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Abstract

We use integration by parts formulas to give estimates for the L p norm of the Riesz transform. This
is motivated by the representation formula for conditional expectations of functionals on the Wiener space
already given in Malliavin and Thalmaier (2006) [13]. As a consequence, we obtain regularity and estimates
for the density of non-degenerated functionals on the Wiener space. We also give a semi-distance which
characterizes the convergence to the boundary of the set of the strict positivity points for the density.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The starting point of this paper is the representation theorem for densities and conditional
expectations of random variables based on the Riesz transform, recently given by Malliavin and
Thalmaier in [13]. Let us recall it. Let F and G denote random variables taking values on Rd

and R respectively and consider the following integration by parts formula: there exist some
integrable random variables Hi (F,G) such that for every test function f ∈ C∞

c (Rd)

I Pi (F,G) E(∂i f (F)G) = −E( f (F)Hi (F,G)), i = 1, . . . , d.
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Malliavin and Thalmaier proved that if I Pi (F, 1), i = 1, . . . , d hold and the law of F has a
continuous density pF , then

pF (x) = −

d−
i=1

E(∂i Qd(F − x)Hi (F, 1))

where Qd denotes the Poisson kernel on Rd , that is the fundamental solution of the Laplace
operator. Moreover, they proved also that if I Pi (F,G), i = 1, . . . , d, a similar representation
formula holds also for the conditional expectation of G with respect to F . The interest of
Malliavin and Thalmaier in these representations come from numerical reasons – this allows
one to simplify the computation of densities and conditional expectations using a Monte Carlo
method. This is crucial in order to implement numerical algorithms for solving non-linear
PDE’s or optimal stopping problems – for example for pricing American options. But there is a
difficulty: the variance of the estimators produced by such a representation formula is infinite.
Roughly speaking, this comes from the blowing up of the Poisson kernel around zero: ∂i Qd ∈ L p

for p < d/(d − 1), so that ∂i Qd ∉ L2 for every d ≥ 2. So estimates of E(|∂i Qd(F − x)|p) are
crucial in this framework and this is the central point of interest in our paper. In [8,9], Kohasu-
Higa and Yasuda proposed a solution to this problem using some cut off arguments. And in order
to find the optimal cut off level they used the estimates of E(|∂i Qd(F − x)|p) which we prove
in this paper (actually, they used a former version given in the preprint [2]).

So our central result concerns estimates of E(|∂i Qd(F − x)|p). It turns out that, in addition
to the interest in numerical problems, such estimates represent a suitable instrument in order to
obtain regularity of the density of functionals on the Wiener space—for which Malliavin calculus
produces integration by parts formulas. Before going further let us mention that one may also
consider integration by parts formulas of higher order, that is

I Pα(F,G) E(∂α f (F)) = E( f (F)Hα(F,G))

where α = (α1, . . . , αk). We say that an integration by parts formula of order k holds if this
is true for every α ∈ {1, . . . , d}

k . Now, a first question is: which is the order k of integration
by parts that one needs in order to prove that the law of F has a continuous density pF ? If
one employs a Fourier transform argument (see [14]) or the representation of the density by
means of the Dirac function (see [1]) then one needs d integration by parts if F ∈ Rd . In [11]
Malliavin proves that integration by parts of order one is sufficient in order to obtain a continuous
density, the dimension d does not matter (he employs some harmonic analysis arguments). A
second problem concerns estimates of the density pF (and of its derivatives) and such estimates
involve the L p norms of the weights Hα(F, 1). In the approach using the Fourier transform or
the Dirac function, ‖Hα(F, 1)‖p, |α| ≤ d are involved if one estimates ‖pF‖∞. But in [15]
Shigekawa obtains estimates of ‖pF‖∞ depending only on ‖Hi (F, 1)‖p, so on the weights of
order one (and similarly for derivatives). In order to do it, he needs some Sobolev inequalities
that he proves using a representation formula based on the Green function and some estimates
of modified Bessel functions. Our program and our results are similar but the instrument used in
our paper is the Riesz transform and the estimates of the Poisson kernel mentioned above.

Let us be more precise. Notice that I Pi (F,G) may also be written as

I Pi (F,G)
∫
∂i f (x)g(x)µF (dx) = −

∫
f (x)∂µF

i g(x)µF (dx)
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where µF is the law of F, g(x) := E(G | F = x) and ∂µF g(x) := E(H(F,G) | F = x).
This suggests that we can work in the abstract framework of Sobolev spaces with respect to the
probability measureµF (instead of the usual Lebesgue measure). More precisely for a probability
measure µ we denote by W 1,p

µ the space of the functions φ ∈ L p(dµ) for which there exist
some functions θi ∈ L p(dµ), i = 1, . . . , d such that


φ∂i f dµ = −


θi f dµ for every test

function f ∈ C∞
c (Rd). If F is a random variable of law µ then the above duality relation reads

E(φ(F)∂i f (F)) = −E(θi (F) f (F)) and these are the usual integration by parts formulas in the
probabilistic approach – for example −θi (F) is connected to the weight produced by Malliavin
calculus for a functional F on the Wiener space. But one may consider other frameworks – as
the Malliavin calculus on the Wiener Poisson space for example. This formalism has already
been used by Shigekawa in [15] and a slight variant appears in the book of Malliavin and
Thalmaier [13] (the so-called covering vector fields).

In Section 2 we prove the following result: if 1 ∈ W 1,p
µ (or equivalently I Pi (F, 1), i =

1, . . . , d hold) for some p > d then

sup
x∈Rd

d−
i=1

∫
|∂i Qd(y − x)|p/(p−1) µ(dy) ≤ Cd,p ‖1‖

ℓd,p

W 1,p
µ

,

Moreover µ(dx) = pµ(x)dx , with pµ Hölder continuous of order 1 − d/p, and the following
representation formula holds:

pµ(x) =

d−
i=1

∫
∂i Qd(y − x)∂µi 1(y)µ(dy).

More generally, let µφ(dx) := φ(x)µ(dx). If φ ∈ W 1,p
µ then µφ(dx) = pµφ (x)dx and

pµφ is Hölder continuous. This last generalization is important from a probabilistic point of
view because it produces a representation formula and regularity properties for the conditional
expectation. We introduce in a straightforward way higher order Sobolev spaces W m,p

µ ,m ∈ N
and we prove that if 1 ∈ W m,p

µ then pµ is m − 1 times differentiable and the derivatives of order
m − 1 are Hölder continuous. And the analogous result holds for φ ∈ W m,p

µ . So if we are able to
iterate m times the integration by parts formula we obtain a density in Cm−1. These results are
already obtained by Shigekawa. In our paper we get some supplementary information about the
queues of the density function and we develop more the applications to conditional expectations.

Furthermore, we prove an alternative representation formula. Suppose that F satisfies
integration by parts formulas in order to get that its law µ has a C1 density pµ. We set
Uµ = {pµ > 0} and for x, y ∈ Uµ, Ax,y = {ϕ : [0, 1] → Uµ ; ϕ ∈ C1, ϕ0 = x, ϕ1 = y}. Then
for any ϕ ∈ Ax,y one has

pµ(y) = pµ(x) exp

∫ 1

0
⟨∂µ1(ϕt ), ϕ̇t ⟩dt


,

a formula which generalizes the one given by Bell [3] (he assumes Uµ = Rd and takes ϕ as the
straight line). The above formula suggests to introduce the following Riemannian semi-distance
on Uµ: setting C i j

µ = ∂
µ
i 1∂µj 1, i, j = 1, . . . , d, for x, y ∈ Uµ one defines

dµ(x, y) = inf

∫ 1

0
⟨Cµ(ϕt )ϕ̇t , ϕ̇t ⟩

1/2dt; ϕ ∈ Ax,y


.
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Such a distance is of interest in the following framework. Suppose that F is a non-degenerated
and smooth r.v. on the Wiener space, so that integration by parts formulas hold and F has a
smooth probability density. If F is one-dimensional then Fang [6] proved that Uµ is connected
and the interior of Uµ is given by Uµ (so the density is itself strictly positive in the interior of the
support of the law). But this is false in the multi-dimensional case, as shown by Nualart [14]
through a counterexample. Then Malliavin suggested that one has to replace the Euclidean
distance by the intrinsic distance associated to the Dirichlet form of F (see [7] for details).
And he conjectured that if d(·, ·) is such a distance then for any sequence {xn}n ⊂ Uµ such
that pµ(xn) → 0 then d(xn, x1) → ∞, as n → ∞. But Hirsch and Song [7] provided a
counterexample which shows that it is false as long as the intrinsic distance is taken into account.
We prove here that the Malliavin’s conjecture is true but with the distance dµ defined above (and
in fact, we prove the equivalence).

