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Abstract—=Some sufficient conditions for the existence of fixed points of increasing operators in
fuzzy real line Ry, are given. We also establish some coupled quasi-fixed-point theorems of mixed
monotone operators in fuzzy real line Ry. © 2004 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

In this paper, by a fuzzy set, we mean a mapping f : R — [0, 1], it is also called a fuzzy subset
of R.
Let
Ly = {0 €]0,1} | & > 0}.
DEFINITION 1.1. (See [1].) By a fuzzy number we mean a mapping z : R — [0, 1] of the real line
into [0, 1] such that

(1) for each a € Ly, the level set o = {§ € R | o < z(€)} is a closed finite interval (a1, Tar]
and

(2) {£€ R|0< (&)} is bounded.

The definitions of basic operations and properties for fuzzy numbers also can be found in [1].
For each fuzzy number z and each £ € R, we have

(&) =sup{a € Ly | € € z4}. (1.1)

In the following, a characterization of fuzzy numbers is given.
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ProprosITION 1.2. (See [1].) For each fuzzy number z, the mappings o — x4 and a — Ty
of Lo into R have the following properties.

(1) o x4 is isotone, « +— T, is antitone and T,y < Top.
(2) 2o = SUPg< g<a THL and zor = infocgen e for all a € Lg.
(3) The infimum xg; = infys0 Tar and the supremum To, = SUPy o Lar €Xist in R.

On the other hand, if & — z4; and a + 4, are mappings of Ly into R with Properties (1)-(3),
then the mapping « : R — Lo defined by (1.1) with zo = [Tai, Zar] for all a € Ly, is the fuzzy
number for which z4,a € Ly, are the level sets. ‘

The set Ry, of all fuzzy numbers is called the fuzzy real line.

DeriNITION 1.3. The canonical partial ordering < on Ry, is defined by
TLY S Tol S Yot a0d Zor < Yor, for all a € L. (1.2)

The Hausdorff metric D on Ry, is given by the following definition.
DEFINITION 1.4. Define D : Ry x R, — Ry U {0} by

D(uvv) = 8sup d(uayva),
a€l0,1)

where
d(A,B) =inf{e>0| AC N(B,¢), BC N(4,¢)},
for all A,B in pi(R) = {A| A is a nonempty compact convex subset of R}.

Throughout this paper, the metric considered is the Hausdorff metric.

LeMMA 1.5. Let z,y,z € Ry. If £ <y < 2, then D(z,y) < D(z,z).
Proor. For each a € [0,1], it follows from z < y < 2 that

Tl < Yol < Za and Tar < Yor < Zar-

Then,
lyal - Zal' < |xal — Zal and Iym‘ - Zarl < I-'L'ar — Zar|:

Thus,

d([zala ZOt’I‘]v [yaly ycxr]) = max{lyal - Zal|y ‘ya'r - zar'}
S max{lxaz - Zalla lxar - zcw‘!}

= d([zah Zar]; [-’Eal: mozr]),
which implies

D(z,y) = Sup d([zala Zar]a [yal,yar])
a€[0,1]

S sup d([zala Zar]v [xal-)xar]) = D(IB, Z)
«€[0,1]

REMARK 1.6. (See [2].) Ry, is a complete metric space. (Ry, satisfies the conditions of E™ in [2].)

In Section 2, we establish some sufficient conditions for the existence of fixed points of increasing
operators in fuzzy real line Ry,. We also establish some results about quasi-coupled fixed points
in fuzzy real line Ry, in Section 3. We hope that our work has some applicability in solving fuzzy
equations. For the discussion about characterizing the properties of fuzzy equations, we refer the
readers to [3,4].
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2. FIXED POINTS OF INCREASING OPERATORS

In order to discuss our main results, we need the following definitions, which are similar to
those in crisp results in [5].
Let [ug,vo] = {z € R, | uo < =z < wg}, where < is the canonical partial ordering.

DEFINITION 2.1. A set § C Ry, is said to be compact if any sequence {s,} in S has a subsequence
converging to a point in S in the metric space Ry,
DEFINITION 2.2. Let B C [ug, vo] be a closed set of Ry. A is an operator from B in to B.

(a) A is said to be increasing if x <y implies Az < Ay for all z,y € B.
(b) A is said to be condensing if it is continuous, bounded and r(A(S)) < r(S) for any bounded
set S C B with r(S) > 0, where r(S) denote the measure of noncompactness of S (cf. [6]).

