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Abstract

The generalized conjunction/disjunction function (GCD) is a continuous logic function of two or
more variables that integrates conjunctive and disjunctive properties in a single function. It is used as
a mathematical model of simultaneity and replaceability of inputs. Special cases of this function
include the full (pure) conjunction, the partial conjunction, the arithmetic mean, the partial disjunc-
tion, and the full (pure) disjunction. GCD enables a continuous transition from the full conjunction
to the full disjunction, using a parameter that specifies a desired level of conjunction (andness) or
disjunction (orness). In this paper, we investigate and compare various versions of GCD and other
mathematical models of simultaneity and replaceability that are applicable in the areas of system
evaluation, and information retrieval.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

GCD is a mapping k : ½0; 1�n ! ½0; 1�; n > 1, that has properties similar to logic func-
tions of conjunction and disjunction. The level of similarity is adjustable using a parameter
a 2 ½0; 1�, called the conjunction degree (andness), or its complement x ¼ 1� a, that is
called the disjunction degree (orness) [5,6]. If a ¼ 1;x ¼ 0, then the GCD behaves as
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the full (pure) conjunction. Similarly, if x ¼ 1; a ¼ 0, then the GCD behaves as the full
(pure) disjunction.

The main application areas for the GCD function are:

(1) System evaluation: preference modeling, system comparison, selection, and
optimization.

(2) Classification (pattern matching): object recognition, and information retrieval
(search).

These two areas have different specific requirements that the GCD must satisfy. In some
cases, GCD is interpreted as a logic connective used to aggregate logic variables and com-
pute the resulting degree of truth [5–8,11]. In other cases, GCD is interpreted as the aver-
aging operator [16,17,19–22]. The use of GCD in the area of system evaluation includes
decision models for evaluation, comparison, and optimization of computers, search
engines, browsers, windowed environments, web sites, e-commerce systems, data manage-
ment systems, Java IDE’s, etc. [11].

In this paper, we focus on applications where GCD is interpreted as a logic connective
and used to create compound continuous logic functions, such as partial absorption [8],
and other more complex logic functions [9,11]. These functions are frequently used in
the area of system evaluation and are suitable for building multiple criteria decision mod-
els [2,14].

Continuous logic models based on GCD are a generalization of the binary Boolean
logic. The classic Boolean logic is based on binary values B ¼ f0; 1g and three basic oper-
ations: conjunction x ^ y ¼ minðx; yÞ, disjunction x _ y ¼ maxðx; yÞ, and negation �x ¼
1� x. The basic operations are used for making compound functions, such as implication
x! y ¼ �x _ y, and xZ y ¼ x ^ y, nor x_ y ¼ x _ y, exclusive or x� y ¼ ð�x ^ yÞ _ ðx ^ �yÞ,
and equivalence x � y ¼ ð�x ^ �yÞ _ ðx ^ yÞ.

The binary set B can be replaced by the unit interval I ¼ ½0; 1�. If x 2 I and y 2 I the
same logic operations (min, max, and x 7!1� xÞ can be used to get the traditional contin-
uous logic. The next step in generalization is to replace min and max with GCD, which
includes the extreme aggregators min and max, as well as all intermediate aggregators
located along the path of continuous transition from min to max. The intermediate aggre-
gators include partial conjunction and partial disjunction. They are used to model various
levels of simultaneity and replaceability (substitutability) of input variables.

In this paper, we investigate mathematical models of simultaneity and replaceability.
Our goal is to identify desirable properties of GCD and related aggregators, and to ana-
lyze their implementations.

2. Simultaneity and replaceability

Simultaneity and replaceability are two fundamental logic connectives that are building
blocks for many decision models. In the area of system evaluation we usually have a set of
m requirements that a system is expected to satisfy. There are m input variables
x1; . . . ; xm; xi 2 I ; i ¼ 1; . . . ;m that reflect the level of satisfaction of m specific require-
ments. Using a logic interpretation, xi is the degree of truth of the statement asserting that
the ith requirement is completely satisfied. We call x1; . . . ; xm elementary preferences. An
evaluation criterion is a compound model that uses elementary preferences to compute
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the global preference y ¼ Lðx1; . . . ; xmÞ; y 2 I that reflects the global satisfaction of all
requirements. The global preference is interpreted as the degree of truth of the statement
that a complex system completely satisfies all requirements.

The decision model L : Im ! I can be built using functions that reflect logic relationships
between individual requirements. These relationships include various levels of simultaneity
and replaceability, as well as more complex relationships that combine mandatory, desired,
and optional features. A natural environment for creating system evaluation models is a
continuous preference logic (CPL) that reflects those aspects of human decision making that
include adjustable level of andness, orness, and relative importance (weights) [7,11].

Mathematical models of simultaneity and replaceability are fundamental components
of all system evaluation models. Assuming that input variables reflect the level of satisfac-
tion of some criteria, the simultaneity is a requirement for coincident high level of satisfac-
tion of input criteria. All mathematical models of simultaneity reward the concurrence of
high inputs, and penalize the lack of simultaneity. The most frequently used models of
simultaneity are the logic functions of partial and full conjunction.

