$ with $A g+A h=A$. Then, any projective A-module E is given by a triple (Q, α, P), where Q, P are projective modules over A_{h} and A_{g}, respectively, and α is a prescribed $A_{g h}$-isomorphism $\alpha: Q_{g} \xrightarrow{\sim} P_{h}$.

Let $g, h \in A$ with $A g+A h=A$ and let P be a projective A-module. Let $(a, p) \in$ $\operatorname{Um}\left(A_{g} \oplus P_{g}\right)$ and $Q=A_{g} \oplus P_{g} /(a, p) A_{g}$. If $\varphi: Q_{h} \xrightarrow{\sim} P_{g h}$ is an isomorphism, then the triple $\left(P_{h}, \varphi, Q\right)$ yields a projective A-module E such that $Q=E \otimes A_{g}$.

Now, we prove the main result of this section. In case P^{\prime} is free (i.e., P is stably free), it is proved in [9, Theorem 2.10].

Theorem 3.5. Let R be an affine algebra of dimension $n \geqslant 3$ over an algebraically closed field k. Suppose char $k=0$ or char $k=p \geqslant n$. Let g, f_{1}, \ldots, f_{r} be a R-regular sequence and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Let P^{\prime} be a projective A-module of rank $n-1$ which is extended from R. Let $(a, p) \in \operatorname{Um}\left(A \oplus P^{\prime}\right)$ and $P=A \oplus P^{\prime} /(a, p) A$. Then, P is extended from R.

Proof. By 3.1, there exists $\Psi \in S L\left(A \oplus P^{\prime}\right)$ such that $(a, p) \Psi=(1,0) \bmod A g$. Let $S=1+R g$ and $B=A_{S}$. Applying 3.3, there exists $\Psi_{1} \in \operatorname{Aut}\left(B \oplus\left(P^{\prime} \otimes B\right)\right)$ such that $(a, p) \Psi \Psi_{1}=(1,0)$. Let $\Delta=\Psi \Psi_{1}$. Then, there exists some $h \in 1+R g$ such that $\Delta \in \operatorname{Aut}\left(A_{h} \oplus P_{h}^{\prime}\right)$ and $(a, p) \Delta=(1,0)$. We have the isomorphism $\Gamma: P_{h} \xrightarrow{\sim} P_{h}^{\prime}$ induced from Δ. The module P is given by the triple ($P_{h}^{\prime}, \Gamma_{g}, P_{g}$). Since $R g+R h=R, R_{g}=A_{g}$, $R_{g h}=A_{g h}$ and $\Gamma_{g}: P_{g h} \xrightarrow{\sim} P_{g h}^{\prime}$ is an isomorphism of $R_{g h}$ module, the triple ($P_{h}^{\prime}, \Gamma_{g}, P_{g}$) defines a projective R-module Q of rank $n-1$ such that $P=Q \otimes A$. This proves the theorem.

The following result is a generalisations of [9, Theorem 2.12], where it is proved for stably free modules.

Theorem 3.6. Let R be an affine domain of dimension $n \geqslant 4$ over $\overline{\mathbb{F}}_{p}$. Suppose $p \geqslant n$. Let K be the field of fractions of R and let A be a subring of K with $R \subset A \subset K$. Let P^{\prime} be a projective A-module of rank $n-1$ which is extended from R. Let $(a, p) \in \operatorname{Um}\left(A \oplus P^{\prime}\right)$ and $P=A \oplus P^{\prime} /(a, p) A$. Then, P is extended from R.

