
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Topology and its Applications 155 (2008) 1000–1012

www.elsevier.com/locate/topol

Expansive homeomorphisms and plane separating continua

Christopher Mouron

Department of Mathematics and Computer Science, Rhodes College, Memphis, TN 38112, USA

Received 8 January 2007; received in revised form 4 January 2008; accepted 4 January 2008

Abstract

A homeomorphism h :X → X is expansive provided that there exists a constant c > 0 and for every x, y ∈ X there exists an
integer n, dependent only on x and y, such that d(hn(x),hn(y)) > c. It is shown that if X is a 1-dimensional continuum that
separates the plane into 2 pieces, then h cannot be expansive.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A continuum is a compact, connected metric space. A continuum is a plane continuum if it can be embedded
in the plane. A homeomorphism h :X → X is called expansive provided that there exists a constant c > 0 and for
every x, y ∈ X there exists an integer n such that d(hn(x),hn(y)) > c. Expansive homeomorphisms exhibit sensitive
dependence on initial conditions in the strongest sense in that no matter how close any two points are, their images
will eventually be distant in a certain distance.

One problem of interest is the classification of plane continua that admit (or do not admit) expansive homeo-
morphisms. The Plykin attractor [9] is a 1-dimensional plane continuum that admits an expansive homeomorphism.
A 2-dimensional plane continuum that admits an expansive homeomorphisms has been constructed in [7]. It is known
that tree-like continua and hence, 1-dimensional non-separating plane continua, do not admit expansive homeomor-
phisms [6]. A n-separating plane continuum is a continuum separating the plane into n complementary domains.
The Plykin attractor is a 4-separating plane continuum. The main result of this paper will show that 1-dimensional
2-separating plane continua do not admit expansive homeomorphisms. The corresponding result is still unknown for
3-separating plane continua. For more background information see [4] and [5].

In order for a homeomorphism to be expansive, stretching of subcontinua by the homeomorphism must occur.
In compact spaces, this means that subcontinua must either be stretched and wrapped or stretched and folded. The
dyadic solenoid [11] and the Plykin attractor are examples of continua that admit expansive homeomorphisms that
wrap subcontinua. On the other hand, when subcontinua are stretched and folded, some points do move closer together.
Under this type of action, it appears that the homeomorphism will not be expansive. This is evident in the result that

E-mail address: mouronc@rhodes.edu.
0166-8641/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2008.01.003

https://core.ac.uk/display/82396499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


C. Mouron / Topology and its Applications 155 (2008) 1000–1012 1001
tree-like continua do not admit expansive homeomorphisms. Similarly, homeomorphisms that stretch subcontinua of
2-separating plane continua must have some folding. This is the idea in the proof of the main result.

2. Characterization of 1-dimensional 2-separating plane continua

We begin with several important definitions. Let d(x, y) be the Euclidean metric in the plane. If A and B are subsets
of R

2, define the distance between A and B as d(A,B) = inf{d(x, y) | x ∈ A and y ∈ B} and the Hausdorff distance
between A and B by dH (A,B) = max{supx∈A d(x,B), supy∈B d(A,y)}.

Let U be an open cover. The mesh of U is defined by

mesh(U) = sup
{
diam(U)

∣∣ U ∈ U
}
.

For U ∈ U , the core of U is defined as

core(U) =
⋂{

U − V
∣∣ V ∈ U − {U}}.

A cover is taut if U ∩ V = ∅ for all disjoint U,V ∈ U . Throughout the paper, we will assume that all covers are taut.
It follows that if U is a taut open cover of a compact space, then core(U) �= ∅ for each U ∈ U since we are only
considering compact spaces. A cover V refines U if for every V ∈ V there exists U ∈ U such that V ⊂ U ; V closure
refines U if V ⊂ U ; and V 2-refines U if for every Vi,Vj ∈ V such that Vi ∩ Vj �= ∅, there exists a U ∈ U such that
Vi ∪ Vj ⊂ U . U ′ is an amalgamation of U if each element of U ′ is the union of elements of U . Define the star of U as

U∗ =
⋃
U∈U

U.

A chain [C1,C2, . . . ,Cn] is a collection of open sets such that Ci ∩ Cj �= ∅ if and only if |i − j | � 1. A circle-
chain [C1,C2, . . . ,Cn]◦ is a collection of open sets such that Ci ∩ Cj �= ∅ if and only if |i − j | � 1 or |i − j | = n − 1.
A collection of open sets U is connected if for every U,U ′ ∈ U , there exists a chain from U to U ′ in U .

A open cover U is 1-dimensional if every element of X is in at most 2 elements of U . X is 1-dimensional if for
every ε > 0 there exists a finite 1-dimensional open cover U of X with mesh(U) < ε. The nerve of cover U , denoted
N(U), is a geometric simplicial complex (a graph if U is 1-dimensional) where each element Ui ∈ U is represented
by a vertex ui ∈ N(U) and there exists an arc (edge) in N(U) from ui to uj if and only if Ui ∩ Uj �= ∅. Suppose that
U and V are taut 1-dimensional covers such that V refines U . Then there is an induced vertex map f :N(V) → N(U)

defined in the following way: Let vi be the vertex of N(V) that corresponds to element Vi of V and let uj be the vertex
of N(U) that corresponds to element Ui of U . Then construct f in the following way:

(1) If Vi ∩ core(Uj ) �= ∅, then let f (vi) = uj .
(2) If Vi ⊂ Uj ∩ Uj ′ , Vi ∩ Vi′ �= ∅ and Vi′ ∩ core(Uj ) �= ∅ (or Vi′ ∩ core(Uj ′) �= ∅), then let f (vi) = ( 3

4 )uj + ( 1
4 )uj ′

(or f (vi) = ( 3
4 )uj ′ + ( 1

4 )uj ).
(3) If Vi ⊂ Uj ∩Uj ′ but Vi′ ∩core(Uj ) = ∅ and Vi′ ∩core(Uj ′) = ∅ whenever Vi ∩Vi′ �= ∅, let f (vi) = ( 1

2 )uj ′ +( 1
2 )uj .