Replaceability and simultaneity are symmetric concepts. The replaceability is used in
cases where any input can compensate insufficient satisfaction of other inputs. All math-
ematical models of replaceability penalize cases where inputs are all relatively low, and
reward cases where at least one of them is sufficiently high.

A classification of three characteristic families of simultaneity and replaceability models
is shown in Fig. 1. These families are t-norms/conorms [15], GCD [11], and AIWA [17].
Without loss in generality let us consider the case of two input variables x 2 I , y 2 I ,
x < y, and let aðx; yÞ be an aggregator that is used to model the simultaneity and/or
replaceability. In a special case where x and y are equally important, the neutral point
Fig. 1. Families of preference aggregators that model simultaneity and replaceability.
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where we have a perfect balance of simultaneity and replaceability is located in the middle
of the interval ½x; y�, and this is the arithmetic mean ðxþ yÞ=2. If the aggregator aðx; yÞ sat-
isfies aðx; yÞ < ðxþ yÞ=2 then it is a model of simultaneity. Similarly, if aðx; yÞ > ðxþ yÞ=2,
then aðx; yÞ is a model of replaceability.

According to Fig. 1, the areas of simultaneity and replaceability are rather wide and
include a spectrum of properties. If 0 6 aðx; yÞ 6 x ^ y or x _ y 6 aðx; yÞ 6 1 then these
properties are modeled using t-norms and t-conorms [15]. Aggregators that satisfy
x ^ y 6 aðx; yÞ 6 x _ y can be realized using means [13,18,3] and interpreted as continuous
preference logic functions. They include GCD and AIWA. If x ^ y 6 ðp _ xÞ ^ ðq _ yÞ 6
aðx; yÞ 6 ðs ^ xÞ _ ðt ^ yÞ 6 x _ y then these properties can be modeled using AIWA [17];
in a special case where weighted conjunction has weights p ¼ q ¼ 0 the AIWA aggregator
can reach conjunction, and in a special case where weighted conjunction has weights
s ¼ t ¼ 1 the AIWA aggregator can reach disjunction.

GCD is obviously not the only aggregator that can be used to model simultaneity and
replaceability. However, GCD is the most suitable family of aggregators for use in the
continuous preference logic, and for building compound preference aggregators necessary
in system evaluation models. It is important to note that GCD is not a single function, but
a family of aggregators that share some basic properties and can be implemented using
various means.

3. Basic properties of GCD

The global satisfaction of requirements regularly increases when we increase the satis-
faction of any component requirement: if we aggregate m preferences, y ¼ Lðx1; . . . ; xmÞ,
we expect oy=oxi > 0. This is the main reason why traditional continuous logic functions
that are only combinations of min, max, and x 7!1� x operators cannot be suitable for
building decision models for system evaluation and comparison. With these operators,
the condition oy=oxi > 0 holds only for a small subset of input preferences (those that have
extreme values in their groups; e.g., in a group of n, if y ¼ minðx1; . . . ; xnÞ ¼ xk, then
8xi > xk; oy=oxi ¼ 0Þ. In the majority of cases, this is not acceptable because it implies
the inability to improve a system by improving its components. This problem can be
solved if instead of pure conjunction (min) and pure disjunction (max), we use appropriate
GCD aggregators.

Let x1; . . . ; xn; ðxi 2 I ; i ¼ 1; . . . ; nÞ be input preferences, and let k : In ! I , n > 1, be a
GCD aggregator.

Definition 3.1. An aggregator k is a Bounded Quality Range (BQR) aggregator if it satisfies
the condition that the aggregate cannot be better than its best component or worse than its
worst component: x1 ^ � � � ^ xn 6 kðx1; . . . ; xnÞ 6 x1 _ � � � _ xn.

In the area of means BQR is known as the concept of internality [3]. It is
straightforward to see that BQR aggregators are idempotent: if x1 ¼ � � � ¼ xn ¼ x 2 I
then x ^ � � � ^ x ¼ x 6 kðx; . . . ; xÞ 6 x ¼ x _ � � � _ x, and kðx; . . . ; xÞ ¼ x. We assume that all
GCD aggregators satisfy the BQR condition, and consequently are idempotent. Of course,
at the idempotency line x1 ¼ � � � ¼ xn ¼ x we have that x1 ^ � � � ^ xn ¼ x1 _ � � � _ xn ¼ x and
if there is no difference between conjunction and disjunction, then andness and orness
cannot be defined. Therefore, whenever we use andness and orness we assume that at least
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some of inputs are different, i.e. we assume x1 ^ � � � ^ xn 6¼ x1 _ � � � _ xn. Under this
assumption, for GCD aggregators the andness and orness can be defined as follows.
Definition 3.2. Andness a of a GCD aggregator k is an indicator of similarity between k
and conjunction x1 ^ � � � ^ xn. Andness is computed using a similarity metric A that satis-
fies the following minimum conditions of standard range and monotonicity:
(a) a ¼ Aðx; kðx1; . . . ; xnÞÞ ¼
0; kðx1; . . . ; xnÞ ¼ x1 _ � � � _ xn

1=2; kðx1; . . . ; xnÞ ¼ ðx1 þ � � � þ xnÞ=n

1; kðx1; . . . ; xnÞ ¼ x1 ^ � � � ^ xn

8><
>:

