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1 .  I N T R O D U C T I O N  

In  this paper,  by a fuzzy set, we mean  a mapp ing  f : R --~ [0, 1], it is also called a fuzzy subset 

of R. 

Let 

L0 = ( ~  e [0, 1] I ~ > 0}. 

DEFINITION 1.1. (See [1].) By  a fuzzy number we mean a mapping x : R --~ [0, 1] of the real line 
into [0, 1] such that 

(1) rot eac~ ~ • Lo, the level set x~ = {¢ c R j ~ _< x(¢)}  is a dosed ~ i t e  interval [x~, ~ r ]  
and 

(2) {¢ • R I0 < x(¢)}  is bounded. 

The definitions of basic operat ions  and propert ies for fuzzy numbers  also can be found in [1]. 

For each fuzzy number  x and each ( • 1R, we have 

• (~) = snp{~  • L0 I¢ • ~ } .  (1.1) 

In  the following, a character izat ion of fuzzy numbers  is given. 
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PROPOSITION 1.2. (See [110 For each fuzzy number x, the mappings a ~ x~l and a ~ x~r 
of  Lo into ]~ have the following properties. 

(1) a ~ xc~z is isotone, a ~ x~r is antitone and x~l <_ x~r. 

(2) xal - suP0<z< a x~l and x~r = inf0<~<~ x ~  for all a E Lo. 
(3) The infimum x0~ = inf,>0 x,z and the supremum x0r = sups>0 x ~  exist in ]~. 

On the other hand, i ra  ~ x~z and a ~ x~r are mappings of Lo into ]~ with Properties (1)-(3), 
then the mapping x : ]~ --+ Lo defined by (1.1) with xa = [xal,xa~] for all a E Lo, is the fuzzy 
number for which x~, c~ E Lo, axe the level sets. 

The set I~ L of all fuzzy numbers is called the fuzzy real line. 

DEFINITION 1.3. The canonical paxtial ordering < on ~n  is defined by 

x < y <=~ x,z <_ Y~z and x ~  <_ y ~ ,  for a11 a E Lo. (1.2) 

The Hausdorff metric D on I~L is given by the following definition. 

DEFINITION 1.4. Define D : ~L X ~L --+ ]I~+ L.J {0} by 

D(u , v )  = sup d(u~ ,v , ) ,  
~E[o,q 

where 

d ( d , B )  = inf{e > 0 [A  C N ( B , e ) , B  C N ( d , e ) } ,  

for all A ,B  in ~k(]~) = {A  ] A is a nonempty  compact convex subset of]~}. 

Throughout  this paper, the metric considered is the Hausdorff metric. 

LEMMA 1.5. Let  x , y , z  E ~L. I f x  <_ y <_ z, then D ( z , y )  <_ D ( z , x ) .  

PRooF.  For each a E [0, 1], it follows from x < y <_ z that  

xaz _< Y~z _< z~l and x~r <_ Y~r -< z ~ .  

Then, 

Thus, 

[Y~t - zat] <_ ]x~t - z~ll and 

d([z.z, z.~], [y~, y ~ ] )  = max{[y~t  - z~l [, lY-r - z ~ ] }  

< m a x { l x . t  - z . t [ ,  [ x ~  - z ~ l }  

= d ( [ z . ,  z ~ ] ,  [ x ~ ,  ~ .~ ] ) ,  

which implies 

D(z , y )  = sup 
~e[0,1] 

< sup 
(~e[o,1] 

d([z~, z~r], [y~, y~r]) 

d([z~, z.~], [x~, z.~]) = D(z, z). 

REMARK 1.6. (See [2].) •L is a complete metric space. (~L satisfies the conditions o r e  n in [2].) 

In Section 2, we establish some sufficient conditions for the existence of fixed points of increasing 
operators in fuzzy real line RL. We also establish some results about quasi-coupled fixed points 
in fuzzy real line ]RL in Section 3. We hope that  our work has some applicability in solving fuzzy 
equations. For the discussion about characterizing the properties of fuzzy equations, we refer the 
readers to [3,4]. 
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2. FIXED POINTS OF INCREASING OPERATORS 

In order to discuss our main results, we need the following definitions, which are similar to 
those in crisp results in [5]. 