Notice that f maps adjacent vertices of N(V) to either the same or to adjacent endpoints of quarter subdivisions of
an edge of N(U), i.e., the same or adjacent vertices of the second barycentric subdivision of N(V). Extend f linearly
onto the edges of N(V) to produce a simplicial map N(V) onto the second barycentric subdivision of N(V).

A finite open cover U is a tree-cover if the nerve N(U) is a tree. A finite open cover U is 1-cyclic if the nerve N(U)

is a graph that contains exactly 1 simple closed curve. A continuum X is tree-like (1-cyclic) if given any ε > 0, there
is a tree (respectively, 1-cyclic) cover U of X such that mesh(U) < ε. Equivalently, X is 1-cyclic if it is the inverse
limit of 1-cyclic graphs.

In this section, it will be shown that 1-dimensional 2-separating plane continua are 1-cyclic continua with “de-
gree 1” nested covers. The proof of this is a generalization of the one due to Bing [1] of the theorem that all circle-like
continua that can be embedded in the plane are the nested intersections of refining circle covers with degree 1.

Let S be a simple closed curve in the plane. Then the interior of S is its bounded complementary domain and the
exterior is its unbounded complementary domain. If Y is a subset of the plane, let Y c denote the complement of Y .
A closed (not necessarily compact) connected subset W of the plane is an unbounded plane continuum provided that
W is closed, connected and Wc is bounded.
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Theorem 1. Each 1-dimensional 2-separating continuum X has the following properties:

(1) X is 1-cyclic.
(2) For every ε > 0 there exists a 1-cyclic cover Uε of X with mesh less than ε such that each member of Uε is the

interior of a disk.
(3) X is the nested intersection of annuli.

Proof. Given ε > 0, let Uε be a finite collection of interiors of simple closed curves that covers X with mesh less than
ε such that no point is in more than 2 elements of Uε . Also let

M = X ∪ {the bounded complementary domain of X}
and

P = X ∪ {the unbounded complementary domain of X}.
Since M does not separate the plane, there exists an unbounded plane continuum Wε which does not intersect M but
with a simple-closed-curve-boundary SWε and is covered by Uε . Let U be the collection of all interiors {Uα}α∈Ω of
closed curves such that each Uα is a component of the intersection of Wc

ε and an element of Uε . Let U ′ ⊂ U be a
minimal finite subcover of X. Notice that no point is in more than 2 elements of U ′.

Likewise, there exists a continuum Qε which does not intersect P such that the boundary is a simple closed curve
SQε which is covered by U ′. Let V be the collection of all interiors {Vβ}β∈Γ of closed curves such that each Vβ is
a component of the intersection of Qc

ε and an element of U ′. Let V ′ ⊂ V be a minimal finite subcover of X. Again,
no point is in more than 2 elements of V ′. Additionally, each member of V ′ is the interior of a disk. Also, notice that
U∗

ε ∪ Wε ∪ Qε = R
2.

Now we show that V ′ is a 1-cyclic cover of X by contradiction. Suppose C0 = [C0
1 , . . . ,C0

n]◦ and C1 =
[C1

1 , . . . ,C1
m]◦ are distinct circle-chains of V ′. Let S0 = p1p2 . . . pnp1 and S1 = r1r2 . . . rmr1 be simple closed curves

such that pipi+1, pnp1, rj rj+1 and rmr1 are arcs contained C0
i , C0

n , C1
j and C1

m, respectively. Without loss of gener-
ality, we can assume that SQε is in the interior of S1 and S0 is not in the interior of S1.

Since C0 and C1 are distinct, there is an element C0
i ∈ C0 that is not in C1. So there exists a point p that is on the

boundary of C0
i , C0

i−1 and C0
i ∩C0

i−1 and that is in the interior of S0 (being in the interior of SWε ) but in the exterior of
SQε (being separated by S1). Thus, p /∈ Wε ∪ Qε and it follows that p ∈ U∗

ε . Hence, there exist distinct Ui−1,Ui ∈ Uε

such that C0
i ⊂ Ui , C0

i−1 ⊂ Ui−1. It now follows from the construction of V ′ that p is on the boundary of Ui , Ui−1
and Ui ∩Ui−1. But then there exists a U ∈ Uε , distinct from Ui and Ui−1, such that p ∈ U . However, that implies that
U ∩ Ui ∩ Ui−1 �= ∅ which contradicts the fact that no point is in more than 2 elements of Uε . Therefore, V must have
at most 1 cycle.

To show that X is the nested intersection of annuli, first let Aε = Wc
ε − Q◦

ε . Then X ⊂ Aε and dH (X,Aε) < ε. Let
ε1 = 1 and inductively let

εn+1 < (1/2)min
{
1/(n + 1),d(Aεn,X)

}
.

Then Aεn+1 ⊂ Aε. Hence X = ⋂∞
n=1 Aεn . �

Next, we will derive a necessary condition for a 1-cyclic continuum to be embeddable in the plane. Let C =
[C0, . . . ,Cn−1]◦ be the circle chain of 1-cyclic cover U . The branch of Ci ∈ C is the subset:

B(Ci) = {
U ∈ U

∣∣ if D is a chain from U to Ci then D ∩ C = {Ci}
}
.