(b) If k1ðx1; . . . ; xnÞ < k2ðx1; . . . ; xnÞ then Aðx; k1ðx1; . . . ; xnÞÞ > Aðx; k2ðx1; . . . ; xnÞÞ;
x ¼ ðx1; . . . ; xnÞ:
Definition 3.3. Orness x of a GCD aggregator k is an indicator of similarity between k and
disjunction x1 _ � � � _ xn. Orness is computed using a similarity metric X that satisfies the
following minimum conditions of standard range and monotonicity:
(a) X ¼ Xðx; kðx1; . . . ; xnÞÞ ¼
0; kðx1; . . . ; xnÞ ¼ x1 ^ � � � ^ xn

1=2; kðx1; . . . ; xnÞ ¼ ðx1 þ � � � þ xnÞ=n

1; kðx1; . . . ; xnÞ ¼ x1 _ � � � _ xn

8><
>:

(b) If k1ðx1; . . . ; xnÞ < k2ðx1; . . . ; xnÞ then Xðx; k1ðx1; . . . ; xnÞÞ < Xðx; k2ðx1; . . . ; xnÞÞ.

There are various ‘‘metrics of similarity’’ and various ways to define andness and orness
[12]. In all cases we assume that andness and orness are defined as complementary
indicators:

Definition 3.4. Andness a and orness x of a GCD aggregator k are said to be
complementary if Aðx; kðx1; . . . ; xnÞÞ þ Xðx; kðx1; . . . ; xnÞÞ ¼ b ¼ const: (We assume b ¼ 1
except for symmetric global andness/orness [12] where b ¼ 0.)
Definition 3.5. Andness a and orness x of a GCD aggregator k are said to be global if
Aðx; kðx1; . . . ; xnÞÞ ¼ 1� Xðx; kðx1; . . . ; xnÞÞ ¼ const: Otherwise, if a and x are defined so
that they are functions of x1; . . . ; xn, such andness and orness are said to be local. In situ-
ations where it is necessary to differentiate the type of andness and orness the local and-
ness and orness are denoted a‘;x‘, and the global andness and orness are denoted ag;xg.
Definition 3.6. A GCD aggregator k is said to be parameterized if it uses a parameter r and
satisfies the following conditions of range and monotonicity:
(a) kðx1; . . . ; xn; rÞ ¼
x1 _ � � � _ xn; r ¼ rd

ðx1 þ � � � þ xnÞ=n; r ¼ ra

x1 ^ � � � ^ xn; r ¼ rc

8><
>:
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(b) There is a path of continuous transition from conjunction to disjunction:

• If rc 6 r1 < r2 6 rd then kðx1; . . . ; xn; r1Þ 6 kðx1; . . . ; xn; r2Þ
• If rd 6 r1 < r2 6 rc then kðx1; . . . ; xn; r1ÞP kðx1; . . . ; xn; r2Þ

(Assumption: x1 ^ � � � ^ xn 6¼ x1 _ � � � _ xnÞ
For each value of r we can find the corresponding andness a ¼ Aðkðx1; . . . ; xn; rÞÞ and
orness x ¼ Xðkðx1; . . . ; xn; rÞÞ. In cases where r can be computed from the desired value
of a or x the aggregators can be written directly as parameterized functions of orness (or
andness, assuming b ¼ 1): kðx1; . . . ; xn; xÞ ¼ kðx1; . . . ; xn; 1� aÞ. So, the basic properties
of a parameterized GCD function kðx1; . . . ; xn; xÞ, x 2 I , can be summarized as follows:

(a) Reduction to disjunction: kðx1; . . . ; xn; 1Þ ¼ x1 _ . . . _ xn.
(b) Reduction to conjunction: kðx1; . . . ; xn; 0Þ ¼ x1 ^ . . . ^ xn.
(c) Reduction to arithmetic mean: kðx1; . . . ; xn; 1=2Þ ¼ ðx1 þ � � � þ xnÞ=n.
(d) Internality (BQR): x1 ^ � � � ^ xn 6 kðx1; . . . ; xn; xÞ 6 x1 _ � � � _ xn.
(e) Idempotency: kðx; . . . ; x; xÞ ¼ x.
(f) Continuity: lim

h!0
kðx1; . . . ; xi þ h; . . . ; xn; xÞ ¼ kðx1; . . . ; xi; . . . ; xn; xÞ; i ¼ 1; . . . ; n.

(g) Commutativity (symmetry): kðx1; . . . ; xn; xÞ is not changed if the elements of
ðx1; . . . ; xnÞ are permuted. This property is only a special case, since generally the ele-
ments of ðx1; . . . ; xnÞ can have different importance and in such cases the commuta-
tivity is not an acceptable property.

(h) Sensitivity to improvements (a system can be improved if we improve any of its com-
ponents): o

oxi
kðx1; . . . ; xn; xÞ > 0; 0 < x < 1; 0 < xi < 1; i ¼ 1; . . . ; n.

(i) Sensitivity to orness (higher orness means more replaceability and more chances to
satisfy requirements): o

ox kðx1; . . . ; xn; xÞ > 0; 0 < x < 1; 0 < xi < 1; i ¼ 1; . . . ; n;
x1 ^ � � � ^ xn 6¼ x1 _ � � � _ xn.