Let [uo, v0] = {x E ]~L [U0 ~< X < V0} , where < is the canonical partial ordering. 

DEFINITION 2.1. A set S C ~L is said to be compact i f  any sequence {st} in S has a subsequence 
converging to a point in S in the metric space EL. 

DEFINITION 2.2. Let  B C [u0,vo] be a closed set oraL .  A is an operator from B in to B.  

(a) A is said to be increasing if  x < y implies Ax  <_ Ay for all x, y E B.  

(b) A is said to be condensing i f  it is continuous, bounded and r( A(  S)  ) < r( S) for any bounded 
set S C B with r( S) > O, where r( S) denote the measure of  noncompactness o r s  (cf. [6]). 

THEOREM 2.3. Let uo,vo C RL, uo < co. Let  B C [uo,vo] be a dosed set orieL such that 
uo, vo C B.  Suppose that A : B ~ B is an increasing operator such that 

uo <_ Auo, Avo <_ co. (2.1) 

Suppose A is condensing, then A has a maximal  fixed point x* and a minimal fixed point x ,  
in B,  moreover 

x * =  lim v~, x ,  = lim us,  (2.2) 
n - - + o o  n - - + c < ~  

where vn = Avs -1  and u~ = Aug_l ,  n = 1, 2, 3 , . . .  and 

u 0  _< u l  _ . . .  _< u ~  _< . . .  _< v ~  <__ . . .  <_ v l  <_ v0 .  (2.3) 

PROOF. Since A is increasing, it follows from (2.1) tha t  (2.3) holds. Now, we prove that  {Un} 
converges to some x .  E ]I~L and A x .  = x . .  The set S = { u o , u l , u 2 , . . . }  is bounded and 
S = A(S )  U {u0}, hence, r (S)  = r (A(S) ) .  It follows from A is condensing that  r (S)  = 0, i.e., S is 
a relatively compact set. Hence, there exists a subsequence {usk } C {us} such that  Unk ~ x .  for 
some x ,  E ]~L (note tha t  ~L is complete). Clearly, u~ < x .  < v~ (n = 1, 2 , . . . ) .  When m > nk, 
it follows from Lemma 1.5 that  D ( x . ,  u,~) < D ( x . ,  u~k). Thus, u,~ --* x .  as m ~ oc. Taking 
limit n --* oo on both  sides of the equality u~ = Aus-1 ,  we get x .  = A x ,  since A is continuous 
and B is closed. 

Similarly, we can prove that  {Vn} converges to some x* E I~L and Ax* = x*. 

Finally, we prove that  x* and x .  are the maximal and minimal fixed point of A in B, re- 
spectively. Let ~ E B and A2 = ~. Since A is increasing, it follows from u0 < • _< v0 that  

Auo < A2 < Avo, i.e., ul < Y~ < Vl. Using the same argument, we get u2 < • < v2, and, in 
general, us  _< 2 _< v~ (n = 1, 2, 3 , . . .  ). Now, taking limit n --* oc, we obtain x .  < 2 < x*. 

Immediately, apply Theorem 2.3, we have the following. 

COROLLARY 2.4. Let  the conditions of Theorem 2.3 be satisfied. Suppose that A has only one 
fixed point • in B. Then, for any xo E B,  the successive iterates 

x,~ = A x e - l ,  n = 1, 2 ,3 , . . .  

converges to ~, i.e., D(xs ,  ~) --* 0 as n --* oo. 

In the rest of this section, we will apply Theorem 2.3 to solve the following fuzzy equation: 

E x  ~ + F x  + C = x, (FE) 

where E, F ,  G, and x are fuzzy numbers. 
First, we characterize the Hausdorff metric in fuzzy number by supnorm in C[0, 1]. 
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DEFINITION 2.5. For each fuzzy  number x, we define two functions XL and xR from [0, 1] into R 

by XL(a) = x ~  and XR(a) = z ~  for each ~ ~ [0, 1]. 

THEOREM 2.6. For each fuzzy  number x, xR, and x L belong to C[0, 1], i.e., they are continuous 
functions on [0,1]. 

PROOF. Let c~ > 0. We will compute the right and left limits of l im¢_~ XL(~) and show tha t  
they are equal to XL(C~). 