Let U and V be 1-cyclic covers such that

(1) V refines U ,
(2) C = [C0, . . . ,Cn−1]◦ is the circle chain cover of U ,
(3) C′ = [C′

0, . . . ,C
′
m−1]◦ is the circle chain cover of V ,

(4) both C′ and C′ intersect the core of C0.
0 m−1
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For V ∈ V , define Γ V
U (V ) = j if there exists U ∈ B(Cj ) such that V ⊂ U ∈ B(Cj ). Note that there could be two

choices for Γ V
U (V ), but it does not matter which one is picked. Next define

ΔV
U : {0,1, . . . ,m − 1} → Z,

such that ΔV
U (0) = 0 and then continue inductively by

ΔV
U (i) =

⎧⎪⎪⎨
⎪⎪⎩

ΔV
U (i − 1) if Γ V

U (C′
i ) = Γ V

U (C′
i−1),

ΔV
U (i − 1) + 1 if Γ V

U (C′
i ) = Γ V

U (C′
i−1) + 1, or Γ V

U (C′
i ) = 0 and Γ V

U (C′
i−1) = n − 1,

ΔV
U (i − 1) − 1 if Γ V

U (C′
i ) = Γ V

U (C′
i−1) − 1, or Γ V

U (C′
i ) = n − 1 and Γ V

U (C′
i−1) = 0.

Define the degree of V in U by

degU (V) = |ΔV
U (m − 1) − ΔV

U (0)|
n

.

Notice that the degree of V in U is an integer that measures the number of times for which C′ “essentially circles” C.
Also, since both C′

0 and C′
m−1 intersect the core of C0, this value is independent of our choice for Γ V

U (V ).

The following definitions and results can be found in [8]: Given a topological space Y let Hp(Y ), H̃p(Y ),
Hp(Y ) be the pth-dimensional homology group, reduced homology group and cohomology group for Y (with in-
tegral coefficients), respectively. If f :X → Y is a continuous function on topological spaces X and Y , then let
f∗ :Hp(X) → Hp(Y ) and f ∗ :Hp(X) → Hp(Y ) to be the induced homology and cohomology homomorphisms, re-
spectively. Suppose that Y = ⋂∞

i=1 Di = ⋂∞
i=1 U∗

i where Di is a nested sequence of polyhedra and Ui is a sequence
open covers of Y such that Ui+1 refines Ui . Then the pth-dimensional Čech cohomology of Y is defined by

Ȟ p(Y ) = lim−→
i→∞

(
Hp(Di), g

∗
i

) = lim−→
i→∞

(
Hp

(
N(Ui )

)
, f ∗

i

)
where gi :Di → Di+1 is the inclusion map and fi :N(Ui ) → N(Ui+1) is the induced simplicial map of the nerves.

Let X and Y be homotopic to S1. Given generators α of H1(X) and β of H1(Y ), the degree of a map f :X → Y

is defined as the integer given by f∗(α) = deg(f )β . Since H 1(S1) is infinite cyclic, it also follows that f ∗(α) =
α deg(f ). Notice that if U and V are 1-cyclic covers of X such that V refines U , then degU (V) = deg(f ) where f is
the simplicial vertex map from N(V) to N(U) which is induced from the refinement.

The next theorem is the main result of this section:

Theorem 2. If X is a one-dimensional 2-separating plane continuum, then X = ⋂∞
i=1 U∗

i where {Ui}∞i=1 is a sequence
of 1-cyclic covers of X with the following properties:

(1) Ui+1 refines Ui ,
(2) mesh(Ui ) → 0 as i → ∞,
(3) degUi

(Ui+1) = 1.

Proof. Since S2 − X has 2 path connected components, H̃0(S
2 − X) ∼= Z. So by the Alexander–Pontryagin Du-

ality Theorem, we have Ȟ 1(X) ∼= H̃0(S
2 − X) ∼= Z. Also, since each N(Ui ) is homotopic to S1, it follows that

H 1(N(Ui )) ∼= Z. Thus, f ∗
i :H 1(N(Ui )) → H 1(N(Ui+1)) must be the identity for all but a finitely many i’s. There-

fore, the simplicial vertex map fi :N(Ui+1) → N(Ui ) must have degree 1. Thus, degUi
(Ui+1) = 1. �

3. Wrapping tree-like subcontinua

In this section, we construct a method to measure how a tree-like subcontinuum “wraps” in a 1-cyclic cover. Again,
let U and V be 1-cyclic covers such that

(1) V refines U ,
(2) C = [C0, . . . ,Cn−1]◦ is the circle chain cover of U ,
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Fig. 1. ΔV
U (91) = 11, ΘV

U (V ) = 6, ΘV
U (W) = −5, ΩV

U (V ) = 17 and ΩV
U (W) = 6. The positive direction is taken to be counterclockwise rotation.

(3) C′ = [C′
0, . . . ,C

′
m−1]◦ is the circle chain cover of V ,

(4) both C′
0 and C′

m−1 intersect the core of C0.

Next, for each C′
j ∈ C′ define ΘV

U (C′
j ) = 0. Let V ∈ B(C′

j ) − {C′
j } and let p(V ) be the unique element of the chain

from V to C′
j in B(C′

j ) that intersects V (i.e. p(V ) precedes V in the chain). Then we can define inductively:

ΘV
U (V ) =

⎧⎪⎨
⎪⎩

ΘV
U (p(V )) if Γ V

U (V ) = Γ V
U (p(V )),

ΘV
U (p(V )) + 1 if Γ V

U (V ) = Γ V
U (p(V )) + 1, or Γ V

U (V ) = 0 and Γ V
U (p(V )) = n − 1,

ΘV
U (p(V )) − 1 if Γ V

U (V ) = Γ V
U (p(V )) − 1, or Γ V

U (V ) = n − 1 and Γ V
U (p(V )) = 0.