The paper is organized as follows. In Section 2 we develop the main results in the abstract
Sobolev spaces framework. In Section 3 we translate these results in probabilistic terms and in
Section 4 we give their applications on the Wiener space.

2. Sobolev spaces associated to a probability measure and Riesz transform

2.1. Definitions and main objects

We consider a probability measure µ on Rd (with the Borel σ -field) and we denote by
L p
µ = {φ :


|φ(x)|p µ(dx) < ∞} and we put ‖φ‖L p

µ
= (


|φ(x)|p µ(dx))1/p. We also

denote by W 1,p
µ the space of the functions φ ∈ L p

µ for which there exist some functions
θi ∈ L p

µ, i = 1, . . . , d such that, for every test function f ∈ C∞
c (Rd), one has∫

∂i f (x)φ(x)µ(dx) = −

∫
f (x)θi (x)µ(dx).

We denote ∂µi φ = θi . And we define the norm

‖φ‖
W 1,p
µ

= ‖φ‖L p
µ

+

d−
i=1

∂µi φL p
µ
.

We similarly define the Sobolev spaces of higher order. Let α = (α1, . . . , αm) ∈ {1, . . . , d}
m

be a multi-index. We denote by |α| = m the length of α and for a function f ∈ Cm(Rd) we
denote by ∂α f = ∂αm · · · ∂α1 f the standard derivative corresponding to the multi-index α. Then
we define W m,p

µ to be the space of the functions φ ∈ L p
µ such that for every multi-index α with

|α| ≤ m there exist some functions θα ∈ L p
µ such that∫

∂α f (x)φ(x)µ(dx) = (−1)|α|

∫
f (x)θα(x)µ(dx) ∀ f ∈ C∞

c (R
d).

We denote ∂µα φ = θα and we define the norm

‖φ‖W m,p
µ

= ‖φ‖L p
µ

+

−
|α|≤m

∂µα φL p
µ
.

We will use the notation L p,W m,p for the spaces associated to the Lebesgue measure (instead of
µ), which are the standard L p and the standard Sobolev spaces which are used in the literature.
If D ⊂ Rd is an open set we denote by W m,p

µ (D) the space of the functions φ which verify the
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integration by parts formula for test functions f which have a compact support included in D (so
W m,p
µ = W m,p

µ (Rd)). The same for W m,p(D), L p(D), L p
µ(D).

Our aim is to study the link between W m,p
µ and W m,p and the main tool is the Riesz transform

that we introduce now. The solution Qd of the equation ∆Qd = δ0 in Rd has the following
explicit form:

Q2(x) = a−1
2 ln |x | and Qd(x) = −a−1

d |x |
2−d , d > 2 (1)

where ad is the area of the unit sphere in Rd . For f ∈ C1
c (Rd) one has

f = (∇Qd) ∗ ∇ f.

In Theorem 4.22 of [13], this representation for the function f is called the Riesz transform of
f and is employed in order to obtain representation formulas for the conditional expectation.
Moreover, some analogous representation formulas for functions on the sphere and on the ball
are used by Malliavin and Nualart in [12] in order to obtain lower bounds for the density of a
strongly non-degenerated random variable.

Setting A2 = 1 and for d > 2, Ad = d − 2, we have

∂i Qd(x) = a−1
d Ad

xi

|x |
d . (2)

By using polar coordinates, one has∫
|x |≤1

|∂i Qd(x)|
1+δ dx ≤ A1+δ

d

∫ 1

0

 r

rd

1+δ

rd−1dr = A1+δ
d

∫ 1

0

1

r δ(d−1)
dr (3)

which is finite for any δ < 1
d−1 . But

∂2
i Qd(x)

 ∼ |x |
−d and so


|x |≤1

∂2
i Qd(x)

 dx = ∞. This
is the reason for which we have to integrate by parts once and to remove one derivative, but we
may keep the other derivative.

In order to include the one dimensional case we set Q1(x) = max{x, 0}, a1 = A1 = 1 and
we have

d Q1(x)

dx
= 1(0,∞)(x).

In this case the above integral is finite for every δ > 0.

2.2. An absolute continuity criterion

For a function φ ∈ L1
µ we denote by µφ the signed finite measure defined by

µφ(dx) := φ(x)µ(dx).

We prove now the following theorem, which is starting point of our next results.

Theorem 1. A. Let φ ∈ W 1,1
µ . Then∫ ∂i Qd(y − x)∂µi φ(y)

µ(dy) < ∞
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for a.e. x ∈ Rd and µφ(dx) = pµφ (x)dx with

pµφ (x) = −

d−
i=1

∫
∂i Qd(y − x)∂µi φ(y)µ(dy). (4)

B. If φ ∈ W m,1
µ for some m ≥ 2 then pµφ ∈ W m−1,1 and for each multi index α of length less or

equal to m − 1, the associated weak derivative can be represented as

∂α pµφ (x) = −

d−
i=1

∫
∂i Qd(y − x)∂µ(α,i)φ(y)µ(dy). (5)

If in addition 1 ∈ W 1,1
µ , the following alternative representation formula holds:

∂α pµφ (x) = pµ(x)∂
µ
α φ(x). (6)

In particular, taking φ = 1 and α = {i} one has

∂
µ
i 1 = 1{pµ>0}∂i ln pµ. (7)

Proof. A. We take f ∈ C1
c (Rd) and we write f = ∆(Qd ∗ f ) =

∑d
i=1(∂i Qd) ∗ (∂i f ). Then∫

f dµφ =

∫
f φdµ =

d−
i=1

∫
µ(dx)φ(x)

∫
∂i Qd(z)∂i f (x − z)dz

=

d−
i=1

∫
∂i Qd(z)

∫
µ(dx)φ(x)∂i f (x − z)dz

= −

d−
i=1

∫
∂i Qd(z)

∫
µ(dx) f (x − z)∂µi φ(x)dz

= −

d−
i=1

∫
µ(dx)∂µi φ(x)

∫
∂i Qd(z) f (x − z)dz

= −

d−
i=1

∫
µ(dx)∂µi φ(x)

∫
∂i Qd(x − y) f (y)dy

=

∫
f (y)


−

d−
i=1

∫
∂i Qd(x − y)∂µi φ(x)µ(dx)


dy

which proves the representation formula (4).
In the previous computations we have used the Fubini theorem several times so we need to

prove that some integrability properties hold. Let us suppose that the support of f is included
in BR(0) for some R > 1. We denote CR(x) = {y : |x | − R ≤ |y| ≤ |x | + R} and we have
BR(x) ⊂ CR(x). First of all

|φ(x)∂i Qd(z)∂i f (x − z)| ≤ ‖∂i f ‖∞ |φ(x)|
∂i Qd(z)1CR(x)(z)


and ∫

CR(x)
|∂i Qd(z)| dz ≤ Ad

∫
|x |+R

|x |−R

r

rd × rd−1dr = 2R Ad .
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So ∫ ∫
|φ(x)∂i Qd(z)∂i f (x − z)| dzµ(dx) ≤ 2R Ad‖∂i f ‖∞

∫
|φ(x)|µ(dx) < ∞.

Similarly∫ ∫ ∂µi φ(x)∂i Qd(z) f (x − z)
 dzµ(dx) =

∫ ∫ ∂µi φ(x)∂i Qd(x − y) f (y)
 dyµ(dx)

≤ 2R Ad‖ f ‖∞

∫ ∂µi φ(x)µ(dx) < ∞

so all the needed integrability properties hold and our computation is correct. In particular we
have checked that


dy f (y)

 ∂µi φ(x)∂i Qd(x − y)
µ(dx) < ∞ for every f ∈ C1

c (Rd) so ∂µi φ(x)∂i Qd(x − y)
µ(dx) is finite dy almost surely.