Proof. We may assume that A is finitely generated over R, i.e., there exist $g, f_{1}, \ldots, f_{r} \in$ R such that $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Since P^{\prime} is extended from R, we can choose an element $s \in R$ such that $P^{\prime}{ }_{s}$ is free. Let "bar" denote reduction modulo Asg. Then $\bar{A}=A /$ Asg is an affine algebra of dimension $\leqslant n-1$ over $\overline{\mathbb{F}}_{p}$. Since $n-1 \geqslant 3$, by 2.10 , $\operatorname{psr}(\bar{A}) \leqslant n-1$. Hence, there exists $\bar{\Psi} \in E\left(\bar{A} \oplus \bar{P}^{\prime}\right)$ such that $(\bar{a}, \bar{p}) \bar{\Psi}=(1,0)$. By $2.6, \bar{\Psi}$ can be lifted to $\Psi \in S L\left(A \oplus P^{\prime}\right)$. Replacing (a, p) by $(a, p) \Psi$, we can assume that $(a, p)=$ $(1,0) \bmod$ Asg. Let $B=A_{1+g R}$. Then, by 3.3 there exists $\Gamma \in \operatorname{Aut}\left(B \oplus\left(P^{\prime} \otimes B\right)\right)$ such that $(a, p) \Gamma=(1,0)$. Rest of the argument is same as in 3.5.

The following result is a generalisations of [9, Theorem 2.14], where it is proved for stably free modules.

Theorem 3.7. Let R be a regular affine algebra of dimension $n-1 \geqslant 2$ over an algebraically closed field k. Let $A=R[X, f / g]$, where g, f is a $R[X]$-regular sequence. Suppose
(1) $\operatorname{char} k=0$ or $\operatorname{char} k=p \geqslant n$,
(2) either g is a monic polynomial or $g(0) \in R^{*}$.

Let P^{\prime} be a projective A-module of rank $n-1$ which is extended from R. Let $(a, p) \in$ $\operatorname{Um}\left(A \oplus P^{\prime}\right)$ and $P=A \oplus P^{\prime} /(a, p) A$. Then $P \xrightarrow{\sim} P^{\prime}$.

Proof. By 3.5, there exists a projective $R[X]$-module Q^{\prime} of rank $n-1$ such that $P=$ $Q^{\prime} \otimes A$. By 2.11, $Q^{\prime}=Q \otimes R[X]$ with Q a projective R-module of rank $n-1$. Hence $P=Q \otimes_{R} A$. From [9, Theorem 2.14], we have that $K_{0}(R) \rightarrow K_{0}(A)$ is injective. Since P^{\prime} is extended from R and P is stably isomorphic to P^{\prime}, hence Q is stably isomorphic to P^{\prime} as R-modules. By 2.4, $Q \xrightarrow{\sim} P^{\prime}$ as R-modules and hence $P \xrightarrow{\sim} P^{\prime}$. This proves the result.

4. Main theorem 2

In this section we prove our second result (4.4). Given an affine algebra A over \mathbb{R} and a subset $I \subset A$, we denote by $Z(I)$, the closed subset of $X=\operatorname{Spec} A$ defined by I and by $Z_{\mathbb{R}}(I)$, the set $Z(I) \cap X(\mathbb{R})$, where $X(\mathbb{R})$ is the set of all real maximal ideals \mathfrak{m} of A (i.e., $A / \mathfrak{m} \xrightarrow{\sim} \mathbb{R})$.

We begin by stating the following result of Ojanguren and Parimala [11, Lemma 2].
Lemma 4.1. Let A be a reduced affine algebra of dimension nover \mathbb{R} and $X=\operatorname{Spec} A$. Let $\left[a_{1}, \ldots, a_{d}\right] \in \operatorname{Um}_{d}(A)$. Suppose $a_{1}>0$ on $X(\mathbb{R})$. Then, there exists $b_{2}, \ldots, b_{d} \in A$ such that $\tilde{a}=a_{1}+b_{2} a_{2}+\cdots+b_{d} a_{d}>0$ on $X(\mathbb{R})$ and $Z(\tilde{a})$ is smooth on $X \backslash$ Sing X of dimension $\leqslant n-1$.