Finally, for each V ∈ V , define ΩV
U :V → Z by

ΩV
U (V ) = ΔV

U (j) + ΘV
U (V ) where j is the integer such that V ∈ B(C′

j ).

The number ΔV
U (j) measures the “wrapping position” of C′

j relative to C′
0 from the chain [C′

0, . . . ,C
′
j ], ΘV

U (V )

measures the wrapping position of V relative to C′
j from the chain [C′

j , . . . , p(V ),V ], and ΩV
U (V ) measures the

wrapping position of V relative to C′
0 from the chain [C′

0, . . . ,C
′
j , . . . , p(V ),V ]. (See Fig. 1.)

Suppose U is a 1-cyclic cover of X, C ⊂ U is the circle-chain of U and H is a tree-like subcontinuum of X such that
H ∩ C �= ∅ for some C ∈ C. Define T (H,U) to be some tree-cover of H that refines U and has minimum cardinality.
Although T (H,U) itself is not uniquely determined, the cardinality of T (H,U) is uniquely determined and this
uniqueness will be used in the main result.

Proposition 3. Suppose that 1 < |T (H,U)|. If U ∈ U and V ∈ T (H,U) such that V ⊂ U , then V ∩ core(U) �= ∅.

Proof. Suppose that V ∩ core(U) = ∅, then there exists a U ′ ∈ U distinct from U such that V ⊂ U ∩ U ′. Let V ′ ∈
T (H,U) such that V ∩ V ′ �= ∅. Then V ′ ⊂ U or V ′ ⊂ U ′. Hence V ∪ V ′ ⊂ U or V ∪ V ′ ⊂ U ′. Thus (T (H,U) −
{V,V ′}) ∪ {V ∪ V ′} is a tree cover of H that refines U with cardinality less than T (H,U) which contradicts the
minimality of T (H,U). �

Define Q(H,U) = {Q ∈ T (H,U) | Q ⊆ C for some C ∈ C} as the trunk of T (H,U).
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Proposition 4. Q(H,U) is a connected collection of open sets.

Proof. Suppose that Q(H,U) is not connected, then there exist nonempty disjoint sets Qa , Qb such that Q(H,U) =
Qa ∪ Qb and for every QA ∈ Qa and QB ∈ Qb there is no chain in Q(H,U) from QA to QB . Let Qa ∈ Qa and
Qb ∈ Qb . Since T (H,U) is a tree-cover there exists a unique chain CQ = [T0, T1, . . . , Tn] ⊂ T (H,U) such that
T0 = Qa and Tn = Qb .

Let ja be the largest integer in {0, . . . , n − 1} such that Tja ∈ Qa and let jb be the smallest integer of {1, . . . , n}
greater than ja such that Tjb

∈ Qb . If ja + 1 = jb , then [Tja , Tjb
] is a chain from Qa to Qb contained in Q(H,U)

which is a contradiction. So suppose that jb > ja + 1. Then there exists Uja+1 ∈ U − C such that Tja+1 ⊂ Uja+1. Let
Cja ,Cjb

∈ C such that Tja ⊂ Cja , Tjb
⊂ Cjb

, and define Uab = {U ∈ U | Ti ⊂ U for i ∈ {ja + 1, . . . , jb − 1}}. Since
[Tja+1, . . . , Tjb−1] is connected, Uab is connected. Also note that each Ti /∈Qa ∪Qb and hence, Ti ⊂ Ui /∈ C for every
i ∈ {ja + 1, . . . , jb − 1}. Thus, Uab ∩ C = ∅. It follows that Uab contains no circle-chain and hence must be a tree-
cover. Notice that since Tja+1 ⊂ Uja+1 it follows that Uja+1 ∈ Uab and since Tja+1 ∩ Tja �= ∅, we may conclude that
Uja+1 ∩ Cja �= ∅. Thus, Uab ⊂ B(Cja ). Likewise, Ujb−1 ∩ Cjb

�= ∅ and thus, Uab ⊂ B(Cjb
). So B(Cja ) ∩B(Cjb

) �= ∅,
and it follows that Cja = Cjb

. Therefore, ja = jb which is a contradiction. �
Proposition 5. Suppose that A, B , and C are distinct elements of T (H,U) such that A1 ∩ A2 �= ∅ and A2 ∩ A3 �= ∅.
If U1,U2,U3 ∈ U such that Ai ⊆ Ui for i ∈ {1,2,3}, then U1, U2 and U3 are all distinct.

Proof. If Ui = Uj for i �= j , then (T (H,U) − {Ai,Aj }) ∪ {Ai ∪ Aj } would be a tree-cover of H that refines U but
has cardinality less than T (H,U) which is a contradiction that T (H,U) is minimal. �
Proposition 6. Q(H,U) is a chain.