B. In order to prove (5), we write ∂α f =
∑d

i=1 ∂i Qd ∗ ∂i∂α f . Now, we use the same chain of
equalities as above and we obtain∫

∂α f (x)pµφ (x)dx =

∫
∂α f dµφ

= (−1)|α|

∫
f (y)


−

d−
i=1

∫
∂i Qd(x − y)∂µ(α,i)φ(x)µ(dx)


dy

so that ∂α pµφ (y) = −
∑d

i=1


∂i Qd(x − y)∂µ(α,i)φ(x)µ(dx). As for (6), we have∫

∂α f (x)pµφ (x)dx =

∫
∂α f (x)µφ(dx) =

∫
∂α f (x)φ(x)µ(dx)

= (−1)|α|

∫
f (x)∂µα φ(x)µ(dx)

= (−1)|α|

∫
f (x)∂µα φ(x)pµ(x)dx . �

Remark 2. Notice that if 1 ∈ W 1,1
µ then for any f ∈ C∞

c one has∫ ∂i f dµ
 ≤ ci‖ f ‖∞ with ci = ‖∂

µ
i 1‖L1

µ
, i = 1, . . . , d.

Now, it is known that the above condition implies the existence of the density, as proved by
Malliavin in [10] (see also [14], Lemma 2.1.1), and Theorem 1 gives a new proof including the
representation formula in terms of the Riesz transform.

2.3. Estimate of the Riesz transform

As we will see later on, an important fact is to be able to control the quantities ∂i Qd , and more
precisely Θp(µ) defined by

Θp(µ) = sup
a∈Rd

d−
i=1

∫
Rd

|∂i Qd(x − a)|
p

p−1 µ(dx)
 p−1

p
. (8)

This is the main content of Theorem 5. We begin with two preparatory lemmas.
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For a probability measure µ and probability density ψ (a non negative measurable function
ψ with


Rd ψ(x)dx = 1) we define the probability measure ψ ∗ µ by∫
f (x)(ψ ∗ µ)(dx) :=

∫
ψ(x)

∫
f (x + y)µ(dy)dx .

Lemma 3. Let p ≥ 1. If 1 ∈ W 1,p
µ then 1 ∈ W 1,p

ψ∗µ and ‖1‖
W 1,p
ψ∗µ

≤ ‖1‖
W 1,p
µ
.

Proof. On a probability space (Ω ,F , P) we consider two independent random variables F
and ∆ such that F ∼ µ(dx) and ∆ ∼ ψ(x)dx . Then F + ∆ ∼ (ψ ∗ µ)(dx). We define
θi (x) = E(∂µi 1(F) | F + ∆ = x) and we claim that ∂ψ∗µ

i 1 = θi . In fact, for f ∈ C1
c (Rd) one

has

−

∫
∂i f (x)(ψ ∗ µ)(dx) = −

∫
dxψ(x)

∫
∂i f (x + y)µ(dy)

= −

∫
dxψ(x)

∫
f (x + y)∂µi 1(y)µ(dy)

= E( f (F + ∆)∂µi 1(F)) = E( f (F + ∆)E(∂µi 1(F) | F + ∆))

= E( f (F + ∆)θi (F + ∆)) =

∫
f (x)× θi (x)(ψ ∗ µ)(dx)

so ∂ψ∗µ
i 1 = θi . Moreover∫

|θi (x)|
p (ψ ∗ µ)(dx) = E(|θi (F + ∆)|p) = E

E(∂µi 1(F) | F + ∆)
p

≤ E
∂µi 1(F)

p
=

∫ ∂µi 1(x)
p
µ(dx)

so 1 ∈ W 1,p
ψ∗µ and ‖1‖

W 1,p
ψ∗µ

≤ ‖1‖
W 1,p
µ

. �

Lemma 4. Let pn, n ∈ N be a sequence of probability densities such that supn ‖pn‖∞ = C∞ <

∞. Suppose also that the sequence of probability measuresµn(dx) = pn(x)dx, n ∈ N converges
weakly to a probability measure µ. Then µ(dx) = p(x)dx and ‖p‖∞ ≤ C∞.

Proof. Since


p2
n(x)dx ≤ C∞ the sequence pn is bounded in L2(Rd) and so it is weakly relative

compact. Passing to a subsequence (which we still denote by pn) we may find p ∈ L2(Rd) such
that


pn(x) f (x)dx →


p(x) f (x)dx for every f ∈ L2(Rd). But, if f ∈ Cc(Rd) ⊂ L2(Rd)

then


pn(x) f (x)dx →


f (x)µ(dx) so that µ(dx) = p(x)dx .
Let us now check that p is bounded. Using Mazur’s theorem we may construct a convex

combination qn =
∑mn

i=1 λ
n
i pn+i , with λi

n ≥ 0,
∑mn

i=1 λ
n
i = 1, such that qn → p strongly in

L2(Rd). Then, passing to a subsequence, we may assume that qn → p almost everywhere. It
follows that p(x) ≤ supn qn(x) ≤ C∞ almost everywhere. And we may change p on a set of
null measure. �

We are now able to give our basic estimate of Θp(µ).
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Theorem 5. Let p > d and let µ be a probability measure on Rd such that 1 ∈ W 1,p
µ . So

by Theorem 1 µ(dx) = pµ(x)dx with

pµ(x) =

d−
i=1

∫
∂i Qd(y − x)∂µi 1(y)µ(dy). (9)

Then

(i) Θp(µ) ≤ d Kd,p ‖1‖
kd,p

W 1,p
µ

(ii)
pµ


∞

≤ 2d Kd,p ‖1‖
kd,p+1

W 1,p
µ

.
(10)

with

kd,p =
(d − 1)p

p − d
and Kd,p = 1 + 2A

p
p−1
d


p − 1
p − d

· 2d A
p

p−1
d

kd,p

.

Remark 6. The inequality in (10) (i) gives estimates of the kernels ∂i Qd , i = 1, . . . , d which
appear in the Riesz transform. This is the crucial point in our approach. In [12], the authors use
the Riesz transform on the sphere and they give estimates of the L p norms of the corresponding
kernels (which are of course different).

Proof. We will first prove the theorem under the supplementary assumption:

(H) pµ is bounded.

We take ρ > 0 and notice that if |x − a| > ρ then |∂i Qd(x − a)| ≤ Adρ
−(d−1). Since p > d,

for any a ∈ Rd we have∫
|∂i Qd(x − a)|

p
p−1µ(dx) ≤ A

p
p−1
d ρ

−(d−1) p
p−1 +

∫
|x−a|≤ρ

|∂i Qd(x − a)|
p

p−1 pµ(x)dx

≤ A
p

p−1
d


ρ

−(d−1) p
p−1 + ‖pµ‖∞

∫ ρ

0

dr

r
d−1
p−1


.

This gives∫
|∂i Qd(x − a)|

p
p−1µ(dx) ≤ A

p
p−1
d

[
ρ

−(d−1) p
p−1 + ‖pµ‖∞

p − 1
p − d

ρ
p−d
p−1

]
< ∞. (11)

We use the representation formula (9) and Hölder’s inequality and we obtain

pµ(x) = −

d−
i=1

∫
∂i Qd(y − x)∂µi 1(y)µ(dy)

≤ ‖1‖
W 1,p
µ

d−
i=1

∫
|∂i Qd(y − x)|

p
p−1 µ(dy)

 p−1
p

≤ ‖1‖
W 1,p
µ


d +

d−
i=1

∫
|∂i Qd(y − x)|

p
p−1 µ(dy)


. (12)
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By using (11), we obtain

‖pµ‖∞ ≤ d ‖1‖
W 1,p
µ


A

p
p−1
d


ρ

−(d−1) p
p−1 + ‖pµ‖∞

p − 1
p − d

ρ
p−d
p−1


+ 1


.

Now choose ρ = ρ∗, with ρ∗ such that

d A
p

p−1
d ‖1‖

W 1,p
µ

p − 1
p − d

ρ

p−d
p−1

∗ =
1
2

that is,

ρ∗ =


p − 1
p − d

· 2d A
p

p−1
d ‖1‖

W 1,p
µ

−
p−1
p−d

.

Then

‖pµ‖∞ ≤ 2d ‖1‖
W 1,p
µ
(A

p
p−1
d ρ

−(d−1) p
p−1

∗ + 1).