(j) Sensitivity to andness (higher andness means less replaceability and less chances to
satisfy requirements): o

oa kðx1; . . . ; xn; xÞ < 0; 0 < x < 1; 0 < xi < 1; i ¼ 1; . . . ; n;
x1 ^ � � � ^ xn 6¼ x1 _ � � � _ xn.

GCD is a mix of conjunctive and disjunctive properties that depend on the value of x.
We use the name andor, or partial conjunction, and symbol n, for 0 < x < 0:5; ða > xÞ. The
name orand, or partial disjunction, and symbol O, are used for 0:5 < x < 1; ða < xÞ. We
also use a general symbol} for a general GCD operator that includes the pure conjunction,
partial conjunction, arithmetic mean, partial disjunction, and the pure disjunction:

y ¼ x1} � � � }xn ¼

x1 _ � � � _ xn; a ¼ 0;x ¼ 1

x1O � � �Oxn; 0 < a < 0:5; 0:5 < x < 1

ðx1 þ � � � þ xnÞ=n; a ¼ x ¼ 0:5

x1M � � �Mxn; 0:5 < a < 1; 0 < x < 0:5

x1 ^ � � � ^ xn; a ¼ 1;x ¼ 0

8>>>>>><
>>>>>>:

We assume that } corresponds to a specific level of orness; so y ¼ kðx1; . . . ; xn; xÞ and
y ¼ x1} . . .}xn are equivalent notations.

Associativity (e.g. ðx1}x2}x3Þ ¼ ðx1}x2Þ}x3 ¼ x1}ðx2}x3Þ) is a desirable algebraic prop-
erty (e.g. it helps reducing the errors in weight assessment by grouping input preferences in
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small groups of up to 5 inputs [10]). Similarly, transfigurations of preference aggregation
structures are possible if the partial conjunction and the partial disjunction are mutually dis-
tributive (e.g. x1Mðx2Ox3Þ ¼ ðx1Mx2ÞOðx1Mx3Þ, x1Oðx2Mx3Þ ¼ ðx1Ox2ÞMðx1Ox3Þ). GCD func-
tions based on means do not satisfy algebraic properties of distributivity and
associativity. According to [7], the errors (defined as mean values of absolute differences,
e.g as the mean of jx1Mðx2Ox3Þ � ðx1Mx2ÞOðx1Mx3Þj in I3) are below 2%.This level of errors
is not significant because errors in estimating preferences, andness, and weights are regularly
significantly larger [10].

4. Means as logic functions

All means satisfy the fundamental GCD property of BQR or internality:
x1 ^ � � � ^ xn 6 kðx1; . . . ; xn; xÞ 6 x1 _ � � � _ xn. Therefore, some means can be interpreted
as logic functions and the GCD can be organized as a mean. Of course, the theory of
means offers a wide spectrum of candidate mathematical models [13,18,3], and the ques-
tion is which mean is the best material for building the GCD function. Obviously, the most
suitable are those means that have weights and adjustable parameters enabling easy
adjustment of orness/andness and continuous transition from the pure conjunction to
the pure disjunction.

We investigated this problem in [5,6] using a general framework of Bajraktarević means
(BM) [1,3]:

kðx1; . . . ; xnÞ ¼ F �1
Xn

i¼1

wiðxiÞF ðxiÞ=
Xn

i¼1

wiðxiÞ
 !

BM uses weight functions wi : I ! f0g [ Rþ and a strictly monotone generator function
F : I ! R. In a special case of normalized constant weights we have wiðxiÞ ¼
W i;W i > 0; i ¼ 1; . . . ; n; W 1 þ � � � þ W n ¼ 1, and BM reduces to the weighted quasi-
arithmetic mean (QAM):

kðx1; . . . ; xnÞ ¼ F �1
Xn

i¼1

W iF ðxiÞ
 !

Of course, even in this simplified case, there is a spectrum of possible generator functions
that yield a variety of GCD properties.

GCD must have an adjustable parameter that enables a well-controlled continuous
transition between the pure conjunction and the pure disjunction. This condition simplifies
the selection of the generator function F.

The simplest form of the generator function is the power function F ðxÞ ¼ xr; r 2 R. This
selection yields the weighted power means (WPM) model of GCD [13,3]:

Mðx1; . . . ; xn; rÞ ¼

Pn
i¼1

W ixr
i

� �1=r

; 0 < jrj < þ1

Qn
i¼1

xW i
i ; r ¼ 0

x1 ^ � � � ^ xn; r ¼ �1
x1 _ � � � _ xn; r ¼ þ1

8>>>>>>><
>>>>>>>:
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o

oxi
Mðx1; . . . ; xn; rÞP 0; i ¼ 1; . . . ;n

o

or

Xn

i¼1

W ixr
i

 !1=r

> 0; xi > 0; i ¼ 1; . . . ;n; x1 ^ � � � ^ xn 6¼ x1 _ � � � _ xn; jrj < þ1

o

or

Xn

i¼1

W ixr
i

 !1=r

¼ 0; x1 ¼ . . . ¼ xn

An advantage of WPM is that their properties are well known in mathematics, because their
special cases: harmonic mean ðr ¼ �1Þ, geometric mean ðr ¼ 0Þ, arithmetic mean ðr ¼ 1Þ,
and quadratic mean ðr ¼ 2Þ. In addition, WPM has an important property,
Mðx1; . . . ; xn; rÞ ¼ 0; r 6 0; xi ¼ 0; i 2 f1; . . . ; ng, that is indispensable for modeling manda-
tory requirements, the partial absorption function [8], and other compound aggregators [11].