Proof. Since Q(H,U) is a connected subset of a tree-cover. It must also be a tree-cover. So it suffices to show that
Q(H,U) has no branching. Suppose there exist distinct C′,C′

a,C
′
b,C

′
c ∈Q(H,U) such that C′ ∩C′

a �= ∅, C′ ∩C′
b �= ∅

and C′ ∩C′
c �= ∅. Let C,Ca,Cb,Cc ∈ C such that C′ ⊂ C, C′

a ⊂ Ca , C′
b ⊂ Cb and C′

c ⊂ Cc. Then by Proposition 5, C,
Ca , Cb and Cc are all distinct. Furthermore C ∩Ca , C ∩Cb and C ∩Cc are all nonempty. Thus, C is not a circle-chain
which is a contradiction. �
Lemma 7. Let C = [C0, . . . ,Cn−1]◦ be the circle-chain of U . Then Q(H,U) is a chain indexed as follows:[

Cα(i),Cα+1(i), . . . ,Cn−1(i),C0(i + 1), . . . ,Cn−1(i + 1),C0(i + 1), . . . ,Cβ(j)
]

where α,β ∈ {0,1, . . . , n − 1} and Ck(m) ⊆ Ck for each m. Also i is an arbitrarily chosen integer and j denotes an
index which will be given in the proof.

Proof. Pick any integer i. Since Q(H,U) is a chain, it must have 2 endlinks say U and V . Let U ′ and V ′ be the unique
links of Q(H,U) that intersect U and V , respectively. There exist α,α′, β,β ′ ∈ {0,1, . . . , n − 1} with the following
properties:

(1) either α′ = α + 1 or α = n − 1 and α′ = 0,
(2) either β ′ = β − 1 or β ′ = n − 1 and β = 0,
(3) either U ⊂ Cα , U ′ ⊂ Cα′ , V ⊂ Cβ , and V ′ ⊂ Cβ ′ or V ⊂ Cα , V ′ ⊂ Cα′ , U ⊂ Cβ , and U ′ ⊂ Cβ ′ .

Without loss of generality, assume U ⊂ Cα . Then let Cα(i) = U and let Cα′(i) = U ′ if α′ �= 0 and Cα′(i + 1) = U ′ if
α′ = 0.

Continuing inductively, suppose that [Cα(i), . . . ,Cγ (m)] have been found. We have 3 cases to consider:

Case 1. 0 < γ < n − 1.
Let Q′ be the element of Q(H,U) different from Cγ−1(m) that intersects Cγ (m). It follows from Proposition 5

that Q′ ⊂ Cγ+1. Let Cγ+1(m) = Q′.
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Fig. 2. Here i is arbitrarily chosen to be 3. T (H,U) is created from U . Notice that W(H,U) = 2 = 5 − 3 since β = 4 � 3 = α.

Case 2. γ = 0.
Let Q′ be the element of Q(H,U) different from Cn−1(m− 1) that intersects Cγ (m). It follows again from Propo-

sition 5 that Q′ ⊂ Cγ+1. Let Cγ+1(m) = Q′.

Case 3. γ = n − 1.
Let Q′ be the element of Q(H,U) different from Cγ−1(m) that intersects Cγ (m). It also follows from Proposition 5

that Q′ ⊂ C0. Let C0(m + 1) = Q′.

Since Q(H,U) is finite, this process will stop at the endlink V = Cβ(j). �
Define the wrapping number W(H,U) of H on U by:

W(H,U) =
{

j − i if α � β,

j − i − 1 if α > β,

where i, j , α and β are as in Lemma 7. Let B(U, s) be the unique element of T (H,U) such that

(1) B(U, s) ⊂ U ∈ U ,
(2) there exists a chain D ⊆ T (H,U) from Ck(s) to B(U, s) such that D ∩Q(H,U) = {Ck(s)} where U ∈ B(Ck).

Notice that B(U, s) is at the position where T (H,U) has “wrapped” U s times. Also, notice that B(Ck, s) = Ck(s).
Here, U is called the symbol and s is called the index of B(U, s). (See Fig. 2.)

Proposition 8. Suppose B(U, s1),B(V, s2) are distinct elements of T (H,U). Then B(U, s1) ∩ B(V, s2) �= ∅ implies
that U ∩ V �= ∅ and also the following:

(1) if U ∪ V �⊂ C0 ∪ Cn−1, then s1 = s2,
(2) if U = C0 and V = Cn−1, then s2 = s1 − 1,
(3) if V = C0 and U = Cn−1, then s1 = s2 − 1.

Proof. Clearly, B(U, s1) ∩ B(V, s2) �= ∅ implies that U ∩ V �= ∅. Suppose that (1), (2) and (3) are false. Let p,q

be the integers such that U ∈ B(Cp) and V ∈ B(Cq). Let D1 and D2 be the respective unique chains in T (H,U)
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from B(U, s1) to Cp(s1) and from B(V, s2) to Cq(s2). Finally, let C′ be the unique chain in Q(H,U) from Cp(s1) to
Cq(s2). Then D1 ∪ C′ ∪D2 is a circle-subchain in tree-cover T (H,U) which is a contradiction. �

Next let U0 and U1 be 1-cyclic covers of X with such that

(1) U1 is a degree 1 closure 2-refinement of U0,
(2) C0 = [C0

0 , . . . ,C0
n−1]◦ is the circle chain cover of U0,

(3) C1 = [C1
0 , . . . ,C1

m−1]◦ is the circle chain cover of U1,
(4) both C1

0 and C1
m−1 intersect the core of C0

0 .

Define the wrapping number W(U1,U0) of U1 on U0 as

W(U1,U0) =
⌊max{ΩU1

U0
(V ) | V ∈ U1} − min{ΩU1

U0
(V ) | V ∈ U1}

n

⌋
where �x� denotes the largest integer less than or equal to x. W(U1,U0) counts the maximum number of times that
subchains of U1 wrap U0.