Let c~ > a and a,~ ~ a as n ~ oe. Suppose tha t  XL(a~) does not converge to XL(~), then 
there is an e > 0 such tha t  xL(a~) > XL(a) + e for sufficiently large nature  number n. On 
the other hand, by the definition of fuzzy numbers,  we know tha t  { X L ( ~ ) }  is decreasing and 
bounded. So, XL(C~) converges to a number L and L >_ x~l + e. Moreover, by the definition 
of XL, we know tha t  x(L)  < a~ and it implies x(L)  << c~. So, L <_ XL(~) = x ~ .  I t  follows a 
contradiction. Hence, lim . . . .  XL(a~) = XL(C~). So, the right limit of l im~-~  XL(~) is equal 
to XL(a). Similarly, we can show the left limit of lim~_+~ xc(/3) is equal to XL(a). So, XL is 
continuous on (0, 1]. Using the same argument,  we also can show tha t  XL is continuous at 0. 
Hence, XL is continuous on [0, 1]. 

The argument  of xR is continuous on [0, 1] is similar. 

The following theorem is a characterization of Hausdorff in fuzzy number  by supnorm on C[0, 1]. 

THEOREM 2.7. Suppose that x and y are fuzzy  numbers, then D(x ,  y) = max(HxL--YL I1~, IIzR- 
YRII~). 

PROOF. It  is obvious. 

Let M > 0 be a fixed real number. Let BM = {x E 1Rc I 0 < z < 1, IXL(C~) -- XL(/3)I < M l a - / ~ l  
and IXR(a) - XR(~)I _< M]~ - ~1 for each a,/3 ~ [0, 1]}. 

THEOREM 2.8. BM is a dosed subset of Rc .  

PROOF. Suppose z~ ~ BM and lim~--+~ x~ = x in Nc. We show tha t  x ~ BM. By Theorem 2.7, 
we know tha t  II(x~)L -- XLl[~ -* 0 as n -~ oc. I t  implies tha t  for any e > 0, there is an n ~ N 
such tha t  II(x~DL - X L I I ~  <-- ~. Hence, 

IxL(~) - xL(fl)l -< IxL(~) - (x~)~(~)l + I ( ~ ) ~ ( ~ )  - (x , )~(Z)l  + I~(/~)  - (x~)L(Z)I 

<_ 2e -t- Mla  - /~ l ,  

for ~, /3 E [0, I]. Since c is arbitrary, it implies that [XL(~) -XL(~)I ~ MI~-~ I for ~,~ C [0, I]. 

Using the same argument, we also can show that IxR(~) -XR(~)l <_ MI~ -~[ for each ~,fl E 

[0, i]. So, BM is a closed set of •L. 

THEOREM 2.9. Let M > 0 be a real number. Suppose that E, F, and G are fuzzy numbers and 
satisfy the following conditions 

(a) E > 0, EL(~) ,ER(~)  _< 1/6 for each ~ e [0,1]. I E L ( ~ ) -  E~(9)[ < ( M / 6 ) 1 ~ - 9 1  and 

IER(c~) -- ER(/3)] < (M/6 ) I a  -/31 for each a,/~ e [0, 1]; 
(b) F and G are defined as the same conditions as in (a). 

Then, (FE) has a solution in BM. 

In order to prove Theorem 2.9, we give the following lemma. 

LEMMA 2.10. Suppose that B is a subset of RL. Let  BL = {XL I x E B }  and let BR = {xn  I 
x C B}.  I f S L  and B ~  are compact in (C[0, 1], [1" H~), then S is a compact set in NL. 