A parameterized GCD model that is related to WPM can be based on counter-har-
monic means:

Hðx1; . . . ; xn; rÞ ¼

x1 _ � � � _ xn; r ¼ þ1Xn

i¼1

W ixr
i

Xn

i¼1

W ixr�1
i

; 0 6 jrj < þ1

x1 ^ � � � ^ xn; r ¼ �1

8>>>>>>><
>>>>>>>:

Important special cases are: Hðx1; . . . ; xn; 1Þ ¼ Mðx1; . . . ; xn; 1Þ;Hðx1; . . . ; xn; 0Þ ¼
Mðx1; . . . ; xn;�1Þ, and (for equal weights and n¼ 2) Hðx1; x2; 1=2Þ ¼ Mðx1; x2; 0Þ.

Another parameterized GCD model can be obtained from QAM using the exponential
generator function F ðxÞ ¼ erx; r 2 R. This is the weighted exponential mean (WEM):

Eðx1; . . . ; xn; rÞ ¼

1
r ln

Pn
i¼1

W ie
rxi

� �
; 0 < jrj < þ1

Pn
i¼1

W ixi; r ¼ 0

x1 ^ � � � ^ xn; r ¼ �1
x1 _ � � � _ xn; r ¼ þ1

8>>>>>><
>>>>>>:

For the above M, H and E means, the andness and orness are functions of the parameter r,
and ox=or > 0; oa=or < 0.

In the case of two positive variables x and y, a continuous transition from conjunction
to disjunction can also be realized using the generalized logarithmic means:

Lðx; y; rÞ ¼

yrþ1 � xrþ1

ðr þ 1Þðy � xÞ

� �1=r

; r 6¼ �1; 0;�1
y � x

log y � log x
; r ¼ �1

1

e
yy

xx

� �1=ðy�xÞ

; r ¼ 0

x ^ y; r ¼ �1
x _ y; r ¼ þ1

8>>>>>>>>>>><
>>>>>>>>>>>:
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By definition, Lðx; x; rÞ ¼ x. Easily verifiable special cases are: Lðx; y; 1Þ ¼
Mðx; y; 1Þ; Lðx; y;�2Þ ¼ Mðx; y; 0Þ, and Lðx; y;�1=2Þ ¼ Mðx; y; 1=2Þ.

5. Local and global andness/orness

Let us first consider a case of two variables and the GCD function y ¼ x1}x2. The and-
ness a is a measure of similarity between the GCD function and the full conjunction. Sim-
ilarly, the orness x is a measure of similarity between the GCD function and the full
disjunction. The local orness and andness, introduced in [5], are defined at any given point
ðx1; x2Þ as follows:

a‘ðx1; x2Þ ¼
ðx1 _ x2Þ � ðx1}x2Þ
ðx1 _ x2Þ � ðx1 ^ x2Þ

; 0 6 a‘ðx1; x2Þ 6 1

x‘ðx1; x2Þ ¼
ðx1}x2Þ � ðx1 ^ x2Þ
ðx1 _ x2Þ � ðx1 ^ x2Þ

; 0 6 x‘ðx1; x2Þ 6 1

a‘ðx1; x2Þ þ x‘ðx1; x2Þ ¼ 1; ðx1 6¼ x2Þ

From this definition we have

ðx1}x2Þ ¼ a‘ðx1; x2Þðx1 ^ x2Þ þ x‘ðx1; x2Þðx1 _ x2Þ
¼ a‘ðx1; x2Þðx1 ^ x2Þ þ ½1� a‘ðx1; x2Þ�ðx1 _ x2Þ
¼ ½1� x‘ðx1; x2Þ�ðx1 ^ x2Þ þ x‘ðx1; x2Þðx1 _ x2Þ

Therefore, GCD can be interpreted as a combination of conjunction and disjunction.
Local andness and orness are not constant and decision makers cannot adjust nontriv-

ial andness and orness functions for each aggregation block. In system evaluation practice,
decision makers can only specify desired global or average levels of andness and orness.
The simplest global measure of andness and orness is the mean value of local andness
and orness �a‘ and �x‘ (in this section �x denotes the mean value of x; in all other sections
�x denotes the negation of xÞ:

�a‘ ¼
Z 1

0

dx1

Z 1

0

a‘ðx1; x2Þdx2; �x‘ ¼
Z 1

0

dx1

Z 1

0

x‘ðx1; x2Þdx2

For example, if the GCD is realized as a harmonic mean, y ¼ x1}x2 ¼ 2x1x2=ðx1 þ x2Þ, the
mean andness and orness are:

�a‘ ¼
Z 1

0

dx1

Z 1

0

ðx1 _ x2Þ � 2x1x2=ðx1 þ x2Þ
ðx1 _ x2Þ � ðx1 ^ x2Þ

dx2 ¼ 2

Z 1

0

dx1

Z 1

x1

x2 � 2x1x2=ðx1 þ x2Þ
x2 � x1

dx

¼ 2

Z 1

0

dx1

Z 1

x1

x2

x1 þ x2

dx2 ¼ lnð2Þ ¼ 0:693

�x‘ ¼ 1� �a‘ ¼ 1� lnð2Þ ¼ 0:307

The cases where �a‘ and �x‘ can be analytically computed in a closed form are very rare.
Usually, the values of �a‘ and �x‘ must be obtained, with significant difficulties, using
numerical integration.