Since p−1
p−d ρ

p−d
p−1

∗ = (2d Ap/(p−1)
d ‖1‖

W 1,p
µ
)−1, by using (11) we obtain∫

|∂i Qd(x − a)|
p

p−1µ(dx) ≤ 1 + 2A
p

p−1
d ρ

−(d−1) p
p−1

∗

= 1 + 2A
p

p−1
d


p − 1
p − d

· 2d A
p

p−1
d

 (d−1)p
p−d

· ‖1‖

(d−1)p
p−d

W 1,p
µ

≤

1 + 2A
p

p−1
d


p − 1
p − d

· 2d A
p

p−1
d

 (d−1)p
p−d

 ‖1‖
kd,p

W 1,p
µ

= Kd,p · ‖1‖
kd,p

W 1,p
µ

and finally

d−
i=1

∫
|∂i Qd(y − x)|

p
p−1 µ(dy) ≤ d(1 + Kd,p) ‖1‖

kd,p

W 1,p
µ

≤ 2d Kd,p ‖1‖
kd,p

W 1,p
µ

.

Using (12) this givespµ


∞
≤ 2d Kd,p ‖1‖

kd,p+1

W 1,p
µ

.

So the theorem is proved under the supplementary assumption (H). We now remove this
assumption. We consider a non-negative and continuous function ψ such that


ψ = 1 and

ψ(x) = 0 for |x | ≥ 1. Then we define ψn(x) = ndψ(nx) and µn = ψn ∗ µ. We have
µn(dx) = pn(x)dx with pn(x) =


ψn(x − y)µ(dy). Using Lemma 3 we have 1 ∈ W 1,p

µn

and ‖1‖
W 1,p
µn

≤ ‖1‖
W 1,p
µ

< ∞. Since pn is bounded, µn verifies assumption (H) and so, using

the first part of the proof, we obtain

‖pn‖∞ ≤ 2d Kd,p ‖1‖
kd,p+1

W 1,p
µn

≤ 2d Kd,p ‖1‖
kd,p+1

W 1,p
µ

.

Clearly µn → µ weakly so, using Lemma 4 we may find p such that µ(dx) = p(x)dx and p is
bounded. So µ itself satisfies (H) and the proof is completed. �



1342 V. Bally, L. Caramellino / Stochastic Processes and their Applications 121 (2011) 1332–1355

2.4. Regularity of the density

Theorem 1 says that µφ has a density as soon as φ ∈ W 1,1
µ —and this does not depend on

the dimension d of the space. But if we want to obtain a continuous or a derivable density, we
need more regularity for φ. The main instrument in order to obtain such properties is the classical
theorem of Morrey which we recall now (see Corollary IX.13 in [5]).

Theorem 7. Let u ∈ W 1,p(Rd). If 1−
d
p > 0 then u is Hölder continuous of exponent q = 1−

d
p .

Furthermore suppose that u ∈ W m,p(Rd) and m −
d
p > 0. Let k = [m −

d
p ] be the integer part

of m −
d
p and q = {m −

d
p } the fractional part. If k = 0 then u is Hölder continuous of exponent

q and if k ≥ 1 then u ∈ Ck and for any multi-index α with |α| ≤ k the derivative ∂αu is Hölder
continuous of exponent q: for any x, y ∈ Rd ,

|∂αu(x)− ∂αu(y)| ≤ Cd,p‖u‖W m,p(Rd ) |x − y|
q

Cd,p being dependent on d and p only.

It is clear from Theorem 7 that there are two ways to improve the regularity of u: one has to
increase m or/and p. If φ ∈ W m,p

µ for a sufficiently large m then Theorem 1 already gives us a
differentiable density pµφ . But if we want to keep m low we have to increase p. And in order
to be able to do it the key point is the estimate for Θp(µ) given in Theorem 5. This is done in
Theorem 8, where we use the following natural notation: we allow a multi-index to be equal to
the empty set and for α = ∅, we set |α| = 0 and ∂α f := f .

Theorem 8. We consider some p > d and we suppose that 1 ∈ W 1,p
µ . For m ≥ 1, let φ ∈ W m,p

µ ,
so that µφ(dx) = pµφ (x)dx. Then the following statements hold.

A. We have pµφ ∈ W m,p andpµφ


W m,p ≤ (2d Kd,p)
1−1/p

‖1‖
kd,p(1−1/p)

W 1,p
µ

‖φ‖W m,p
µ

. (13)

Moreover, for any multi-index α such that 0 ≤ |α| = ℓ ≤ m − 1, we have∂α pµφ


∞
≤ d Kd,p ‖1‖

kd,p

W 1,p
µ

‖φ‖
W ℓ+1,p
µ

. (14)

B. We have pµφ ∈ Cm−1. Moreover, for any multi-index β such that 0 ≤ |β| = k ≤ m − 2,
∂β pµφ is Lipschitz continuous: for any x, y ∈ Rd ,

|∂β pµφ (x)− ∂β pµφ (y)| ≤ d2 Kd,p ‖1‖
kd,p

W 1,p
µ

‖φ‖
W k+2,p
µ

|x − y|.

And for any multi-index β such that |β| = m − 1, ∂β pµφ is Hölder continuous of exponent
1 − d/p: for any x, y ∈ Rd ,∂β pµφ (x)− ∂β pµφ (y)

 ≤ Cd,p
pµφ


W m,p |x − y|

1−d/p

Cd,p being dependent on d and p only.

C. We have W m,p
µ ⊂


δ>0 W m,p({pµ > δ}).
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Proof. A. We use (6) (with the notation ∂µα φ := φ if α = ∅) and we obtain∫ ∂α pµφ (x)
p dx =

∫ ∂µα φ(x)p pµ(x)p dx ≤
pµ

p−1
∞

∫ ∂µα φ(x)p pµ(x)dx .

So
∂α pµφ


L p ≤

pµ
1−1/p

∞

∂µα φL p
µ

and by using (10) we obtain (13). Now, using the
representation formula (5), Hölder’s inequality and Theorem 5 we get

∂α pµφ (x)
 ≤ Θp(µ)

d−
i=1

‖∂
µ

(α,i)φ‖L p
µ

≤ d Kd,p ‖1‖
kd,p

W 1,p
µ

‖φ‖
W ℓ+1,p
µ

and (14) is proved.

B. The fact that pµφ ∈ Cm−1(Rd) and the Hölder property are standard consequences of
pµφ ∈ W m,p, as stated in Theorem 7. As for the Lipschitz property, it immediately follows from

(14) and the fact that if f ∈ C1 with ‖∇ f ‖∞ < ∞ then | f (x)− f (y)| ≤
∑d

i=1 ‖∂i f ‖∞ |x − y|.

C. We have pµφ (x)dx = φ(x)µ(dx) = φ(x)pµ(x)dx so φ(x) = pµφ (x)/pµ(x) if pµ(x) > 0.
And since pµφ , pµ ∈ W m,p(Rd) we obtain φ ∈ W m,p({pµ > δ}). �

2.5. Estimate of the tails of the density

In order to study the behavior of the tails of the density, we need the following computational
rules.

Lemma 9. A. If φ ∈ W 1,p
µ and ψ ∈ C1

b(R
d) then ψφ ∈ W 1,p

µ and

∂
µ
i (ψφ) = ψ∂

µ
i φ + ∂iψφ. (15)

In particular, if 1 ∈ W 1,p
µ then for any ψ ∈ C1

b(R
d) one has ψ ∈ W 1,p

µ and

∂
µ
i ψ = ψ∂

µ
i 1 + ∂iψ. (16)

B. Suppose that 1 ∈ W 1,p
µ . If ψ ∈ C1

b(R
m) and if u = (u1, . . . , um) : Rd

→ Rm is such that

u j ∈ C1
b(R

d), j = 1, . . . ,m, then ψ ◦ u ∈ W 1,p
µ and

∂
µ
i ψ ◦ u =

m−
j=1

(∂ jψ) ◦ u∂µi u j + Tψ ◦ u ∂µi 1

where

Tψ (x) = ψ(x)−

d−
j=1

∂ jψ(x)x j .