PROOF. Let {x~} be a sequence of B. We show tha t  {x~} has a convergent subsequence. 
Since BL is a compact  set of C[0, 1], {(X~)L} has a convergent subsequence {(xnk)L} in C[0, 1]. 
Also, BR is a compact  set of C[0, 1], {(z~k)R } has a convergent subsequence {(xn~)R} in C[0, 1]. 
By Theorem 2.7, {(x~z) } is convergent in NL. So, B is a compact  set in RL. 
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PROOF OF THEOREM 2.9. Let y E BM. Let Y = Ey  2 + F y  + G. Then, 

I Y L ( ~ )  - Y L ( ~ ) I  

= IEL(~)y~(~) + FL(~)y~(~)  + aL(~)  

-- EL (Z)y~ (~) - EL (~)y~ (Z) - GL (9) 1 

< Y~(~)IEL(~) - E~(Z)I + EL(Z)IYL(a) + YL(~)I" lYL(~) -- ~L(Z)I 

+ Y~(a)IFL(a) - FL(Z)I + FL(/3)lYL(C~) -- YL(/~)I + [GL(C~) - GL(~)I 

M [ c ~ - / ~ [ + 2  [ c ~ - / ~ l + - - 6 - l a - / 3 [ + -  ~- -~-I~- /~  I 
M M M 

- < T  

- -  M[~ - /~[ ,  

(2.4) 

for each c~,/3 E [0, 1]. Similarly, we also can show that 

IYR(a) - YR(fl)I --< Mla  - ill. (2.5) 

Moreover, it is easy to see that 0 < E x  ~ + F x  + G _< 1 for each x C ~[~-L. So, we can define 
operator A from BM into BM by Ax  = E x  2 ~- F x  -~- G. By definition of A and Theorem 2.7, it 
is easy to see that A is continuous and increasing. Let S C BM be a bounded set with r(S) > O. 
We show that the closure of A(S) in ~L is a compact set and then r(A(S))  < r(S). Let B be 
the closure of A(S)  in RL. By Lemma 2.10, it is sufficient to show that BL and BR are compact 
in C[0, 1]. It is easy to see that BL is a bounded set in C[0, 1]. Let f E BL. It follows from (2.4) 
that I f ( a ) -  f(fl)l --- M I a - ~ l  for each a, f l e  [0, 1]. So, BL is equicontinuous. So, BL is compact 
by Arzela-Ascoli theorem. Similarly, BR is compact set. Hence, by Lemma 2.10, we know that B 
is compact. So, r(A(S))  < r(S). Finally, by Theorem 2.3, there is an y E BM such that Ay = y, 
i.e., (FE) has a solution. 

REMARK 2.11. It is well known that to solve a fuzzy equation is very difficult, for the details, 
we refer the readers to [4]. Our result can also be generalized into a system, we will discuss in 
the following section. 

3. C O U P L E D  Q U A S I  F I X E D  P O I N T S  

O F  M I X E D  M O N O T O N E  O P E R A T O R S  

Many of the results considered so far for a single equation will be extended to systems. The 
monotone properties can be used to deal with system of inequalities, and we shall define this 
property. 

DEFINITION 3.1. Let uo,vo E ~L. Let B C [u0,v0] be a closed subset OrieL. A is an operator 
from B x B in to B. 

(a) A is said to be mixed monotone i rA(x ,  y) is increasing in x and decreasing in y, i.e., 

•Xl ~_ x2, Xl,X2 E B implies A (x l , y )  < A(x2,y) ,  for each y c B; 

if  yl < Y2, yl,y2 e B implies A(x, yl) > A(x,  y2), for each x e B. 

(b) A is said to be completely continuous if  it is continuous and compact. Notice that the 
compactness means that the set A( S) is relatively compact for any bounded set S C B x B. 

(c) Point (x*,y*) E B x B is said to be a coupled quasi fixed point of A / f  A(x*,y*) -- x* and 
A(y*, x*) = y*. 

(d) x* E B is called a fixed point of A i f  A(x*,x*) = x*. 

REMARK 3.2. Evidently, if x* is a fixed point of A, then (x*, x*) is a coupled quasi fixed point 
of A. 
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THEOREM 3.3. Let uo, vo E ]~L, Uo < Vo. Let B be a dosed subset of [uo, v0] such that Uo, vo E B.  
Let  A : B x B ~ B be a mixed monotone operator such that 

uo <_ A(uo, vo), A(vo, uo) _< Vo. (3.1) 

Suppose A is completely continuous, then A has a coupled quasi fixed point (x*, y*) E B x B,  
which is minima1 and m a x i m a / i n  the sense that x* < • < y* and x* <_ ~ <_ y* for any coupled 
quasi fixed point (~,fl) E B x B of A; moreover, we have 

x* lira Un , Jim Vn , = y*  = ( 3 . 2 )  
n--+OO 7~"-* C<) 

where u~ = A( u ,~ - l , v~ - l )  and v~ = A ( v n - l , U ~ - l ) , n  = 1 , 2 , 3 , . . . ,  which satisfy 

t to  (__ 1t l  ((_ " ' "  (__ Un  ~__ " ' "  <<_ V n  ~ " ' "  ~__ 111 <~ VO. (3.3) 

PROOF. From (3.1), we know 

U0 ~ Ul ~ Vl ~ V0. 

