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a b s t r a c t

In this paper, the variational iteration method is applied to neutral functional-differential
equations with proportional delays. Illustrative examples are given to show the efficiency
of the method. We also compare the performance of the method with that of a particular
Runge–Kutta method and a one-leg θ-method.
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1. Introduction

The variational iterationmethodwas proposed originally by Ji-HuanHe [1]. An elementary introduction to the variational
iteration method and some new developments, as well as to new interpretations, can be found in [2–5]. There, the main
concepts underlying the variational iteration method, such as the role of general Lagrange multipliers, the restricted
variation and correction functionals are explained heuristically. This method has been advantageously employed for solving
various kinds of nonlinear problems (see for example [6–14]). It has also been successfully applied to parabolic partial
differential equations [6], to nonlinear systems of second-order boundary value problems [7], to multi-pantograph delay
equations [9], to heat-like and wave-like equations with variable coefficients [10], to linear and nonlinear Schrödinger
equations [12], and to other problems [15].
In this paper, we employ the variational iteration method to study various properties of neutral functional-differential

equations with proportional delays. Approximate analytical solutions with high accuracy can be obtained by carrying out
only a few steps in the variational iteration method.
Consider the following neutral functional-differential equation with proportional delays,

(u(t)+ a(t)u(pmt))(m) = βu(t)+
m−1∑
k=0

bk(t)u(k)(pkt)+ f (t), t ≥ 0, (1.1)

with the initial conditions
m−1∑
k=0

ciku(k)(0) = λi, i = 0, 1, . . . ,m− 1. (1.2)

Here, a and bk (k = 0, 1, . . . ,m−1) are given analytical functions, and β , pk, cik, λi denote given constants with 0 < pk < 1
(k = 0, 1, . . . ,m).
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In order to apply the variational iteration method, we rewrite Eq. (1.1) as

u(m)(t) = βu(t)− (a(t)u(pmt))(m) +
m−1∑
k=0

bk(t)u(k)(pkt)+ f (t), t ≥ 0. (1.3)

Neutral functional-differential equations with proportional delays represent a particular class of delay differential
equation. Such functional-differential equations play an important role in the mathematical modeling of real world
phenomena [16]. Obviously, most of these equations cannot be solved exactly. It is therefore necessary to design efficient
numerical methods to approximate their solutions. Ishiwata et al. used the rational approximation method [17] and the
collocation method [18] to compute numerical solutions of delay differential equations with proportional delays. Hu et al.
[19] applied linear multistep methods to compute numerical solutions for neutral delay differential equations. Wang et al.
obtained approximate solutions for neutral delay differential equations by continuous Runge–Kutta methods [20] and one-
leg θ-methods [21,22].

2. The variational iteration method

In this section, we introduce the basic idea underlying the variational iteration method for solving nonlinear equations.
Consider the general nonlinear differential equation

Lu+ Nu = g(t) (2.1)

[1,23], where L is a linear differential operator, N is a nonlinear operator, and g is a given analytical function. The essence of
the method is to construct a correction functional of the form

un+1(t) = un(t)+
∫ t

0
λ(t, s)(Lun(s)+ Nũn(s)− g(s))ds, (2.2)

where λ is a Lagrange multiplier which can be identified optimally via the variational theory [1,23], un is the approximate
solution and ũn denotes the restricted variation, i.e. δ̃un = 0 [1,23]. After determining the Lagrangemultiplierλ and selecting
an appropriate initial function u0, the successive approximations un of the solution u can be readily obtained. Consequently,
the solution of Eq. (2.1) is given by u = limn→∞ un [1,23].

3. Illustrative examples

In this section, we present a selection of examples to illustrate the efficiency of the method proposed in Section 2.

Example 1. Consider the following first-order neutral functional-differential equation with proportional delay:u′(t) = −u(t)+
1
2
u
(
t
2

)
+
1
2
u′
(
t
2

)
, 0 < t < 1,

u(0) = 1.
(3.1)

The Lagrange multiplier can be readily identified as λ = − exp(s− t) [3]. As a result, we obtain the iteration formula

un+1(t) = un(t)−
∫ t

0
es−t

{
u′n(s)+ un(s)−

1
2
un

(
1
2
s
)
−
1
2
u′n

(
1
2
s
)}
ds. (3.2)

Starting with u0(t) = 1 and using the iteration formula (3.2), we find

u1(t) =
1
2
+
1
2
e−t ,

u2(t) =
1
4
+
3
4
e−t ,

u3(t) =
1
8
+
7
8
e−t ,

...

un(t) =
1
2n
+
2n − 1
2n

e−t .