Proof. A. Since ψ and ∂iψ are bounded, ψφ,ψ∂µi φ, ∂iψφ ∈ L p
µ. So we just have to check the

integration by parts formula. We have∫
∂i fψφ dµ =

∫
∂i ( fψ)φ dµ−

∫
f ∂iψφ dµ = −

∫
fψ∂µi φ dµ−

∫
f ∂iψφ dµ

and the statement holds.
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B. By using (16), we have

∂
µ
i (ψ ◦ u) = ψ ◦ u ∂µi 1 + ∂i (ψ ◦ u) = ψ ◦ u ∂µi 1 +

m−
j=1

(∂ jψ) ◦ u ∂i u j .

The formula now follows by inserting ∂i u j = ∂
µ
i u j − u j∂

µ
i 1, as given by (16). �

We now give a result which allows us to estimate the queues of pµ.

Proposition 10. Let φ ∈ C1
b(R

d) be a function such that 1B1(0) ≤ φ ≤ 1B2(0). We set φx (y)

= φ(x − y) and we assume that 1 ∈ W 1,p
µ with p > d, so, in view of Lemma 9, φx ∈ W 1,p

µ .
Then we have the representation

pµ(x) =

d−
i=1

∫
∂i Qd(y − x)∂µi φx (y)1{|y−x |<2}µ(dy).

As a consequence, for any positive a < 1
d −

1
p one has

pµ(x) ≤ Θp(µ)

d + ‖1‖

W 1,p
µ


µ

B2(x)

a (17)

where p = 1/(a +
1
p ). In particular,

lim
|x |→∞

pµ(x) = 0. (18)

Proof. By Lemma 9, φx ∈ W 1,p
µ and ∂µi φx = φx∂

µ
i 1 + ∂iφx , so that ∂µi φx = ∂

µ
i φx 1B2(x). Now,

for f ∈ C1
c (B1(x)) we have∫
f (y)µ(dy) =

∫
f (y)φx (y)µ(dy) =

∫
f (y)pµφx

(y)dy

= −

∫
f (y)

d−
i=1

∫
∂i Qd(z − y)∂µi φx (z)µ(dz)dy

= −

∫
f (y)

d−
i=1

∫
∂i Qd(z − y)∂µi φx (z)1B2(x)(z)µ(dz)dy.

It follows that for y ∈ B1(x) we have

pµ(y) = −

d−
i=1

∫
∂i Qd(z − y)∂µi φx (z)1B2(x)(z)µ(dz).

We now consider y = x and we take a ∈ (0, 1
d −

1
p ). Using Hölder’s inequality we obtain

pµ(x) ≤ µ(B2(x))
a

d−
i=1

Ii with Ii =

∫ ∂i Qd(z − x)∂µi φx (z)
 1

1−a µ(dz)

1−a

.

Notice that 1 < d(1 − a)/(1 − da) < p(1 − a). We take β such that d(1 − a)/(1 − da) <
β < p(1 − a) and we denote by α the conjugate of β. Again using Hölder’s inequality we
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obtain

Ii ≤

∫
|∂i Qd(z − x)|

α
1−a µ(dz)

(1−a)/α ∫ ∂µi φx (z)
 β

1−a µ(dz)

(1−a)/β

≤

∫
|∂i Qd(z − x)|

α
1−a µ(dz)

(1−a)/α ∂µi φx


L p
µ
.

We let β ↑ p(1 − a) so that

α

1 − a
=

β

(β − 1)(1 − a)
→

p

p(1 − a)− 1
=

p

p − 1
.

So we obtain

Ii ≤ Θp(µ)
∂µi φx


L p
µ

and then

pµ(x) ≤ Θp(µ) ‖φx‖W 1,p
µ
µ(B2(x))

a .

Now, since ∂µi φx = φx∂
µ
i 1 + ∂iφx , we have ‖φx‖W 1,p

µ
≤ cφ d + ‖1‖

W 1,p
µ

where cφ > 1 is such

that ‖∇φ‖∞ ≤ cφ , so that

pµ(x) ≤ Θp(µ)

cφ d + ‖1‖

W 1,p
µ


µ(B2(x))

a .

(17) now follows by taking a sequence {φn}n ⊂ C1
b such that 1B1(0) ≤ φn ≤ 1B2(0) with

‖∇φn‖∞ ≤ 1 + 1/n and by letting n → ∞.
Finally, 1B2(x) → 0 a.s. when |x | → ∞ and by using the Lebesgue dominated convergence

theorem, one has µ

B2(x)


=


1B2(x)(y)µ(dy) → 0. By applying (17), one obtains (18). �

2.6. On the set of strict positivity for the density

Suppose that 1 ∈ W 2,1
µ and set Uµ = {pµ > 0}. We define the matrix field Cµ : Rd

→

Rd
× Rd through

C i j
µ (x) = ∂

µ
i 1(x)∂µj 1(x), i, j = 1, . . . , d.

For x, y ∈ Rd , we set

Aµx,y =


ϕ ∈ C1([0, 1],Uµ); ϕ0 = x, ϕ1 = y


dµ(x, y) = inf

∫ 1

0
⟨Cµ(ϕt )ϕ̇t , ϕ̇t ⟩

1/2dt; ϕ ∈ Aµx,y


(19)

with the understanding dµ(x, y) = +∞ if Ax,y = ∅. Notice that dµ(x, y) = +∞ if x and y
belong to two different connected components of the open set Uµ, if they exist. Moreover, it is
easy to see that dµ(x, y) does not define in general a distance but only a semi-distance. In fact,
as an example, take pµ as a smooth probability density on R which is constant on some interval
(a, b), a < b. Then, ∂µ1 = ∂ ln pµ ≡ 0 on (a, b), so that dµ(x, y) = 0 for any x, y ∈ (a, b).

Then we have the following representation formula and estimates for the density.
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Proposition 11. Let 1 ∈ W 2,p
µ with p > d, and let x, x0 ∈ Uµ be such that Aµx0,x ≠ ∅. Then, for

any ϕ ∈ Aµx0,x one has

pµ(x) = pµ(x0) exp

∫ 1

0
⟨∂µ1(ϕt ), ϕ̇t ⟩ dt


. (20)

As a consequence,

pµ(x0)e
−dµ(x0,x) ≤ pµ(x) ≤ pµ(x0)e

dµ(x0,x). (21)

Proof. If 1 ∈ W 1,p
µ with p > d, the density pµ exists and is continuous, so that Uµ = {pµ > 0}

is open. Now, for ϕ ∈ Aµx0,x , one has ∂i ln pµ(ϕx0,x (t)) = ∂
µ
i 1(ϕx0,x (t)) so that

d ln pµ(ϕ(t)) =

d−
i=1

∂
µ
i 1(ϕ(t))ϕ̇i (t)dt = ⟨∂µ1(ϕt ), ϕ̇t ⟩

and (20) follows by integrating over [0, 1]. Now, for any ϕ ∈ Aµx0,x one hasln p(x)

p(x0)

 =


∫ 1

0
⟨∂µ1(ϕt ), ϕ̇t ⟩ dt

 ≤

∫ 1

0
|⟨∂µ1(ϕt ), ϕ̇t ⟩| dt =

∫ 1

0
⟨Cµ(ϕt )ϕ̇t , ϕ̇t ⟩

1/2 dt.

By taking the inf over Aµx0,x one proves (21). �

We can now state the main result of this section.

Proposition 12. Suppose that 1 ∈ W 2,p
µ with p > d. Then the following statements hold.

(i) If pµ(xn) → 0 then dµ(xn, x1) → ∞.
(ii) If Uµ is connected, the converse of (i) holds: if dµ(xn, x1) → ∞ then pµ(xn) → 0.

(iii) ∂µ1 is locally bounded (that is, bounded on compact sets of Rd ) if and only if {pµ > 0} =

Rd .

Proof. (i) The statement immediately follows by the first inequality in (21).
(ii) By contradiction, we assume that pµ(xn) 9 0: there exist c > 0 and a subsequence {xnk }k

such that pµ(xnk ) ≥ c for any k. By Proposition 10, and in particular (18), there exists R > 0
such that pµ(x) < c if |x | > R. This gives that the sequence {xnk }k is bounded and then there
exists a further subsequence {xnkℓ

}ℓ converging to some point x̄ . Now, since pµ is continuous
and pµ(x̄) ≥ c, there exists r > 0 such that pµ ≥

c
2 in the ball B(x̄, r), which of course contains

the points xnkℓ
for any large ℓ. This means that the path ϕℓ joining x̄ to xnkℓ

at a constant speed
belong to Ax̄,xnkℓ

for any large ℓ. Therefore,∫ 1

0
|⟨∂µ1(ϕℓt ), ϕ̇

ℓ
t ⟩| dt ≤

∫ 1

0
|∂µ1(ϕℓt )||ϕ̇

ℓ
t | dt ≤ C × |x̄ − xnkℓ

| ≤ C × r

in which we have used the fact that ∂µ1 is bounded on B(x̄, r). It follows that for some ℓ0,

sup
ℓ≥ℓ0

dµ(x̄, xnkℓ
) ≤ C × r.