THEOREM 2.3. Let ug,vg € Ry, ug < vo. Let B C [ug,v0] be a closed set of Ry, such that
ug, V9 € B. Suppose that A : B — B is an increasing operator such that

Ug S_ A’LL(), A’Uo S 0. (21)

Suppose A is condensing, then A has a maximal fixed point z* and a minimal fixed point x.
in B, moreover

z* = lim vy, z, = lim uy, (2.2)
n-—o0 n—oo
where v, = Av,_1 and u, = Au,_1, n=1,2,3,... and
wlu <L <Ly <Ly L. (2.3)

PRrROOF. Since A is increasing, it follows from (2.1) that (2.3) holds. Now, we prove that {u,}
converges to some z, € Ry and Az, = z.. The set § = {ug,u1,u2,...} is bounded and
S = A(S) U {ug}, hence, r(S) = r(A(S)). It follows from A is condensing that r(S) =0, i.e., S is
a relatively compact set. Hence, there exists a subsequence {uy, } C {un} such that u,, — =z, for
some z, € Ry, (note that Ry, is complete). Clearly, u, < z, < v, (n =1,2,...). When m > ng,
it follows from Lemma 1.5 that D(z.,usm) < D(z4, up, ). Thus, u, — z, as m — oo. Taking
limit n — oo on both sides of the equality u, = Au,_1, we get z, = Az, since A is continuous
and B is closed.

Similarly, we can prove that {v,} converges to some z* € Ry, and Az* = z*.

Finally, we prove that z* and z, are the maximal and minimal fixed point of A in B, re-
spectively. Let £ € B and A% = Z. Since A is increasing, it follows from uy < T < v that
Aup < AZ < Awg, ie., u3 € T < v;. Using the same argument, we get up < Z < vg, and, in
general, un, <Z < v, (n=1,2,3,...). Now, taking limit n — oo, we obtain z, < 7 < z*.

Immediately, apply Theorem 2.3, we have the following.

COROLLARY 2.4. Let the conditions of Theorem 2.3 be satisfied. Suppose that A has only one
fixed point Z in B. Then, for any ¢ € B, the successive iterates

Ty = Azp_1, n=123,...

converges to I, i.e., D(zp,Z) — 0 as n — oo.

In the rest of this section, we will apply Theorem 2.3 to solve the following fuzzy equation:
Ex? 4+ Fz+ G =z, (FE)

where E, F, G, and z are fuzzy numbers.
First, we characterize the Hausdorff metric in fuzzy number by supnorm in C{0, 1].
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DEFINITION 2.5. For each fuzzy number z, we define two functions zp, and zp from [0, 1] into R
by z1.(a) = o and Zg(a) = Ty for each o € {0,1].

THEOREM 2.6. For each fuzzy number z, zg, and =, belong to C[0,1), i.e., they are continuous
functions on [0, 1].

Proor. Let a > 0. We will compute the right and left limits of limg_,o 21 (3) and show that
they are equal to z ().

Let an, > o and o, — @ as n — co. Suppose that z(cw,) does not converge to = (), then
there is an € > 0 such that zp(an) > zr(a) + € for sufficiently large nature number n. On
the other hand, by the definition of fuzzy numbers, we know that {zy(en)} is decreasing and
bounded. So, zp(ay) converges to a number L and L > x4 + €. Moreover, by the definition
of zr, we know that z(L) < «, and it implies (L) < a. So, L < zp(a) = z4. It follows a
contradiction. Hence, limg, o 21, (0n) = z1(a). So, the right limit of limg_,, 21(0) is equal
to 27 (). Similarly, we can show the left limit of limg_.o 27.(8) is equal to zr(a). So, z1 is
continuous on (0,1]. Using the same argument, we also can show that zy is continuous at 0.
Hence, z, is continuous on [0, 1].

The argument of zp, is continuous on [0, 1] is similar.

The following theorem is a characterization of Hausdorff in fuzzy number by supnorm on C[0, 1].

THEOREM 2.7. Suppose that = and y are fuzzy numbers, then D(z,y) = max(|lzr —¥r |l oo, 2R~
Yrlloo)-
Proor. It is obvious.

Let M > 0 be a fixed real number. Let Byy = {xr e R, | 0 < 2 < 1, |xp () —zL(8)| £ M|a—8]
and |zr(a) — zr(8)| < Mo — ] for each o, 8 € [0,1]}.

THEOREM 2.8. Bj, is a closed subset of Ry,.