The following result is analogous to [11, Proposition 1] and [5, Lemma 3.8].
Lemma 4.2. Let R be a reduced affine algebra of dimension $n \geqslant 3$ over \mathbb{R} and let $g, f_{1}, \ldots, f_{r} \in R$ with g not belonging to any real maximal ideal of R. Let $A=$ $R\left[f_{1} / g, \ldots, f_{r} / g\right]$ and $X=\operatorname{Spec} A$. Let P be a projective A-module and let $(a, p) \in$ $\operatorname{Um}(A \oplus P)$ with $a-1 \in \operatorname{sg} A$ for some $s \in R$. Then, there exists $h \in 1+g R$ and $\Delta \in \operatorname{Aut}\left(A_{h} \oplus P_{h}\right)$ such that if $(a, p) \Delta=(\tilde{a}, \tilde{p})$, then
(1) $\tilde{a}>0$ on $X(\mathbb{R}) \cap \operatorname{Spec} A_{h}$,
(2) $Z(\tilde{a})$ is smooth on $\operatorname{Spec} A_{h} \backslash$ Sing X of dimension $\leqslant n-1$, and
(3) $(\tilde{a}, \tilde{p})=(1,0)\left(\bmod \operatorname{sg} A_{h}\right)$.

Proof. By replacing g by g^{2}, we may assume that $g>0$ on $X(\mathbb{R})$. Since $a=1 \bmod \operatorname{sg} A$, $(a, s p) \in \operatorname{Um}(A \oplus P)$. Therefore, a has no zero on $Z_{\mathbb{R}}(O(s p))$. Let r be a positive integer
such that $g^{r} a \in g R$. Let $Y=\operatorname{Spec} R$. Then $g^{r} a$ has no zero on $Z_{\mathbb{R}}(O(s p)) \cap Y(\mathbb{R})$. By Łojasiewicz's inequality [4, Proposition 2.6.2], there exists $c \in R$ with $c>0$ on $Y(\mathbb{R})$ such that $1 /|a| g^{r}<c$ on $Z_{\mathbb{R}}(O(s p)) \cap Y(\mathbb{R})$. Let $\left(1+a g^{r} c\right) a=a^{\prime}$. Then $g^{r} a^{\prime}>0$ on $Z_{\mathbb{R}}(O(s p)) \cap Y(\mathbb{R})$ and hence $a^{\prime}>0$ on $Z_{\mathbb{R}}(O(s p))$. Write $h=1+a g^{r} c \in 1+g R$. Then $a^{\prime}=h a$.

Let W be the closed semi-algebraic subset of $X(\mathbb{R})$ defined by $a^{\prime} \leqslant 0$. Since $Z_{\mathbb{R}}(O(s p)) \cap W=\emptyset$, if $O(p)=\left(b_{1}, \ldots, b_{d}\right)$ then $s^{2}\left(b_{1}^{2}+\cdots+b_{d}^{2}\right)>0$ on W. Hence, by Łojasiewicz's inequality, there exists $c_{1} \in A$ with $c_{1}>0$ on $X(\mathbb{R})$ such that $\left|a^{\prime}\right| / g s^{2}\left(b_{1}^{2}+\cdots+b_{d}^{2}\right)<c_{1}$. Hence $a^{\prime \prime}=a^{\prime}+c_{1} g s^{2}\left(b_{1}^{2}+\cdots+b_{d}^{2}\right)>0$ on W and hence $a^{\prime \prime}>0$ on $X(\mathbb{R})$.

We still have $a^{\prime \prime}=1 \bmod s g A_{h}$. Since $\left[a^{\prime \prime}, g s^{2} b_{1}^{2}, \ldots, g s^{2} b_{d}^{2}\right] \in \operatorname{Um}_{d+1}\left(A_{h}\right)$, by 4.1, there exists $h_{i} \in A_{h}$ such that $\tilde{a}=a^{\prime \prime}+\sum_{i=1}^{d} g s^{2} b_{i}^{2} h_{i}>0$ on $X(\mathbb{R}) \cap \operatorname{Spec} A_{h}$ and $Z(\tilde{a})$ is smooth on $\operatorname{Spec} A_{h} \backslash \operatorname{Sing} X$ of dimension $\leqslant n-1$. It is clear from the proof that there exists $\Delta_{1} \in \operatorname{Aut}\left(A_{h} \oplus P_{h}\right)$ such that $(a, p) \Delta_{1}=(\tilde{a}, p)$. Since $\tilde{a}=1 \bmod \operatorname{sg} A_{h}$, there exists $\Delta_{2} \in E\left(A_{h} \oplus P_{h}\right)$ such that $(\tilde{a}, p) \Delta_{2}=(\tilde{a}, \tilde{p})$ with $\tilde{p} \in \operatorname{sg} P_{h}$. Take $\Delta=\Delta_{1} \Delta_{2}$. This proves the result.