This yields the exact solution u(t) = limn→∞ un(t) = e−t . In Table 1 we compare the absolute errors of the variational
iteration method (for n = 7, 8) with the ones for the two-stage order-one Runge–Kutta method of [16] and the one-leg
θ-method of [21,22] with θ = 0.8, using h = 0.01.
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Table 1
Comparison of the absolute errors for Example 1.

t Two-stage order-one
Runge–Kutta method

One-leg θ-method with θ = 0.8 Variational iterative method

n = 7 n = 8

0.1 4.55× 10−4 2.57× 10−3 7.43× 10−4 3.72× 10−4

0.2 8.24× 10−4 8.86× 10−3 1.42× 10−3 7.08× 10−4

0.3 1.12× 10−3 1.72× 10−2 2.02× 10−3 1.01× 10−3

0.4 1.35× 10−3 2.66× 10−2 2.58× 10−3 1.29× 10−3

0.5 1.52× 10−3 3.63× 10−2 3.07× 10−3 1.54× 10−3

0.6 1.66× 10−3 4.58× 10−2 3.52× 10−3 1.76× 10−3

0.7 1.75× 10−3 5.47× 10−2 3.93× 10−3 1.97× 10−3

0.8 1.81× 10−3 6.29× 10−2 4.30× 10−3 2.15× 10−3

0.9 1.84× 10−3 7.02× 10−2 4.64× 10−3 2.32× 10−3

1.0 1.85× 10−3 7.66× 10−2 4.94× 10−3 2.47× 10−3
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Fig. 1. Comparison of the approximate solutions with the exact solution for Example 2.

Example 2. Consider the first-order neutral functional-differential equation with proportional delay used in [21],{
u′(t) = −u(t)+ 0.1u(0.8t)+ 0.5u′(0.8t)+ (0.32t − 0.5) exp(−0.8t)+ exp(−t), t ≥ 0,
u(0) = 0, (3.3)

which has the exact solution u(t) = t exp(−t).
The Lagrangemultiplier can be readily identified as λ = − exp(s−t) [3]. The corresponding variational iteration formula

reads

un+1(t) = un(t)−
∫ t

0
es−t{u′n(s)+ un(s)− 0.1un(0.8s)− 0.5u

′

n(0.8s)− exp(−s)

− (0.32s− 0.5) exp(−0.8s)}ds, (3.4)

and we choose u0(t) = 0 as its starting value. In Fig. 1 we show some of the resulting approximate solutions and the exact
solution u(t) = t exp(−t). In Table 2 we compare the absolute errors of the variational iteration method (for n = 5, 6)
with those of the two-stage order-one Runge–Kutta method of [16] and the one-leg θ-method [21,22] with θ = 0.8, where
h = 0.01.

Example 3. Consider the following second-order neutral functional-differential equation with proportional delay,u′′(t) = u′
(
1
2
t
)
−
1
2
tu′′

(
1
2
t
)
+ 2, 0 < t < 1,

u(0) = 1, u′(0) = 0.
(3.5)



X. Chen, L. Wang / Computers and Mathematics with Applications 59 (2010) 2696–2702 2699

Table 2
Comparison of the absolute errors for Example 2.

t Two-stage order-one
Runge–Kutta method

One-leg θ-method with θ = 0.8 Variational iterative method

n = 5 n = 6

0.1 8.68× 10−4 4.65× 10−3 2.62× 10−3 1.30× 10−3

0.2 1.49× 10−3 1.45× 10−2 4.36× 10−3 2.14× 10−3

0.3 1.90× 10−3 2.57× 10−2 5.40× 10−3 2.63× 10−3

0.4 2.16× 10−3 3.60× 10−2 5.89× 10−3 2.84× 10−3

0.5 2.28× 10−3 4.43× 10−2 5.96× 10−3 2.83× 10−3

0.6 2.31× 10−3 5.03× 10−2 5.71× 10−3 2.67× 10−3

0.7 2.27× 10−3 5.37× 10−2 5.23× 10−3 2.39× 10−3

0.8 2.17× 10−3 5.47× 10−2 4.59× 10−3 2.04× 10−3

0.9 2.03× 10−3 5.35× 10−2 3.84× 10−3 1.64× 10−3

1.0 1.86× 10−3 5.03× 10−2 3.04× 10−3 1.22× 10−3

Table 3
Comparison of the absolute errors for Example 4.

t Two-stage order-one
Runge–Kutta method

One-leg θ-method with θ = 0.8 Variational iteration method

n = 5 n = 6

0.1 1.00× 10−3 6.10× 10−3 3.34× 10−4 1.67× 10−4

0.2 2.02× 10−3 2.58× 10−2 1.43× 10−3 7.15× 10−4

0.3 3.07× 10−3 6.47× 10−2 3.45× 10−3 1.73× 10−3

0.4 4.17× 10−3 1.37× 10−1 6.58× 10−3 3.30× 10−3

0.5 5.34× 10−3 2.81× 10−1 1.11× 10−2 5.55× 10−3

The Lagrange multiplier can be readily identified as λ = s− t [3]. We thus generate the approximations un by using the
iteration formula

un+1(t) = un(t)+
∫ t

0
(s− t)

{
u′′n(s)− u

′

n

(
1
2
s
)
+
1
2
su′′n

(
1
2
s
)
− 2

}
ds. (3.6)

Starting with u0(t) = 1 in (3.6), we obtain

u1(t) = t2 + 1,

which coincides with the exact solution.