PRrROOF. Suppose z, € By and lim, o0 2, = x in Ry,. We show that z € Bys. By Theorem 2.7,
we know that ||(2n)z — ZLllec — 0 a8 n — oo, It implies that for any e > 0, there s an n € N
such that ||(z,)r — 21 |jec < €. Hence,

lzr(a) ~zL(B)] < lzr(a) — (za) ()] + [(zn)L(e) = () L(B)] + |22 (B) — (zn)L(B)]
<2+ Mo - g,

for o, B € [0,1]. Since € is arbitrary, it implies that |z (a) — z1(8)| < M|a — ] for o, 8 € [0,1].
Using the same argument, we also can show that |zr(a) — zr(8)| < M|a — ] for each o, B €
[0,1]. So, Bur is a closed set of Ry.

THEOREM 2.9. Let M > 0 be a real number. Suppose that E, F, and G are fuzzy numbers and
satisty the following conditions
(a) E > 0, Er (o), Er(e) < 1/6 for each a € [0,1]. |Er(o) — Er(B8)] < (M/6)|o — §| and
|Er(a) — ER(B)] < (M/6)|a — B| for each o, 8 € [0,1];
(b) F' and G are defined as the same conditions as in (a).
Then, (FE) has a solution in B)y.

In order to prove Theorem 2.9, we give the following lemma.

LEMMA 2.10. Suppose that B is a subset of Ry,. Let By, = {z1, | z € B} and let B = {zr |
z € B}. If By, and By are compact in (C[0,1],|| - ||cc), then B is a compact set in Ry,

Proor. Let {z,} be a sequence of B. We show that {z,} has a convergent subsequence.
Since By, is a compact set of C[0,1], {(z.)r} has a convergent subsequence {(z,,)r} in C[0,1].
Also, Bp is a compact set of C|0,1], {(zn,)r} has a convergent subsequence {(z,,)r} in C[0,1].
By Theorem 2.7, {(zn,)} is convergent in Ry. So, B is a compact set in Ry,
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PROOF OF THEOREM 2.9. Let y € Bys. Let Y = Ey? + Fy+ G. Then,

[Yz(a) - Y(8)]
= |Er(a)y} (o) + Fr(e)yr(a) + GL(a)
— EL(B)y3(B) — FL(B)yL(8) — GL(B)|
< y1(@)|Br(@) — EL(B)| + BL(B)lyL(e) + y(8)| - lyr(e) — y(B)] (2.4)
+yi(a)|Fr(e) = FL(B)| + Fo(B)lyc () — yo.(B)| + |Gr(e) — GL(B)]

M M M M
< Sla— g1+ Blla— 8+ a8+ a1+ Xa—
:Mla_ﬂla

for each a, B € [0,1]. Similarly, we also can show that
Yr(a) — Yr(B)| < Mla —B]. (2.5)

Moreover, it is easy to see that 0 < Fz? + Fz 4+ G < 1 for each z € Ry. So, we can define
operator A from By into By by Az = Ex? 4+ Fz + G. By definition of A and Theorem 2.7, it
is easy to see that A is continuous and increasing. Let S C By be a bounded set with r(S) > 0.
We show that the closure of A(S) in Ry, is a compact set and then r(A(S)) < r(S). Let B be
the closure of A(S) in Ry. By Lemma 2.10, it is sufficient to show that By and Bp are compact
in C[0,1]. It is easy to see that By, is a bounded set in C[0,1]. Let f € Br. It follows from (2.4)
that |f(a) — f(B)] < M|a—g| for each e, B € [0,1]. So, By, is equicontinuous. So, By, is compact
by Arzela-Ascoli theorem. Similarly, Bg is compact set. Hence, by Lemma 2.10, we know that B
is compact. So, 7(A(S)) < r(S). Finally, by Theorem 2.3, there is an y € By such that Ay =y,
i.e., (FE) has a solution.

REMARK 2.11. It is well known that to solve a fuzzy equation is very difficult, for the details,

we refer the readers to [4]. Our result can also be generalized into a system, we will discuss in
the following section.

3. COUPLED QUASI FIXED POINTS
OF MIXED MONOTONE OPERATORS

Many of the results considered so far for a single equation will be extended to systems. The
monotone properties can be used to deal with system of inequalities, and we shall define this

property.
DEFINITION 3.1. Let ug,vg € Rp. Let B C [ug,vg] be a closed subset of Ry,. A is an operator
from B x B in to B.

(a) A is said to be mixed monotone if A(z,y) is increasing in x and decreasing in y, i.e.,

ifz1 < zg, 21,22 € B implies A(z1,y) < A(z2,y), for each y € B;
ify1 < y2, v1,Y2 € B implies A(z,y1) > A(z,y2), for each z € B.

(b) A is said to be completely continuous if it is continuous and compact. Notice that the
compactness means that the set A(S) is relatively compact for any bounded set S C B x B.