Lemma 4.3. Let R be an affine algebra of dimension $n \geqslant 3$ over \mathbb{R}. Let $g, f_{1}, \ldots, f_{r} \in R$ with g a non-zero-divisor and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Assume that g does not belong to any real maximal ideal of R. Let $S=1+g R$ and $B=A_{S}$. Let P be a projective B-module of rank $\geqslant n-1$ which is extended from R_{S}. Let $(a, p) \in \operatorname{Um}(B \oplus P)$ with $(a, p)=(1,0) \bmod B g$. Then, there exists $\tilde{\Delta} \in \operatorname{Aut}(B \oplus P)$ such that $(a, p) \tilde{\Delta}=(1,0)$.

Proof. In view of 2.3, it is enough to prove the result when rank of P is $\leqslant n$. For the sake of simplicity, we assume that rank of $P=n-1$. The same proof goes through when rank $P=n$.

Without loss of generality, we may assume that R is reduced. Let J_{1} be the ideal of R_{g} defining the singular locus Sing R_{g}. Since R_{g} is reduced, ht $J_{1} \geqslant 1$. Note that $\sqrt{J_{1}}=J_{1}$. Let $J=J_{1} \cap R$. Then, we may assume that g does not belong to any minimal primes of J and ht $J \geqslant 1$. Hence $\operatorname{ht}(g, J) R \geqslant 2$.

Since $(a, p)=(1,0) \bmod B g$, by 3.2, there exists some $s \in J$ and $\Phi \in \operatorname{Aut}(B \oplus P)$ such that P_{s} is free and $(a, p) \Phi=(1,0) \bmod B s g$. Hence, replacing (a, p) by $(a, p) \Phi$, we can assume that $(a, p)=(1,0) \bmod B s g$.

There exists some $h \in S$ such that P is a projective A_{h}-module with P_{s} free and $(a, p) \in$ $\operatorname{Um}\left(A_{h} \oplus P\right)$ with $(a, p)=(1,0) \bmod s g A_{h}$. Applying 4.2, there exists some $h^{\prime} \in 1+g R_{h}$ and $\Delta \in \operatorname{Aut}\left(A_{h h^{\prime}} \oplus P_{h h^{\prime}}\right)$ such that $(a, p) \Delta=\left(a^{\prime}, p^{\prime}\right)$ with
(1') $a^{\prime}>0$ on $X(\mathbb{R}) \cap \operatorname{Spec} A_{h h^{\prime}}$, where $X=\operatorname{Spec} A_{h}$,
(2') $\left(a^{\prime}, p^{\prime}\right)=(1,0) \bmod \operatorname{sg} A_{h h^{\prime}}$, and
($\left.3^{\prime}\right) Z\left(a^{\prime}\right)$ is smooth (since $a^{\prime}=1 \bmod \operatorname{sg} A_{h h^{\prime}}$ and $s \in J_{1}$) on $\operatorname{Spec} A_{h h^{\prime}}$ of dimension $\leqslant n-1$.

Note that, since $h^{r} h^{\prime} \in 1+R g$ for some positive integer $r, A_{h h^{\prime}} \subset B$. Hence, replacing $A_{h h^{\prime}}$ by A and $\left(a^{\prime}, p^{\prime}\right)$ by (a, p), we assume that the above properties ($\left.1^{\prime}\right)-\left(3^{\prime}\right)$ holds for (a, p) in the ring A, i.e., we have
(1) $a>0$ on $X(\mathbb{R})$, where $X=\operatorname{Spec} A$,
(2) $(a, p)=(1,0) \bmod \operatorname{sg} A$, and
(3) $Z(a)$ is smooth on $\operatorname{Spec} A$ of dimension $\leqslant n-1$.

Since P_{s} is free of rank $n-1$, there exists a free submodule $F=A^{n-1}$ of P such that $F_{s}=P_{s}$. Replacing s by a suitable power of s, we may assume that $s P \subset F$. Let e_{1}, \ldots, e_{n-1} denote the standard basis of A^{n-1}.