Suppose u ~ - i  _< un N v~ < vn-1. Since A is mixed monotone, 

and 

u~ = A ( u ~ - l , v ~ - l )  <_ A ( u ~ , v n _ l )  <_ A ( u ~ , v ~ )  = u~+l, 

Vn = A ( V n - l , l t n - 1 )  ~ A (vn ,Un-1 )  ~_ A(vn , l tn )  = Vn+l, 

u~+l = A(um v~) < A(v~, u~) = v~+l. 

Hence, by induction, (3.3) holds. Define 

S---- { / ~ l , U 2 , ' ' ' } "  

Then, it follows from A is completely continuous tha t  S is relatively compact.  And hence, from 
the proof of Theorem 2.3, we know un ~ x* E B. 

Similarly, we can prove tha t  {v~} converges to some y* E B. 
Since A is continuous, 

Un = A(un-1 ,  vn-1) --~ A(x*,  y*) 

and 

V n = A ( V n _ l , ~ t n _ l )  "-+ A(y*,x*) .  

Thus, A(x*,y*)  = x* and A(y*,x*)  = y*, i.e., (x*,y*) is a coupled quasi fixed point of A. 
Finally, we prove tha t  maximal  and minimal proper ty  of (x*,y*). Let (~,~) E B x B is any 

coupled quasi fixed point of A. Since u0 _< • _< Vo and Uo < ~ _< vo, 

ul = A(uo, vo) <_ A(uo, ~) <_ A(2,  Y) = ~ <- A(vo, 9) <- A(vo, uo) = vl 

and 
ul = A(uo, Vo) < A(uo, 2) < A(~, 2) = ~ < A(vo, 2) < A(vo, uo) = vl .  

Similarly, u2 _< • _< v2, u2 < ~ _< v2 and in general 

un <_2<_vn; un <_9<__Vn, n = O ,  1 , 2 , . . . .  

Now, taking limits in (3.4), we obtain x* < 2 < y* and x* < ~3 _< Y*. 

(3.4) 
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COROLLARY 3.4. Let  the conditions of  Theorem 3.3 be satisfied. Suppose there exists 0 < c~ < 1 
such that 

D(A(x ,  y), A(y,  x)) <_ aD(x ,  y), (x, y) e B × B.  (3.5) 

Then, A has exactly one fixed point • in B and, i f  we successively construct the sequences 

Xn = A(xn-1 ,  Yn--1), 
n = 1, 2, 3 , . . . ,  (3.6) 

Y~ = A(yn-1,  Xn--1), 

for any initial (xo, Yo) E B x B,  we have 

D(xn ,~ )  ~ O, D ( y m 2 )  ~ O, a s n - - ~ .  (3.7) 

PROOF. By (3.5), we know 

D(vn,u,~) = D ( A ( v ~ - l , u ~ - l ) , A ( u ~ _ l , v n _ l ) )  <_ aD(v~_~,un_~),  n = 1 , 2 , . . . ,  

and so 

D(vn, un) _< u0) 0(n oo). 

Hence, by (3.2), x* = y*. Let 2 = x* = y*, then ~ is a fixed point  of A. By vir tue of the minimal  

and maximal  p roper ty  (x*,y*), we show easily tha t  2 is the  unique fixed point  of A in B. Now, 

let (Xo, Y0) C B x B be given and (3.6) be constructed.  Similar to the  establ ishment  of (3.4), we 
get 

u~ < x ~  < v m  u~ <yn_<Vm n = 0 , 1 , 2 , . . . .  (3.8) 

I t  follows from (3.2),(3.8) tha t  2 = x* = y* and proper ty  of D tha t  (3.7) holds. 
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