Instead of mean values of local andness/orness, the global andness/orness can be
defined as the andness/orness of means, introduced in [6]:
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ag ¼
x1 _ x2 � x1}x2

x1 _ x2 � x1 ^ x2

; xg ¼
x1}x2 � x1 ^ x2

x1 _ x2 � x1 ^ x2

¼ 1� ag

In the case of the harmonic mean we have

x1}x2 ¼ 2

Z 1

0

dx1

Z 1

0

x1x2

x1 þ x2

dx2 ¼
4� ln 16

3

x1 ^ x2 ¼
Z 1

0

dx1

Z 1

0

ðx1 ^ x2Þdx2 ¼
Z 1

0

dx1

Z x1

0

x2 dx2 þ
Z 1

x1

x1 dx2

� �
¼ 1

3

x1 _ x2 ¼
Z 1

0

dx1

Z 1

0

ðx1 _ x2Þdx2 ¼
Z 1

0

dx1

Z x1

0

x1 dx2 þ
Z 1

x1

x2 dx2

� �
¼ 2

3

ag ¼
x1 _ x2 � x1}x2

x1 _ x2 � x1 ^ x2

¼ 2� 3ðx1}x2Þ ¼ ln 16� 2 ¼ 0:7726

xg ¼ 1� ag ¼ 3ðx1}x2Þ � 1 ¼ 3� ln 16 ¼ 0:2274

Therefore, the global andness/orness of means can be different from the mean value of
local andness/orness, but the differences are moderate.

In the important special case of geometric mean the global andness and orness are

x1}x2 ¼
Z 1

0

dx1

Z 1

0

ffiffiffiffiffiffiffiffi
x1x2

p
dx2 ¼

Z 1

0

ffiffiffiffi
x1

p
dx1

Z 1

0

ffiffiffiffi
x2

p
dx2 ¼

4

9

aðgeoÞ
g ¼ 2� 3ðx1}x2Þ ¼

2

3
; xðgeoÞ

g ¼ 3ðx1}x2Þ � 1 ¼ 1

3

In the case of n variables the global andness and orness are defined as follows [6,7]:

x1 ^ � � � ^ xn ¼
Z 1

0

dx1

Z 1

0

dx2 . . .

Z 1

0

ðx1 ^ � � � ^ xnÞdxn ¼
1

nþ 1

x1 _ � � � _ xn ¼
Z 1

0

dx1

Z 1

0

dx2 . . .

Z 1

0

ðx1 _ � � � _ xnÞdxn ¼
n

nþ 1

xg ¼
x1} � � � }xn � x1 ^ � � � ^ xn

x1 _ � � � _ xn � x1 ^ � � � ^ xn
¼ ðnþ 1Þðx1} � � � }xnÞ � 1

n� 1
¼ 1� ag

ag ¼
x1 _ � � � _ xn � x1} � � � }x2

x1 _ � � � _ xn � x1 ^ � � � ^ xn
¼ n� ðnþ 1Þðx1} � � � }xnÞ

n� 1
¼ 1� xg

These definitions show that ag and xg depend on n. For example, in the case of geometric
mean we have:

ðx1x2 � � �xnÞ1=n¼
Z 1

0

x1=n
1 dx1 � � �

Z 1

0

x1=n
n dxn¼

n
nþ1

� �n

aðgeoÞ
g ðnÞ¼ n

n�1
1� n

nþ1

� �n�1
" #

; aðgeoÞ
g ð2Þ¼ 2

3
¼ 0:667; lim

n!1
aðgeoÞ

g ðnÞ¼ 1�1

e
¼ 0:632

xðgeoÞ
g ðnÞ¼ n

n�1

n
nþ1

� �n�1

�1

n

" #
; xðgeoÞ

g ð2Þ¼ 1

3
¼ 0:333; lim

n!1
xðgeoÞ

g ðnÞ¼ 1

e
¼ 0:368
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This limit is important because of the following property that holds for WPM: if
agðnÞP aðgeoÞ

g ðnÞ and xi ¼ 0; i 2 f1; . . . ; ng, then kðx1; . . . ; xn; agðnÞÞ ¼ 0. In other words,
if the andness is greater than or equal to the limit andness of the geometric mean
aðgeoÞ

g ðnÞ, then all inputs become mandatory: a single zero input preference causes the zero
output preference.

In the cases of power means and exponential means ag and xg depend on both r and n:
ag ¼ /ðn; rÞ; xg ¼ wðn; rÞ. Similarly, r can be computed from desired values of ag or xg:
r ¼ qnðagÞ ¼ qnð1� xgÞ. So, /ðn; qnðagÞÞ ¼ ag, wðn; qnð1� xgÞÞ ¼ xg.