Now suppose that T (H,U1) and Q(H,U1) =[
C1

α1
(i1),C

1
α1+1(i1), . . . ,C

1
n−1(i1),C

1
0(i1 + 1), . . . ,C1

n−1(i1 + 1),C1
0(i1 + 2), . . . ,C1

β1
(j1)

]
have been found as in Lemma 7. Then, for each U ∈ U0, let

B̂(U,p + q) =
⋃{

B(V,p) ∈ T (H,U1)

∣∣∣ V ⊂ U and q =
⌊

Ω
U1
U0

(V )

n

⌋}
.

For example, suppose that U ∈ U0 and W,V ∈ U1 such that V,W ⊂ U , �Ω
U1
U0

(V )

n
� = 3, and �Ω

U1
U0

(W)

n
� = 5. Then

B(V,8) ∪ B(W,6) ⊂ B̂(U,11).
Finally, let

T (H,U0) = {
B̂(U, s)

∣∣ U ∈ U0 and s = p + q
}
.

We first show that under this construction, T (H,U0) is a tree-cover of H that refines U0 and has minimal cardinality.
Then we will compare how H wraps in U1 to how H wraps in U0.

Proposition 9. Suppose that V,V ′ ∈ U1 where V ∩ V ′ �= ∅. Then∣∣ΩU1
U0

(V ) − Ω
U1
U0

(V ′)
∣∣ = 0,1 or n.

Furthermore, �Ω
U1
U0

(C1
0 )

n
� = 0 and �Ω

U1
U0

(C1
m−1)

n
� = 1.

Proof. The proof follows from the fact that degU0
(U1) = 1. �

The next proposition is similar to Proposition 8 and shows that T (H,U0) and T (H,U1) have similar properties.
However, T (H,U0) and T (H,U1) are constructed in different ways, so the proofs of the propositions are different.

Proposition 10. Suppose B̂(U0, sU ), B̂(V0, sV ) are distinct elements of T (H,U0). Then B̂(U0, sU ) ∩ B̂(V0, sV ) �= ∅
implies that U0 ∩ V0 �= ∅ and also the following:

(1) If U ∪ V �⊂ C0
0 ∪ C0

n−1 then sU = sV .

(2) If U0 = C0
0 then V0 = C0

n−1 and sV = sU − 1.

(3) If V0 = C0
0 then U0 = C0

n−1 and sU = sV − 1.



1008 C. Mouron / Topology and its Applications 155 (2008) 1000–1012
Proof. If B̂(U0, sU ) ∩ B̂(V0, sV ) �= ∅, then clearly U0 ∩ V0 �= ∅. It also follows that there exist distinct B(U1,pU ),

B(V1,pV ) ∈ T (H,U1) such that B(U1,pU ) ⊂ B̂(U0, sU ), B(V1,pV ) ⊂ B̂(V0, sV ) and B(U1,pU ) ∩ B(V1,pV ) �= ∅.

By the definition of B̂(U0, sU ) and B̂(V0, sV ), it follows that sU = pU +�Ω
U1
U0

(U1)

n
� and sV = pV +�Ω

U1
U0

(V1)

n
�. Clearly,

U1 ∩ V1 �= ∅. We have 9 cases to consider:

Case 1. U0 ∪ V0 �⊂ C0
0 ∪ C0

n−1 and U1 ∪ V1 �⊂ C1
0 ∪ C1

m−1.

Then by (1) of Proposition 8, pU = pV . Also by Proposition 9, �Ω
U1
U0

(U1)

n
� = �Ω

U1
U0

(V1)

n
�. Hence,

sU = pU +
⌊

Ω
U1
U0

(U1)

n

⌋
= pV +

⌊
Ω

U1
U0

(V0)

n

⌋
= sV .

Hence, (1) is true.

Case 2. U0 ∪ V0 �⊂ C0
0 ∪ C0

n−1, U1 = C1
0 and V1 = C1

m−1.

Then by (2) of Proposition 8, pV = pU − 1. Also by Proposition 9, �Ω
U1
U0

(U1)

n
� = 0 and �Ω

U1
U0

(V1)

n
� = 1. Hence,

sU = pU +
⌊

Ω
U1
U0

(U1)

n

⌋
= pU = pU − 1 +

⌊
Ω

U1
U0

(U1)

n

⌋
+ 1 = pV +

⌊
Ω

U1
U0

(V1)

n

⌋
= sV .

Hence, (1) is true.

Case 3. U ∪ V �⊂ C0
0 ∪ C0

n−1, U1 = C1
m−1 and V1 = C1

0 .
This is similar to Case 2.

Case 4. U0 = C0
0 , V0 = C0

n−1, and U1 ∪ V1 �⊂ C1
0 ∪ C1

m−1.

Then by (1) of Proposition 8, pU = pV . Also U1 ⊂ C0
0 and V1 ⊂ C0

n−1. Since U1 ∩ V1 �= ∅ , �Ω
U1
U0

(U1)

n
� =

�Ω
U1
U0

(V1)

n
� + 1 by Proposition 8. Hence,

sU − 1 = pU +
⌊

Ω
U1
U0

(U1)

n

⌋
− 1 = pV +

⌊
Ω

U1
U0

(V1)

n

⌋
+ 1 − 1 = sV .

Hence, (2) is true.

Case 5. U0 = C0
0 , V0 = C0

n−1, U1 = C1
0 and V1 = C1

m−1.
Since C1

m−1 intersects the core of C0
0 , V1 cannot be contained in V0 which is a contradiction. So this case is

impossible.

Case 6. U0 = C0
0 , V0 = C0

n−1, U1 = C1
m−1 and V1 = C1

0 .
This is similar to Case 5.