Now,

sup
ℓ≥ℓ0

dµ(x1, xnkℓ
) ≤ dµ(x1, x̄)+ C × r

and dµ(x1, x̄) < ∞ because Uµ is connected, and this gives a contradiction.
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(iii) If ∂µ1 is bounded on compact sets of Rd , then for x ∈ Uµ by (20) we get

pµ(x) ≤ pµ(x0) exp


C sup
t∈[0,1]

|ϕ̇x0,x |


where x0 ∈ Uµ is such that Aµx0,x ≠ ∅. Now, if ∂Uµ ≠ ∅, we can let x0 tend to the boundary
of Uµ and in such a case we obtain pµ(x) = 0, which is a contradiction. Therefore, pµ > 0
everywhere. On the contrary, it is sufficient to recall that ∂µ1(x) = ∂ ln pµ is continuous on
Uµ = Rd . �

Remark 13. Parts (i) and (ii) of the above Proposition 12 allow us to discuss the Malliavin
conjecture about the set of the strict positivity points of the density, as already described in the
Introduction at page section. For further details, we address Proposition 27.

Furthermore, (iii) says that if 1 ∈ W 1,p
µ with ∂µi 1 locally bounded then we can take x0 = 0

and ϕx0,x (t) = t x , so that

pµ(x) = pµ(0) exp

∫ 1

0

d−
i=1

xi∂
µ
i 1(t x) dt


.

Such a representation formula has already been given by Bell in [3].

Remark 14. It is easy to see that all the results of this section hold if the semi-distance d f is
replaced by the square root of the energy associated to the matrix field Cµ, which is defined by

dµ(x, y) = inf


∫ 1

0
⟨Cµ(ϕt )ϕ̇t , ϕ̇t ⟩dt

1/2

; ϕ ∈ Ax,y

 (22)

with dµ(x, y) = +∞ if Ax,y = ∅. Again, dµ(x, y) defines only a semi-distance and one has
dµ(x, y) ≤ dµ(x, y).

2.7. Local integration by parts formulas

The assumptions in the previous sections are global – and this may fail in many interesting
cases – for example for diffusion processes living in a region of the space or, as a more elementary
example, for the exponential distribution. So in this section we give a hint about the localized
version of the results presented above.

An open domain D ⊂ Rd is given. We recall that L p
µ(D) = { f :


D | f (x)|pdµ(x) < ∞}

and W 1,p
µ (D) is the space of the functions φ ∈ L p

µ(D) which verify the integration by parts
formula


φ∂i f dµ = −


θi f dµ for test functions f which have a compact support included

in D. And ∂µ,Di φ := θi ∈ L p
µ(D). The space W m,p

µ (D) is similarly defined. Our aim is to give
sufficient conditions in order that µ has a smooth density on D, that means that we look for a
smooth function p such that


D f (x)dµ(x) =


D f (x)p(x)dx . And we want to give estimates

for p and its derivatives in terms of the Sobolev norms of W m,p
µ (D).

The main step in our approach is a truncation argument that we present now. Given −∞ ≤

a ≤ b ≤ ∞ and ε > 0 we define ψε,a,b : R → R+ by

ψε,a,b(x) = 1(a−ε,a](x) exp


1 −
ε

x + ε − a


+ 1(a,b)(x)

+1[b,b+ε)(x) exp


1 −
ε

x − b − ε
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with the convention 1(a−ε,a) = 0 if a = −∞ and 1(b,b+ε) = 0 if b = ∞. Notice that
ψε,a,b ∈ C∞

b (R) and

sup
x∈(a−ε,b+ε)

∂x lnψε,a,b(x)
p
ψε,a,b(x) ≤ ε−p sup

y>0
y2pe−y .

For x = (x1, . . . , xd) and i ∈ {1, . . . , d} we denotexi = (x1, . . . , x i−1, x i+1, . . . , xd) and for
y ∈ R we put (xi , y) = (x1, . . . , x i−1, y, x i+1, . . . , xd). Then we define

a(xi ) = inf
y∈R


y : d((xi , y), Dc) > 2ε


, b(xi ) = sup

y∈R


y : d((xi , y), Dc) > 2ε


with the convention a(xi ) = b(xi ) = 0 if {y : d((xi , y), Dc) > 2ε} = ∅. Finally we define

ΨD,ε(x) =

d∏
i=1

ψε,a(xi ),b(xi )(xi ).

We denote Dε = {x : d(x, Dc) ≥ ε} so that 1D2ε ≤ ΨD,ε ≤ 1Dε . And we also have

sup
x∈Dε

∂x ln ΨD,ε(x)
p ΨD,ε(x) ≤ dε−p sup

y>0
y2pe−y . (23)

We are now able to give the main result in this section. The symbol ν|D denotes the measure
ν restricted to the open set D.

Theorem 15. A. Suppose that φ ∈ W 1,1
µ (D). Then µφ |D(dx) = pµφ (x)dx .

B. Suppose that 1 ∈ W 1,p
µ (D) for some p > d. Then for each ε > 0

sup
x∈Rd

d−
i=1

∫
D2ε

|∂i Qd(y − x)|p/(p−1)µ(dy) ≤ Cd,pε
−p

‖1‖
W 1,p
µ (D)

.

C. Suppose that 1 ∈ W 1,p
µ (D) for some p > d. Then for φ ∈ W m,p

µ (D) we have µφ |D(dx) =

pφ,D(x)dx and

pφ,D(x) = −

d−
i=1

∫
∂i Qd(y − x)(ΨD,ε∂

µ
i φ + φ∂iΨD,ε)µ(dx) for x ∈ Dε.

Moreover pφ,D ∈

ε>0 W m,p(Dε) and

‖pφ,D‖W m,p(Dε) ≤ C p,d(1 + ε−1)(1 ∨ ‖1‖
W 1,p
µ (D)

)kd,p(1−1/p)
‖φ‖W m,p

µ (D).

Finally, pφ,D is m − 1 times differentiable on D and for every multi-index α of length 0 ≤ ℓ ≤

m − 1 one has

‖∂α pφ,D‖∞ ≤ C p,d(1 + ε−ℓ)(1 ∨ ‖1‖
W 1,p
µ (D)

)kd,p(1−1/p)
‖φ‖

W l+1,p
µ (D)

.

Proof. We denote µD,ε(dx) = ΨD,ε(x)µ(dx). Let us first show that if φ ∈ W 1,p
µ (D) then

φ ∈ W 1,p
µD,ε (Rd). In fact, if f ∈ C∞

c (Rd) then f ΨD,ε ∈ C∞
c (D) and similarly to what developed
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in Lemma 9, one has∫
∂i f φdµD,ε =

∫
∂i f φΨD,εdµ = −

∫
∂
µ
i (ΨD,εφ) f dµ

= −

∫
(ΨD,ε∂

µ
i φ + φ∂iΨD,ε) f dµ = −

∫
(∂
µ
i φ + φ∂i ln ΨD,ε) f dµD,ε

so that ∂
µD,ε
i φ = ∂

µ
i φ + φ∂i ln ΨD,ε. And by using (23) we have ∂

µD,ε
i φ ∈ L p

µD,ε (Rd):

d−
i=1

∫ ∂µD,ε
i φ

p
dµD,ε =

d−
i=1

∫ ∂µi φ + φ∂i ln ΨD,ε
p ΨD,εdµ

≤

d−
i=1

∫
D

∂µi φ + φ∂i ln ΨD,ε
p ΨD,εdµ ≤ C pε

−p
‖φ‖

p

W 1,p
µ (D)

.

It follows that

‖φ‖
W 1,p
µD,ε (R

d )
≤ C pε

−1
‖φ‖

W 1,p
µ (D)

.