(c) Point (z*,y*) € B x B is said to be a coupled quasi fixed point of A if A(z*,y*) = z* and
Aly*,z") =y".

(d) z* € B is called a fixed point of A if A(z*,z*) = z*.

REMARK 3.2. Evidently, if z* is a fixed point of A, then (z*,z*) is a coupled quasi fixed point
of A.
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THEOREM 3.3. Let ug,vo € R, up < vo. Let B be a closed subset of [ug, vo] such that ug, vy € B.
Let A: B X B — B be a mixed monotone operator such that

Uo S A(UQ,U()), A(’Uo,'LLQ) S Vo. (31)

Suppose A is completely continuous, then A has a coupled quasi fixed point (z*,y*) € B x B,
which is minimal and maximal in the sense that z* < T < y* and z* < § < y* for any coupled
quasi fixed point (Z,7) € B x B of A; moreover, we have

z* = Hm upn, y* = lim vy, (3.2)
n—o0 n—o0
where U, = A(tn_1,vn-1) and v, = A(Vp—1,Un-1),n = 1,2,3,..., which satisfy
ugSup < Sup < S <---<p Lo (3.3)

Proor. From (3.1), we know
uo < ug S v < vo.

Suppose up_1 < up < vy < Up-1. Since A is mixed monotone,

A(u‘navn-—l)
A(’Un, un—l)

Un = A(un—la vn—l) (uny U'n) = Un+1,
Un, U

< <A
Un = A(Un—laun—-l) > > A( n) = VUn+1,
and

Un41 = A(unyvn) < A('Un,un) = Un+1.
Hence, by induction, (3.3) holds. Define
S = {’U,]_,UQ,...}.

Then, it follows from A is completely continuous that S is relatively compact. And hence, from
the proof of Theorem 2.3, we know u, — z* € B.

Similarly, we can prove that {v,} converges to some y* € B.

Since A is continuous,

Un = A(tn_1,vn-1) = Alz*,y")
and
Up = A(Un—lvun~1) - A(y*7$*)-

Thus, A(z*,y*) = z* and A{y*,z*) = y*, L.e., (z*,y*) is a coupled quasi fixed point of A.
Finally, we prove that maximal and minimal property of (z*,y*). Let (%,9) € B x B is any
coupled quasi fixed point of A. Since uy < Z < vy and up £ § < v,

uy = Aug,vo) < A(uo, ¥) < A(Z,7) =% < A(vo,7) < Avo,uo) = v1

and
uy = A(uo, vo) < Aluo, T) < A, %) =7 < A(vo, T) < A(vg, ug) = vy.

Similarly, us < % < vg, ug < § < vy and in general
Up KT < vy Up ST < vp, n=0,1,2,.... (3.4)

#*

Now, taking limits in (3.4), we obtain z* < Z < y* and z* < § < y*.
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COROLLARY 3.4. Let the conditions of Theorem 3.3 be satisfied. Suppose there exists 0 < o < 1
such that

D(A(z,y), A(y,z)) < aD(z,y), (z,y) € Bx B. (3.5)

Then, A has exactly one fixed point T in B and, if we successively construct the sequences

Zn = A(Zn_1,Yn-1),

n=1,2,3,..., 3.6
Yn = A(yn—lamn—l)’ (36)
for any initial (xo,yo) € B x B, we have

D(zn, %) =0, D(yn,T) — 0, asn — oo. (3.7)

ProoF. By (3.5), we know
D(vn> un) = D(A(vn—laun——l)vA(un—lyvn—l)) S aD('Un—la un—1)7 n= 1»2a ey

and so
D(vn,un) < o™ D(vg, ug) — 0(n — o).

Hence, by (3.2), 2* = y*. Let Z = z* = y*, then % is a fixed point of A. By virtue of the minimal
and maximal property (z*,y*), we show easily that Z is the unique fixed point of A in B. Now,
let (z0,10) € B x B be given and (3.6) be constructed. Similar to the establishment of (3.4), we
get

Un S ZTp SV, Up < Yn < Up, n=0,1,2,.... (3.8)

It follows from (3.2),(3.8) that Z = z* = y* and property of D that (3.7) holds.

REFERENCES

1. W. Géhler and S. Géhler, Contributions to fuzzy analysis, Fuzzy Sets and Systems 105, 201-224, (1999).

2. O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24, 301-317, (1987).

3. G.J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Theory and Applications, Prentice Hall, Upper Saddle
River, NJ, (1995).

4. J.J. Buckley, Solving fuzzy equations, Fuzzy Sets and Systems 50, 1-14, (1992).

5. D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, MA,
(1988).

6. V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon, Oxford,
(1981).