Numeric values of parameter r for n ¼ 2 and nine characteristic levels of global andness
and orness, for power and exponential means, are shown in Table 1. In the case of power
mean the values of r can be computed from the desired orness using the following numeric
approximation: r ¼ ð�0:742þ 3:363xg � 4:729x2

g þ 3:937x3
gÞ=½ð1� xgÞxg�; 0 6 xg 6 1.

The exponential mean has a suitable symmetric property q2ðagÞ ¼ �q2ð1� agÞ. Expo-
nential means are an alternative to the power means in cases where the mandatory/suffi-
cient properties (analyzed more precisely in Section 7) are not desirable.

OWA operators [20,22] and ItOWA operators [9,11] are specific forms of GCD that use
positional weights and their specific concepts of andness/orness. They are outlined in
Section 10.

An important form of global andness/orness is related to quasi-arithmetic means. The
logic properties of the quasi-arithmetic mean x1} . . .}xn ¼ F �1ðn�1

Pn
i¼1F ðxiÞÞ depend on

the convexity/concavity and the increasing/decreasing properties of the generating func-
tion F. If F 0ðxÞ > 0 and F 00ðxÞ > 0, then function F acts as a nonlinear amplifier that ampli-
fies large values of x and attenuates small values of x. Consequently, the sum

Pn
i¼1F ðxiÞ is

predominantly affected by the large values of xi, and this is exactly the desired property of
the orand function. Increasing the convexity of F increases the orness of the corresponding
orand function. This gives a possibility to interpret the level of convexity of F as a global
orness. According to [12], to realize the orand function (partial disjunction) the generat-
ing function F must satisfy the condition F 0ðxÞF 00ðxÞ > 0; x 2 I . To realize the andor

function (partial conjunction) the generating function F must satisfy the condition
F 0ðxÞF 00ðxÞ < 0; x 2 I . In both cases the global generator function andness/orness are
defined as the property of the generator function:
Table 1
Characteristic values r ¼ q2ðagÞ for power means and exponential means

Symbol Global andness Global orness r for power
means

r for exponential
means

Level ag Level xg

D Lowest 0 Highest 1 +1 +1
D+ Very low 0.125 Very high 0.875 9.53 14.0
DA Low 0.25 High 0.75 3.93 5.40
D� Medium low 0.375 Medium high 0.625 2.02 2.14
A Medium 0.5 Medium 0.5 1 0
C� Medium high 0.625 Medium low 0.375 0.26 �2.14
CA High 0.75 Low 0.25 �0.72 �5.40
C+ Very high 0.875 Very low 0.125 �3.51 �14.0
C Highest 1 Lowest 0 �1 �1
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aF ¼
R 1

0
F ðxÞdx� F ð0Þ
F ð1Þ � F ð0Þ ; xF ¼

F ð1Þ �
R 1

0
F ðxÞdx

F ð1Þ � F ð0Þ
These formulas hold if additional conditions are satisfied: F ðxÞ must have finite values for
x 2 I , and satisfy boundary conditions related to conjunction, disjunction and the arithme-
tic mean; these details can be found in [12]. For example, if F ðxÞ ¼ xr; r P 1, then we have

xF ðrÞ ¼
r

r þ 1
; 1 6 r 6 þ1; xF ð1Þ ¼

1

2
; xF ðþ1Þ ¼ 1

This relation between the orness x and the exponent r was first proposed by Larsen in the
context of AIWA operators [17]:

r ¼ x
a
¼ 1� a

a
¼ x

1� x
; x P 1=2 ðorandÞ

Larsen’s orness is close to the global orness of means: xF ð9:53Þ ¼ 0:905;
xF ð3:93Þ ¼ 0:797;xF ð2:02Þ ¼ 0:669 (cf. Table 1).

The global generator function andness/orness formulas can also be used for F ðxÞ ¼ erx

in the whole range �1 6 r 6 þ1:

aF ðrÞ ¼
R 1

0
erx dx� 1

er � 1
¼ er � 1� r

rðer � 1Þ ; xF ðrÞ ¼
ðr � 1Þer þ 1

rðer � 1Þ
aF ðrÞ þ xF ðrÞ ¼ aF ðrÞ þ aF ð�rÞ ¼ xF ðrÞ þ xF ð�rÞ ¼ 1

Generally, andness and orness can be defined in various ways and 9 of them are sur-
veyed in [12]. The precision of decision makers in specifying the desired level of and-
ness/orness is limited (according to [10] the expected andness/orness errors are in the
range 6–10%). Practical system evaluators can be trained to use various definitions of and-
ness/orness. Consequently, different definitions of andness/orness might have similar
applicability. The traditional global andness/orness of means seems still to be the most
suitable, because it is simple and robust, and applicable for all forms of quasi-arithmetic
and Bajraktarević means. The mean of local andness is less convenient than the global
andness/orness of means, both analytically and numerically. The definitions of andness/
orness based on generating functions of quasi-arithmetic means have a practical advantage
that they do not depend on n; unfortunately, they are not equally applicable for all forms
of the generator function.
6. Weights and relative importance

In the Multicriteria Decision Making (MCDM) area, there is no consensus on the
meaning of weights. Choo et al. [4] identify 13 different interpretations of weights in
MCDM. These interpretations include weights as degrees of relative importance of com-
ponent criteria, weights as the level of confidence, the level of evaluator’s expertise, etc.