Setting µD,ε,φ(dx) := φµD,ε(dx), we can use Theorem 8 and we obtain µD,ε,φ(dx) =

pD,ε,φ(x)dx with pD,ε,φ ∈ W 1,p(Rd). Similarly we prove that if φ ∈ W m,p
µ (D) then

pD,ε,φ ∈ W m,p(Rd). We notice that for a function f with the support included in D2ε we have
f φdµ =


f φdµD,ε. It follows that µφ |D2ε (dx) = pD,ε(x)dx .

Now, statement A. immediately follows from the above arguments.

B. Suppose now that 1 ∈ W 1,p
µ (D) for some p > d . Then∫

D2ε

|∂i Qd(x − y)|p/(p−1) µ(dy) ≤

∫
|∂i Qd(x − y)|p/(p−1)ΨD,ε(y)µ(dy)

=

∫
|∂i Qd(x − y)|p/(p−1) µD,ε(dy)

≤ d Kd,p(1 ∨ ‖1‖
W 1,p
µD,ε

)kd,p ≤ Cd,pε
−p

‖1‖
W 1,p
µ (D)

.

The upper bounds for the density and its derivatives are proved in a similar way.
Finally, C follows similarly as in (iii) of Proposition 12. �

3. Integration by parts formulas for random variables and Riesz transform

Let (Ω ,F , P) ba a probability space and let F and G be two random variables taking values
in Rd and R respectively.

Definition 16. Given a multi-index α and a power p ≥ 1, we say that the integration by parts
formula I Pα,p(F,G) holds if there exists a random variable Hα(F; G) ∈ L p such that

I Pα,p(F,G) E(∂α f (F)G) = (−1)|α|E( f (F)Hα(F; G)), ∀ f ∈ C |α|

c (Rd). (24)

We define W m,p
F to be the space of the random variables G ∈ L p such that I Pα,p(F,G) holds

for every multi-index α with |α| ≤ m. For G ∈ W m,p
F we define

∂F
α G = E(Hα(F; G) | F).
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We denote by µF the law of F and µF,G( f ) := E( f (F)G). So µF = µF,1. Moreover we
denote φG(x) = E(G | F = x). Then it is easy to check that

W m,p
F = {G ∈ L p

: φG ∈ W m,p
µF

} and ∂F
α G = ∂µF

α φG(F).

We also define the norms

‖G‖W m,p
F

= ‖G‖L p +

−
1≤|α|≤m

(E(|∂F
α G|

p))1/p.

It is easy to see that (W m,p
F , ‖·‖W m,p

F
) is a Banach space.

Remark 17. Notice that E(
∂F
α G

p
) ≤ E(|Hα(F; G)|p) so that ∂F

α G is the weight of the
minimal L p norm which verifies I Pα,p(F; G). In particular

‖G‖W m,p
F

≤ ‖G‖L p +

−
1≤|α|≤m

‖Hα(F; G)‖L p

and this last quantity is the one which naturally appears in concrete computations.

We can resume the result of Section 2 as follows. As for the density, we obtain

Theorem 18. A. Suppose that 1 ∈ W 1,p
F for some p > d. Then µF (dx) = pF (x)dx and

pF ∈ Cb(Rd). Moreover

ΘF (p) := sup
a∈Rd

d−
i=1


E(|∂i Qd(F − a)|p/(p−1))

(p−1)/p
≤ Kd,p ‖1‖

kd,p

W 1,p
F

,

‖pF‖∞ ≤ Kd,p ‖1‖
1+kd,p

W 1,p
F

and

pF (x) =

d−
i=1

E(∂i Qd(F − x)∂F
i 1) =

d−
i=1

E(∂i Qd(F − x)Hi (F; 1)).

B. For any positive a < 1
d −

1
p one has

pF (x) ≤ ΘF (p)

d + ‖1‖

W 1,p
F


P(F ∈ B2(x))

a

where p = 1/(a +
1
p ).

Now we give the representation formula and the estimates for the conditional expectation.

Theorem 19. Suppose 1 ∈ W 1,p
F . Let m ≥ 1 and G ∈ W m,p

F .

A. We have µF,G(dx) = pF,G(x)dx and

φG(x) = E(G | F = x) = 1{pF (x)>0}

pF,G(x)

pF (x)

with

pF,G(x) =

d−
i=1

E(∂i Qd(F − x)∂F
i G) =

d−
i=1

E(∂i Qd(F − x)Hi (F; G)).
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B. We have pF,G ∈ W m,p and φG ∈

δ>0 W m,p({pF > δ}). Moreover,

(i)
pF,G


∞

≤ Kd,p ‖1‖
kd,p

W 1,p
F

‖G‖
W 1,p

F

(ii)
pF,G


W m,p ≤ (2d Kd,p)

1−1/p
‖1‖

kd,p(1−1/p)

W 1,p
F

‖G‖W m,p
F
.

We also have the representation formula

∂α pF,G(x) =

d−
i=1

E(∂i Qd(F − x)∂F
(α,i)G) =

d−
i=1

E(∂i Qd(F − x)H(α,i)(F; G))

for any α with 0 ≤ |α| ≤ m − 1. Furthermore, pF,G ∈ Cm−1(Rd) and for any multi-index α
with |α| = k ≤ m − 2, ∂α pF,G is Lipschitz continuous with Lipschitz constant

Lα = d2
‖1‖

kd ,p

W 1,p
F

‖G‖
W k+2,p

F
.

And for any multi index α with |α| = m − 1, ∂α pF,G is Hölder continuous of exponent 1 − d/p
and Hölder constant

Lα = Cd,p ‖pF,G‖W m,p ,

Cd,p being dependent on d and p only.

Finally we give a stability property.

Proposition 20. Let Fn,Gn, n ∈ N be two sequences of random variables such that (Fn,Gn) →

(F,G) in probability. Suppose that Gn ∈ W m,p
Fn

and supn(‖Gn‖W m,p
Fn

+ ‖Fn‖L p ) < ∞ for some

m ∈ N. Then G ∈ W m,p
F and ‖G‖W m,p

F
≤ supn ‖Gn‖W m,p

Fn
.

Remark 21. Suppose that we are in the framework of Malliavin calculus and think that F is a
functional on the Wiener space which is non-degenerated and sufficiently smooth in the Malliavin
sense. And G is another functional which is sufficiently smooth in the Malliavin sense. Then
the Malliavin calculus produces integration by parts formulas and so permits us to prove that
G ∈ W m,p

F . But we may proceed in a different way: we start by taking a sequence Fn, n ∈ N
of simple functionals such that Fn → F and a sequence Gn, n ∈ N such that Gn → G and
then we may use standard finite dimensional integration by parts formulas in order to prove that
Gn ∈ W m,p

Fn
. If we are able to check that supn ‖Gn‖W m,p

Fn
< ∞ then using the above stability

property we conclude that G ∈ W m,p
F .

Proof. We denote Qn = (Fn,Gn, ∂
Fn
α Gn, |α| ≤ m). Since p ≥ 2 and supn(‖Gn‖W m,p

Fn
+

‖Fn‖L p ) < ∞ it follows that the sequence Qn, n ∈ N is bounded in L2 and consequently
weakly relative compact. Let Q be a limit point. Using Mazur’s theorem we construct a
sequence of convex combinations Qn =

∑kn
i=1 λ

n
i Qn+i , (with

∑kn
i=1 λ

n
i = 1 and λn

i ≥ 0)
such that Qn → Q strongly in L2. And passing to a subsequence we may assume that the
convergence holds almost surely as well. Since (Fn,Gn) → (F,G) in probability it follows
that Q = (F,G, θα, |α| ≤ m). And using the integration by parts formulas I Pα,p(Fn,Gn) and
the almost sure convergence it is easy to see that I Pα,p(F,G) holds with Hα(F; G) = θα so
θα = ∂F

α G. Moreover again using the almost sure convergence and the convex combinations
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one checks that ‖G‖W m,p
F

≤ supn ‖G‖W m,p
Fn

. In all the above arguments we have to use the

Lebesgue dominated convergence theorem so the almost sure convergence is not sufficient. But
a straightforward truncation argument which we do not develop here permits us to handle this
difficulty. �

4. Functionals on the Wiener space

In this section we consider a probability space (Ω ,F ,P) with a Brownian motion W =

(W 1, . . . ,W n) and we use the Malliavin calculus in order to obtain integration by parts formulas.
We refer to [14] for notation and basic results. We denote by Dk,p the space of the random
variables which are k times differentiable in Malliavin sense in L p and for a multi-index
α = (α1, . . . , αm) ∈ {1, . . . , n}

m we denote by DαF the Malliavin derivative of F corresponding
to the multi-index α. Moreover, for any multi-index α with length |α| = m we set

|D(m)F |
2

=

−
|α|=m

|DαF |
2.