Since $p \in \operatorname{sg} P \subset g F, p=b_{1} e_{1}+\cdots+b_{n-1} e_{n-1}$ for some $b_{i} \in g A$. Then $\left[a, b_{1}\right.$, $\left.\ldots, b_{n-1}\right] \in \operatorname{Um}_{n}(A)$. Let $T=1+g \mathbb{R}[g]$ and $C=A_{T}$. Note that $B=A_{S}=C \otimes C_{S}$. Let "bar" denotes reduction modulo Ca. Since $a-1 \in C s g$ and $s \in J, \bar{C}$ is a smooth affine algebra over $\mathbb{R}(g)$ of dimension $n-2$. Since $P_{s}=F_{s}$ is free, the inclusion $F \subset P$ gives rise to equality $\bar{F}=\bar{P}$. In particular, \bar{P} is free of rank $n-1 \geqslant 2$ with a basis $\bar{e}_{1}, \ldots, \bar{e}_{n-1}$ and $\bar{p} \in \operatorname{Um}(\bar{P})$.

Assume $n \geqslant 4$. We have $\left[\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right] \in \operatorname{Um}_{n-1}(\bar{C})$. As in [9, Lemma 2.6], by Swan's Bertini theorem [19, Theorem 1.3], there exists an $\Theta \in E_{n-1}(\bar{C})$ such that $\left[\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right] \Theta=\left[\bar{b}_{1}, \bar{b}_{2}, \bar{c}_{3}, \ldots, \bar{c}_{n-1}\right]$ with the following properties:
(1) \bar{C} / \bar{J} is smooth affine $\mathbb{R}(g)$-algebra of dimension 2 , where J denotes the ideal of C generated by $\left(c_{4}, \ldots, c_{n-1}\right)$,
(2) \bar{C} / \bar{I} is smooth affine $\mathbb{R}(g)$-algebra of dimension 1 , where I denotes the ideal of C generated by $\left(c_{3}, \ldots, c_{n-1}\right)$.

Every maximal ideal \mathfrak{m} of \bar{C} / \bar{I} is the image in Spec \bar{C} / \bar{I} of a prime ideal \mathfrak{p} of C of height $n-1$ containing a. Since a does not belongs to any real maximal ideal of C, by Serre's result [13], the residue field $\mathbb{R}(\mathfrak{p})=k(\mathfrak{m})$ of \mathfrak{m} has cohomological dimension \leqslant 1. By $2.20, S K_{1}(\bar{C} / \bar{I})$ is divisible and the natural map $K_{1} S p(\bar{C} / \bar{I}) \rightarrow S K_{1}(\bar{C} / \bar{I})$ is an isomorphism.

Let "tilde" denotes reduction modulo \bar{I}. Write $D=\bar{C}, \tilde{D}=D / \bar{I}$. Then, there exists $\Theta^{\prime} \in S L_{2}(\tilde{D}) \cap E S p(\tilde{D})$ and $t_{1}, t_{2} \in D$ such that

$$
\left[\tilde{b}_{1}, \tilde{b}_{2}\right] \Theta^{\prime}=\left[\tilde{t}_{1}^{n-1}, \tilde{t}_{2}\right]
$$

Since $B=C_{S}, \bar{B}=\bar{C}_{S}$. We have $\Theta^{\prime} \in S L_{2}(\bar{B} / \bar{I}) \cap E S p(\bar{B} / \bar{I})$ and $t_{1}, t_{2} \in \bar{B}$ such that $\left[\tilde{b}_{1}, \tilde{b}_{2}\right] \Theta^{\prime}=\left[\tilde{t}_{1}^{n-1}, \tilde{t}_{2}\right]$.

If $n=3$, then $\bar{I}=0$ and hence $\bar{B} / \bar{I}=\bar{B}=B / B a$. We have $\operatorname{dim} B / B g=\operatorname{dim} A / A g=$ 2 and B_{g} is an $\mathbb{R}(g)$-algebra of dimension two. Thus Spec $B=\operatorname{Spec} B / B g \cup \operatorname{Spec} B_{g}$ with $\operatorname{dim} B / B g=2=\operatorname{dim} B_{g}$. Hence $\operatorname{psr}(B) \leqslant 3$. Therefore, by $2.8, \Theta^{\prime}$ has a lift $\Theta_{1} \in$ $S L(P \otimes B)$.