Cases 7–9. V0 = C0
0 , and U0 = C0

n−1.
This is similar to Cases 4-6. �

Lemma 11. T (H,U0) is tree-cover of H that refines U0 and has minimum cardinality.

Proof. It follows from Proposition 10 that if B̂(U, s), B̂(V , t) ∈ T (H,U0) then B̂(U, s) ∩ B̂(V , t) �= ∅ implies that
either s = t and U,V are elements of U0 intersecting each other, or s = t − 1, {U,V } = {C0

n−1,C
0
0}. Hence, a

circle-chain in T (H,U0) would imply a circle-chain in U0 composed of the same symbols. But the only circle-
chain in U0 is [C0,C0, . . . ,C0 ]◦. This would imply that the circle-chain of T (H,U0) must be of the form
0 2 n−1
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[B̂(C0
0 , s), B̂(C0

1 , s), . . . , B̂(C0
n−1, s)]◦ for some s. However that implies that B̂(C0

0 , s) and B̂(C0
n−1, s) intersect which

is impossible by Proposition 10. Hence, T (H,U0) is a tree-cover of H .
To show that T (H,U0) is minimal, take the union any two distinct elements of T (H,U0) together. It follows from

Proposition 3 that if they do not have the same symbol, then their union cannot be contained in any element of U0
and thus, the new cover is no longer a refinement. On the other hand, if the elements have the same symbol, then they
must differ in index. Thus, the new cover will contain a circle-chain and hence, will no longer be a tree-cover. �

The trunk Q(H,U0) of T (H,U0) can now be defined as:

Q(H,U0) = {
B̂

(
C0

k , s
) ∣∣ C0

k ∈ C0 and s = p + q
}
.

Then if we let C0
k (s) = B̂(C0

k , s), Q(H,U0) is in the form of Lemma 7.

Proposition 12. W(H,U0) � W(H,U1) + W(U1,U0) + 1.

Proof. Notice that min{�Ω
U1
U0

(V )

n
� | V ∈ U1} � 0. It follows from this that

W(H,U0) � max
{
s
∣∣ B̂(U, s) ∈ T (H,U0) and U ∈ U0

} − min
{
s
∣∣ B̂(U, s) ∈ T (H,U0) and U ∈ U0

}
� max

{
p

∣∣ B(V,p) ∈ T (H,U1) and V ∈ U1
} − min

{
p

∣∣ B(V,p) ∈ T (H,U1) and V ∈ U1
}

+ max

{⌊
Ω

U1
U0

(V )

n

⌋ ∣∣∣ V ∈ U1

}
− min

{⌊
Ω

U1
U0

(V )

n

⌋ ∣∣∣ V ∈ U1

}
� W(H,U1) + W(U1,U0) + 1. �

Proposition 13. Suppose that H is a tree-like subcontinuum of X and U0, U1 are finite 1-cyclic open covers of X such
that U1 is a degree 1, 2-refinement of U0. Then W(H,U1) � W(H,U0).

Proof. There exists C1
k ∈ C1 and integers i1, j1 such that

C1
k (i1),C

1
k (i1 + 1), . . . ,C1

k (j1) ∈ T (H,U1)

and W(H,U1) = j1 − i1. Let q = �Ω
U1
U0

(C1
k )

n
� and U ∈ U0 such that C1

k ⊂ U . Then

B̂(U, i1 + q), B̂(U, i1 + q + 1), . . . , B̂(U, j1 + q) ∈ T (H,U0).

Hence W(H,U1) � W(H,U0). �
Theorem 14. Let h :X → X be a homeomorphism. Suppose that H is a tree-like subcontinuum of X and U0 and U1
are finite 1-cyclic open covers of X such that both U1 and h(U1) are degree 1, 2-refinements of U0. Then

W
(
hn(H),U0

)
� W(H,U0) + nW

(
h(U1),U0

) + n.

Proof. Proof is by induction on n. If n = 0 then the theorem is clearly true. Suppose that

W
(
hn−1(H),U0

)
� W(H,U0) + (n − 1)W

(
h(U1),U0

) + n − 1.

By Proposition 13, W(hn−1(H),U1) � W(hn−1(H),U0). Since W(hn(H),h(U1)) = W(hn−1(H),U1), it follows
from the induction hypothesis and Proposition 12 that

W
(
hn(H),U0

)
� W

(
hn(H),h(U1)

) + W
(
h(U1),U0

) + 1 = W
(
hn−1(H),U1

) + W
(
h(U1),U0

) + 1

� W(H,U0) + nW
(
h(U1),U0

) + n. �
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4. Main result

The topological entropy of a map h is a measure of diffusion of points under iterations of h. All expansive homeo-
morphisms of nondegenerate continua have positive entropy. The following definition of entropy is due to Bowen
[10]: For a map h : X → X and a non-negative integer n, define

d+
n (x, y) = max

0�i<n
d
(
hi(x),hi(y)

)
.

Similarly, if h is a homeomorphism, define

d−
n (x, y) = max

−n<i�0
d
(
hi(x),hi(y)

)
,

where again n � 0.
Let K be a compact subset of X and n be a positive integer. A finite subset En of K is said to be (n, ε)-separated

with respect to map h if x and y are distinct elements of En implies that d+
n (x, y) > ε. Let sn(ε,K,h) denote the

largest cardinality of any (n, ε)-separated subsets of K with respect to h. Then

s(ε,K,h) = lim sup
n→∞

log sn(ε,K,h)

n
.

The entropy of h on X is then defined as

Ent(h,X) = sup
{

lim
ε→0

s(ε,K,h)

∣∣∣ K is a compact subset of X
}
.