We also consider the norms

‖F‖
p
m,p = ‖F‖

p
p +

m−
k=1

−
|α|=k

E

∫
[0,∞)k

|Dα
s1,...,sk

F |
2 ds1 . . . dsk

p/2

.

So Dm,p is the closure of the space of the simple functionals with respect to the norm ‖ · ‖m,p.
Moreover, for F = (F1, . . . , Fd), F i

∈ D1,2, one denotes by σF the Malliavin covariance
matrix associated to F :

σ
i, j
F = ⟨DF i , DF j

⟩ =

n−
k=1

∫
∞

0
Dk

s F i Dk
s F j ds, i, j = 1, . . . , d.

We will assume the non-degeneracy condition

(det σF )
−1

∈


p∈N

L p. (25)

Under this assumption the matrix σF is invertible and we denote by σF the inverse matrix. We
also denote by δ the divergence operator (Skorohod integral) and by L the Ornstein Uhlembeck
operator and we recall that if F ∈


p∈N D2,p then F ∈ Dom(L). The following proposition

gives the classical integration by parts formula from Malliavin calculus.

Proposition 22. (i) Let F = (F1, . . . , Fd) with F1, . . . , Fd
∈


p∈ND2,p and G ∈


p∈N
D1,p. Assume that (25) holds. Then for every function f ∈ C1

b(R
d) → R and every i = 1, . . . , d

one has

E(∂i f (F)G) = −E( f (F)Hi (F,G)) with

Hi (F,G) = −

d−
j=1

δ(Gσ j i
F DF j ) = −

d−
j=1

(Gσ j i
F L(F j )+ ⟨DF j , D(σ j i

F × G)⟩)
(26)

and Hi (F; G) ∈


p∈N L p.
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(ii) Suppose that F1, . . . , Fd
∈


p∈NDk+1,p and G ∈


p∈N Dk,p for some k ∈ N. Then

for every multi-index α = (α1, . . . , αk) ∈ {1, . . . , d}
k one has

E(∂α f (F)G) = E( f (F)Hα(F,G)) with Hα(F,G) = Hαk (F, H(α1,...,αk−1)(F,G)) (27)

and Hα(F; G) ∈


p∈N L p.

Notice that with the notation from the previous section we have

∂F
i G = −E(δ(G(σF DF)i ) | F).

So Proposition 22 says that if (25) holds and F1, . . . , Fd
∈


p∈N Dk+1,p and G ∈


p∈N Dk,p

then G ∈


p∈NW k,p
F .

As an immediate consequence of Proposition 22 and Theorem 18 we obtain the following
result.

Proposition 23. (i) Let F = (F1, . . . , Fd) with F1, . . . , Fd
∈


p∈N D2,p. Assume that
(25) holds. Then the law of F is absolutely continuous with respect to the Lebesgue measure
on Rd and the density pF can be represented as

pF (x) = E


d−

i=1

∂i Qd(F − x)Hi (F; 1)


. (28)

Moreover pF is Hölder continuous of any exponent q < 1. And there exists some universal
constants Cd and pi , i = 1, . . . , 5, depending on d such that

pF (x) ≤ CdE((det σF )
−p1)p2 ‖F‖

p3
2,p4

(P(|F − x | ≤ 2))1/p5 . (29)

In particular, limx→∞ |x |
p pF (x) = 0 for every p ∈ N.

(ii) Suppose that F1, . . . , Fd
∈


p∈NDk+1,p. Then pF ∈ Ck−1(Rd) and for every multi-
index α with |α| ≤ k one has

∂α pF (x) = E


d−

i=1

∂i Qd(F − x)H(α,i)(F; 1)


. (30)

Moreover, for |α| ≤ k − 1, ∂α pF is Hölder continuous of any exponent q < 1. And there exists
some universal constants Cd and pi , i = 1, . . . , 5, depending on d such that

|∂α pF (x)| ≤ CdE((det σF )
−p1)p2 ‖F‖

p3
k+1,p4

(P(|F − x | ≤ 2))1/p5 . (31)

In particular, if F ∈


p∈N L p then limx→∞ |x |
p
|∂α pF (x)| = 0 for every p ∈ N.

Remark 24. The gain with respect to the classical result concerns the regularity (in the Malliavin
sense) required for F : recall that in the standard statement of this criterion one needs that
F1, . . . , Fd

∈


p∈N Dd+1,p in order to obtain the existence of a continuous density and

F1, . . . , Fd
∈


p∈NDd+k+1,p in order that the density is k times differentiable. Moreover,
notice that the estimate given in (29) depends on the Sobolev norms of order two – and the same
estimates involve Sobolev norms of order d + 1 if one applies the standard criterion.

Remark 25. The absolute continuity criterion of Bouleau and Hirsh [4] asserts that if F j ∈

D1,2, j = 1, . . . , d and σF ≠ 0 a.s. then the law of F is absolutely continuous with respect to
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the Lebesgue measure. The results presented in this section do not permit to prove this criterion
because we need at least one integration by parts and then we need that F j ∈ D2,2, j = 1, . . . , d .
But if this stronger regularity assumption holds, and moreover, if the stronger non degeneracy
assumption (25) holds as well, we obtain a density which is Hölder continuous and not only
measurable.

Remark 26. The representation formula (28) has been used by Kohatsu Higa and Yasuda
in [8] and [9] in order to provide numerical approximation schemes for the density of the
law of a diffusion process. Notice that E(|∂i Qd(F − x)|2) = ∞. Then a direct use of the
representation based on the Riesz transform leads to approximation schemes of infinite variance
which consequently are not implementable by Monte Carlo methods. This is why they used a
truncation argument and gave an estimate of the error due to truncation. For this estimate they
used an old version of the present paper (namely [2]).

Finally we give a result concerning the strict positivity set UF = {pF > 0}. We define the
matrix field

C i j
F (x) = E(Hi (F; 1)|F = x)E(H j (F; 1)|F = x)

and the distance

dF (x, y) = inf

∫ 1

0
⟨CF (ϕt )ϕ̇t , ϕ̇t ⟩

1/2 dt; ϕ ∈ AF
x,y


where AF

x,y = {ϕ ∈ C1([0, 1],UF ) : ϕ0 = x, ϕ1 = y}. Then,

Proposition 27. Let F = (F1, . . . , Fd) with F1, . . . , Fd
∈


p∈N D3,p, and assume that
(25) holds. Then, for any sequence {xn}n ⊂ UF , limn→∞ pF (xn) = 0 if and only if
limn→∞ dF (xn, x1) = ∞.

Proof. By recalling that Hirsch and Song [7] proved that UF is a connected set, the statement
immediately follows by applying parts (i) and (ii) of Proposition 12. �

We give now the representation theorem for the conditional expectation.

Proposition 28. Let F = (F1, . . . , Fd) be such that F1, . . . , Fd
∈


p∈N D2,p and let G ∈
p∈ND1,p. Assume that (25) holds. Then

φG(x) := E(G | F = x) = 1{pF>0}

pF,G(x)

pF (x)
with

pF,G(x) = E


d−

i=1

∂i Qd(F − x)Hi (F; G)


.

(32)

Moreover φG ∈

δ>0


p∈NW 1,p(pF > δ) and it is locally Hölder continuous of any exponent

q < 1 on {pF > 0}. And if F1, . . . , Fd
∈


p∈N Dk+2,p and G ∈


p∈N Dk+1,p then φG ∈

Ck({pF > 0}).

Remark 29. The representation formula (32) has been already obtained by Malliavin and
Thalmaier in [13] and was the starting point in our work. But they need more regularity, namely
F1, . . . , Fd

∈


p∈NDd+2,p.. This is because they need to know that a bounded density exists
and they use the standard criterion for this.
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