For $n \geqslant 4$. Since $\operatorname{dim} \bar{B} / \bar{I} \leqslant 1$ and $\operatorname{dim} \bar{B} / \bar{J} \leqslant 2$, by 2.16 , there exists $\Theta^{\prime \prime} \in$ $E_{n-1}(B / B a)$ such that

$$
\left[\bar{b}_{1}, \bar{b}_{2}, \bar{c}_{3}, \ldots, \bar{c}_{n-1}\right] \Theta^{\prime \prime}=\left[\bar{t}_{1}^{n-1}, \bar{t}_{2}, \bar{c}_{3}, \ldots, \bar{c}_{n-1}\right]
$$

Recall that, there exists $\Theta \in E_{n-1}(B / B a)$ such that $\left[\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right] \Theta=\left[\bar{b}_{1}, \bar{b}_{2}, \bar{c}_{3}, \ldots, \bar{c}_{n-1}\right]$. Since \bar{P} is free of $\operatorname{rank} n-1 \geqslant 3, E_{n-1}(\bar{A})=E(\bar{P})$. By 2.6, $\Theta \Theta^{\prime \prime} \in E_{n-1}(B / B a)$ can be
lifted to an element $\Theta_{1} \in S L(P \otimes B)$. (In particular, the above argument shows that every stably free $B / B a$-module of rank $\geqslant n-2$ is cancellative.)

Write P for $P \otimes B$. Thus, in either case ($n \geqslant 3$), there exists $q \in P$ such that

$$
\Theta_{1}(p)=p_{1}-a q, \quad \text { where } \quad p_{1}=t_{1}^{n-1} e_{1}+t_{2} e_{2}+c_{3} e_{3}+\cdots+c_{n-1} e_{n-1}
$$

The automorphism Θ_{1} of P induces an automorphism $\Lambda_{1}=\left(\operatorname{Id}_{B}, \Theta_{1}\right)$ of $B \oplus P$. Let Λ_{2} be the transvection Δ_{q} of $B \oplus P$. Then $(a, p) \Lambda_{1} \Lambda_{2}=\left(a, p_{1}\right)$.

By 2.19 , there exists $\Lambda_{3} \in \operatorname{Aut}(\underset{\sim}{B} \oplus P)$ such that $\left(a, p_{1}\right) \Lambda_{3}=(1,0)$. Let $\tilde{\Delta}=\Lambda_{1} \Lambda_{2} \Lambda_{3}$. Then $\tilde{\Delta} \in \operatorname{Aut}(B \oplus P)$ and $(a, p) \tilde{\Delta}=(1,0)$. This proves the result.

Now, we prove the main theorem of this section.
Theorem 4.4. Let R be an affine algebra of dimension $n \geqslant 3$ over \mathbb{R}. Let g, f_{1}, \ldots, f_{r} be a R-regular sequence and $A=R\left[f_{1} / g, \ldots, f_{r} / g\right]$. Assume that g does not belong to any real maximal ideal of R. Let P^{\prime} be a projective A-module of rank $\geqslant n-1$ which is extended from R. Let $(a, p) \in \operatorname{Um}\left(A \oplus P^{\prime}\right)$ and $P=A \oplus P^{\prime} /(a, p) A$. Then, P is extended from R.

Proof. By 3.1, there exists $\Delta \in \operatorname{Aut}\left(A \oplus P^{\prime}\right)$ such that $(a, p) \Delta=(1,0) \bmod A g$. Let $S=1+R g$ and $B=A_{S}$. Applying 4.3, there exists $\Delta_{1} \in \operatorname{Aut}\left(B \oplus\left(P^{\prime} \otimes B\right)\right)$ such that $(a, p) \Delta \Delta_{1}=(1,0)$. Let $\Psi=\Delta \Delta_{1}$. Then, there exists $h \in 1+R g$ such that $\Psi \in \operatorname{Aut}\left(A_{h} \oplus\right.$ $\left.P^{\prime}{ }_{h}\right)$ and $(a, p) \Psi=(1,0)$. Rest of the argument is same as in 3.5.