Example 4. Consider the second-order neutral functional-differential equation with proportional delay,u′′(t) =
3
4
u(t)+ u

(
t
2

)
+ u′

(
t
2

)
+
1
2
u′′
(
t
2

)
− t2 − t + 1, 0 < t < 1,

u(0) = u′(0) = 0.
(3.7)

Here, the Lagrange multiplier is found to be λ = s − t [3]. Therefore, the corresponding iteration formula assumes the
form

un+1(t) = un(t)+
∫ t

0
(s− t)

{
u′′n(s)−

3
4
un(s)− un

( s
2

)
− u′n

( s
2

)
−
1
2
u′′n

(
1
2
s
)
+ s2 + s− 1

}
ds. (3.8)

Let u0(t) = 0. Then, by the iteration formula (3.8), we obtain

u1(t) =
t2

2
−
t3

6
−
t4

12
,

u2(t) =
3
4
t2 −

1
8
t3 −

1
16
t4 −

3
320
t5 −

13
5760

t6,

u3(t) =
7
8
t2 −

7
96
t3 −

7
192
t4 −

39
5120

t5 −
343
184 320

t6 −
17
92 160

t7 −
91

2949 120
t8.

The comparison of these approximate solutions with the exact solution u(t) = t2 is shown in Fig. 2. In Table 3 we compare
the absolute errors of the variational iteration method (for n = 5, 6) with the two-stage order-one Runge–Kutta method
[16] and the one-leg θ-method [21,22] with θ = 0.8, using h = 0.01.
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Fig. 2. Comparison of the approximate solutions with the exact solution for Example 4.

Table 4
Comparison of the absolute errors for Example 5.

t Two-stage order-one
Runge–Kutta method

Variational iteration method

n = 4 n = 5 n = 6

0.1 4.97× 10−5 2.46× 10−8 3.07× 10−9 9.09× 10−12

0.2 4.43× 10−4 4.03× 10−7 5.04× 10−8 2.98× 10−10

0.3 1.57× 10−3 2.09× 10−6 2.62× 10−7 2.33× 10−9

0.4 3.85× 10−3 6.80× 10−6 8.49× 10−7 1.01× 10−8

0.5 7.78× 10−3 1.71× 10−5 2.13× 10−6 3.20× 10−8

0.6 1.39× 10−2 3.64× 10−5 4.55× 10−6 8.24× 10−8

0.7 2.28× 10−2 6.96× 10−5 8.69× 10−6 1.85× 10−7

0.8 3.53× 10−2 1.23× 10−4 1.53× 10−5 3.76× 10−7

0.9 5.19× 10−2 2.03× 10−4 2.54× 10−5 7.09× 10−7

1.0 7.34× 10−2 3.21× 10−4 4.01× 10−5 1.26× 10−6

Example 5. Consider the following third-order neutral functional-differential equation with proportional delays:u′′′(t) = u(t)+ u′
(
t
2

)
+ u′′

(
t
3

)
+
1
2
u′′′
(
t
4

)
− t4 −

t3

2
−
4
3
t2 + 21t, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0.
(3.9)

The Lagrange multiplier is easily identified to be λ = − (s−t)2

2 [3]. Hence, the variational iteration formula becomes

un+1 = un −
∫ t

0

(s− t)2

2

{
u′′′n (s)− un(s)− u

′

n

( s
2

)
− u′′n

( s
3

)
−
1
2
u′′′n
( s
4

)
+ s4 +

s3

2
+
4
3
s2 − 21s

}
ds. (3.10)

Choosing u0(t) = 0, the above iteration formula yields the following approximate solutions:

u1(t) =
7
8
t4 −

1
45
t5 −

1
240
t6 −

1
210
t7,

u2(t) =
63
64
t4 −

1
288
t5 −

1031
1492 992

t6 −
5617
8709 120

t7 −
7144

104 509 440
t8 −

1
107 520

t9 −
1

151 200
t10.

The graphs of these approximate solutions and the exact solution u(t) = t4 are contained in Fig. 3. In Table 4 we compare
the absolute errors of the variational iteration method (n = 4, 5, 6) with the ones for the two-stage order-one Runge–Kutta
method of [16], using h = 0.01.
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Fig. 3. Comparison of the approximate solutions with the exact solution for Example 5.

4. Conclusions

In this paper, we have demonstrated the feasibility of the variational iteration method for solving neutral functional-
differential equations with proportional delays. We obtain high-accuracy approximate solutions, or even the exact solution,
after only a few iterations. All the given examples reveal that the results of the variational iteration method are in excellent
agreement with those generated by some other methods. The numerical results also show that the variational iteration
method yields a very effective and convenient approach to the approximate solution of neutral functional-differential
equations with proportional delays.
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