A subcontinuum M of X is stable under homeomorphism h :X → X if limn→∞ diam(hn(M)) = 0. Likewise, M

is unstable under h if limn→−∞ diam(hn(M)) = 0.
The following theorems are due to Kato. The second is found in the proof of Theorem 4.1 of [3].

Theorem 15. If h :X → X is an expansive homeomorphism, then there exists a stable subcontinuum or an unstable
subcontinuum.

Theorem 16. If h :X → X is an expansive homeomorphism and M is an unstable subcontinuum, then there exists an
ε > 0 such that s(ε,M,h) > 0.

Likewise, if M is a stable subcontinuum, then there exists an ε > 0 such that s(ε,M,h−1) > 0.

The proof of the main result now follows in a similar way to the proof that tree-like continua do not admit expansive
homeomorphisms [6]. The next proposition is Cantor’s original definition of connectedness [2].

Proposition 17. Suppose X is connected and a, b,∈ X. For every ε > 0 there exists a finite sequence {xi}ni=1 ⊂ X

such that x1 = a, xn = b and d(xi, xi+1) < ε.

The previous sequence is called a simple chain sequence from a to b with mesh less than ε. For a homeomorphism
h and a positive integer n, define L(h,n, ε) to be a number greater than 0 such that

d(x, y) < L(h,n, ε) implies d
(
hi(x),hi(y)

)
< ε for all − n � i � n.

Lemma 18. (See [6].) Suppose that h :X → X is a homeomorphism of a continuum X and that {xi}mi=1 is a simple
chain sequence of X from a to b with mesh less than L(h,n, ε/6). Also, suppose that {xi}mi=1 is contained in some
tree-cover T such that a and b are in the same element T1 of T and that the mesh of {xi}mi=1 is less than the Lebesgue
number of T . If d−

n (a, b) � ε, then there exists xα, xβ ∈ {xi}mi=1 such that xα, xβ are in the same element of T and
ε/3 � d−

n (xα, xβ) < ε.

Lemma 19. (See [6].) Let h :X → X be a homeomorphism of a compact space onto itself. Suppose that there are
sequences {yn}∞n=1, {zn}∞n=1 such that d(hk(yn), h

k(zn)) < ε for all k � n. Then there exists a limit point y of {yi}∞i=1
and a limit point z of {zi}∞i=1 such that d(hk(y),hk(z)) < 2ε for all k.
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Theorem 20. Degree 1, 1-cyclic continua do not admit expansive homeomorphisms.

Proof. Suppose that h :X → X is an expansive homeomorphism of a 1-cyclic plane continuum with expansive con-
stant c. By Theorem 15, there exists a nondegenerate stable or unstable subcontinuum M . Without loss of generality,
we may assume that diam(hi(M)) < c/3 for all i � 0. Since limi→−∞ diam(hi(M)) = 0, it follows that M must be
tree-like. By Theorem 16, there exists a γ > 0 such that s(γ,M,h) > 0. Let ε = min{γ, c/4} and {δk}∞k=1 be a se-
quence of positive numbers such that each δk < L(h, k, ε/6). Let {Uk}∞k=0 be a sequence of 1-cycle covers of X such
that

(1) mesh(Uk) < δk ,
(2) both Uk+1 and h(Uk+1) are 1-degree, closure 2-refinements of Uk .

By Theorem 14,∣∣T (
hn(M),Uk

)∣∣ � |Uk|W
(
hn(M),Uk

)
� |Uk|

(
W(M,Uk) + nŴ

(
h(Uk+1),Uk

) + n
)

which has polynomial growth as n increases. Since s(ε,M,h) > 0, sn(ε,M,h) must have exponential growth as n

increases. Therefore, for some integer Nk > k,

sNk
(ε,M,h) >

∣∣T (
hNk (M),Uk

)∣∣ + 1.

Let E
Nk

k be the maximal (Nk, ε)-separated set of M . Then by the pigeon-hole principle, there exists ak, bk ∈ E
Nk

k

such that hNk (ak), hNk (bk) are in a common element of T (hNk (M),Uk). Since d−
Nk

(hNk (ak), hNk (bk)) � ε, it follows

from Lemma 18 that there exists xk
α, xk

β ∈ hNk (M) such that ε/3 � d−
Nk

(xk
α, xk

β) < ε and d(xk
α, xk

β) < δk . Hence,

d(hi(xk
α), hi(xk

β)) < ε for all i � k < Nk .

Now let mk ∈ {0, . . . ,Nk − 1} such that d(hmk (xk
α), hmk (xk

β)) � ε/3. For simplicity, define yk = hmk (xk
α) and

zk = hmk (xk
β). Then d(hi(yk), h

i(zk)) < ε for all i < k + mk . By Lemma 19, there exist limit points y of {yk}∞k=1 and

z of {zk}∞k=1 such that d(hi(y), hi(z)) � 2ε < c for all i. However, since d(yk, zk) � ε/3 for all k > 0, y and z must
be distinct. Therefore, h is not expansive. �

The following interesting results now follow:

Corollary 21. 1-dimensional plane continua that have 2 complementary domains do not admit expansive homeomor-
phisms.

Proof. This follows directly from Theorems 2 and 20. �
Corollary 22. The pseudo-circle does not admit an expansive homeomorphism.

The following questions remain open.

Question 1. Does there exist a 1-dimensional 3-separating plane continuum that admits an expansive homeomor-
phism?

Question 2. Does there exist a 2-dimensional non-separating plane continuum that admits an expansive homeomor-
phism?
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