Remark 4.5. The proof of 4.4 works for any real closed field k. For simplicity, we have taken $k=\mathbb{R}$.

Corollary 4.6. Let $R=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and $f, g \in R$ with g not belonging to any real maximal ideal. Then, every stably free $R[f / g]$-modules P of rank $\geqslant n-1$ is free.

Proof. Write $A=R[f / g]$. We may assume that f, g have no common factors so that g, f is a regular sequence in R. Since rank $P \geqslant n-1, P \oplus A^{2}$ is free. Applying 4.4, we get that $P \oplus A$ is extended from R. By Quillen-Suslin theorem [12,18], every projective R-module is free. Hence $P \oplus A$ is free. Again, by 4.4, P is extended from R and hence is free.

The proof of the following result is similar to 3.7 , hence we omit it.
Theorem 4.7. Let R be a regular affine algebra of dimension $n-1 \geqslant 2$ over \mathbb{R}. Let $A=$ $R[X, f / g]$, where g, f is a $R[X]$-regular sequence. Suppose that
(1) g does not belongs to any real maximal ideal,
(2) g is a monic polynomial or $g(0) \in R^{*}$.

Let P^{\prime} be a projective A-module of rank n which is extended from R. Let $(a, p) \in$ $\operatorname{Um}\left(A \oplus P^{\prime}\right)$ and $P=A \oplus P^{\prime} /(a, p) A$. Then $P \xrightarrow{\sim} P^{\prime}$.

In particular, every stably free A-module of rank n is free.

References

[1] H. Bass, K-Theory and stable algebra, Inst. Hautes Études Sci. 22 (1964) 5-60.
[2] S.M. Bhatwadekar, A cancellation theorem for projective modules over affine algebras over C_{1}-fields, JPAA 183 (2003) 17-26.
[3] S.M. Bhatwadekar, A. Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984) 150-158.
[4] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Ergeb. Math., Springer, Berlin, 1998.
[5] M.K. Keshari, A note on projective modules over real affine algebras, J. Algebra 278 (2004) 628-637.
[6] H. Lindel, Unimodular elements in projective modules, J. Algebra 172 (1995) 301-319.
[7] H. Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65 (2) (1981-82) 319-323.
[8] N. Mohan Kumar, M.P. Murthy, A. Roy, A cancellation theorem for projective modules over finitely generated rings, in: H. Hijikata, et al. (Eds.), Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, vol. 1, 1987, pp. 281-287.
[9] M.P. Murthy, Cancellation problem for projective modules over certain affine algebras, in: Proceedings of the International Colloquium on Algebra, Arithmetic and Geometry, Mumbai, Narosa Publishing House, 2000, pp. 493-507.
[10] M.P. Murthy, Zero cycles and projective modules, Ann. of Math. 140 (1994) 405-434.
[11] M. Ojanguren, R. Parimala, Projective modules over real affine algebras, Math. Ann. 287 (1990) 181-184.
[12] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976) 167-171.
[13] J.P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1968) 264-277.
[14] J.P. Serre, Sur les modules projectifs, Sem. Dubreil-Pisot 14 (1960-61) 1-16.
[15] A.A. Suslin, Cancellation over affine varieties, J. Sov. Math. 27 (1984) 2974-2980.
[16] A.A. Suslin, On stably free modules, Math. USSR Sb. 31 (1977) 479-491.
[17] A.A. Suslin, A cancellation theorem for projective modules over affine algebras, Sov. Math. Dokl. 18 (1977) 1281-1284.
[18] A.A. Suslin, Projective modules over polynomial rings are free, Sov. Math. Dokl. 17 (4) (1976) 1160-1164.
[19] R.G. Swan, A cancellation theorem for projective modules in the metastable range, Invent. Math. 27 (1974) 23-43.
[20] R.G. Swan, J. Towber, A class of projective modules which are nearly free, J. Algebra 36 (1975) 427-434.

[^0]: E-mail address: keshari@mri.ernet.in.