In GCD models for system evaluation and information retrieval, weights are used to
express relative importance of input preferences, and this interpretation is one of funda-
mental observable properties of human reasoning [11]. The relative importance is usually
an adjustable constant parameter. In a general case, however, weights can depend on pref-
erences and BM [1,3] provides a convenient mechanism for realizing this property.
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In GCD models, we assume that weights and andness/orness are independent param-
eters. Indeed, in system evaluation practice, evaluators independently think about the rel-
ative importance of individual inputs, and then about the desired level of their
simultaneity (andness). For example, in the final stage of computer evaluation the global
preference y may be a function of preferences that reflect the quality of hardware, soft-
ware, measured performance, and vendor support (xh; xs; xp; xvÞ. The evaluator could first
investigate the relative importance of these inputs and decide to express the relative impor-
tance using weights W h ¼ 0:4;W s ¼ 0:3;W p ¼ 0:2;W v ¼ 0:1 After selecting the weights,
the next (independent) step is to select the appropriate level of andness. If this level is
selected to be high (aggregator CA in Table 1, r ¼ �0:72) then the resulting GCD for pref-
erence aggregation is y ¼ ð0:4x�0:72

h þ 0:3x�0:72
s þ 0:2x�0:72

p þ 0:1x�0:72
v Þ�1=0:72.

In this area, we sometimes encounter inconsistency between a low weight and a high and-
ness. The low weight is interpreted as a low importance. However, the high andness means
the requirement for high simultaneity, which indirectly means that all components are nec-
essary and consequently very important. So, a low weight (e.g. less than 5%) and a high and-
ness (e.g. more than 75%) may sometimes represent a contradiction, and should be avoided.

6.1. A contributor–aggregator form of GCD

Let xi 2 I be a preference and let W i 2 I be the corresponding weight (relative impor-
tance). The GCD aggregation of n preferences can be expressed in the following contrib-
utor–aggregator form:

y ¼ AðCðx1;W 1Þ; . . . ;Cðxn;W nÞÞ; C : I2 ! R; A : Rn ! I

The function Ci ¼ Cðxi;W iÞ is the contributor function of the ith preference; it defines the
relative weighted contribution of the ith input. E.g., in the case of weighted arithmetic
mean (WAM), weighted geometric mean (WGM), WPM, WEM, and QAM, we have
weights that are normalized to sum 1, and the following CA forms:

Ci ¼ Cðxi;W iÞ ¼ W ixi; AðC1; . . . ;CnÞ ¼ C1 þ � � � þ Cn

Ci ¼ Cðxi;W iÞ ¼ xW i
i ; AðC1; . . . ;CnÞ ¼ C1 � � � � � Cn

Ci ¼ Cðxi;W iÞ ¼ W ixr
i ; AðC1; . . . ;CnÞ ¼ ðC1 þ � � � þ CnÞ1=r

Ci ¼ Cðxi;W iÞ ¼ W ierxi ; AðC1; . . . ;CnÞ ¼
1

r
lnðC1 þ � � � þ CnÞ

Ci ¼ Cðxi;W iÞ ¼ W iF ðxiÞ; AðC1; . . . ;CnÞ ¼ F �1ðC1 þ � � � þ CnÞ
0 < W i < 1; i ¼ 1; ::; n; W 1 þ � � � þ W n ¼ 1

These examples illustrate some of the many ways to realize contributors and aggrega-
tors. The contributor/aggregator approach to GCD organization is close to the intuitive
evaluation process, where evaluators first focus on each individual attribute and its relative
importance, and then aggregate all contributions to get the global preference for the eval-
uated system as a whole.

6.2. Multiplicative, exponential, and implicative weights, and their normalization

In decision models weights are usually normalized using one of two basic forms of
normalization:
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• Sum-normalized weights satisfy the condition

0 < W i < 1; i ¼ 1; . . . ; n;
Xn

i¼1

W i ¼ 1

• Max-normalized weights satisfy the condition
w 2 I ; i ¼ 1; . . . ; n; maxðw ; . . . ;w Þ ¼ 1
i 1 n

The condition 0 < W i < 1 assumes that no weight can be zero (because this excludes the
corresponding component from consideration). Consequently, sum-normalized weights
cannot have the value 1 because that would force all other weights to be zero. As opposed
to that, max-normalized weights must include at least one weight that has the value 1.

Two frequently used contributor models are the multiplicative model Cðxi;W iÞ ¼
W itðxiÞ, and the exponential model: Cðxi;W iÞ ¼ tðxiÞW i , where the function t : I ! R
denotes a selected (usually nonlinear) transformation (e.g. the exponential function in
WEM, or the power function is WPM).

The multiplicative contributor model is used in all means that can be derived from BM
(e.g. in power means and in exponential means), where normalized weights multiply sat-
isfaction degrees. In the case of WAM, oy=oxi ¼ W i and weights denote importance and
determine both the level of penalty for a low satisfaction and the level of reward for a high
satisfaction of corresponding criteria. High level of penalty/reward for an input can obvi-
ously mean only one thing: the input is important. This is a general concept of multipli-
cative weights that naturally extends to GCD based on the whole family of BM:

x1} � � � }xn ¼ F �1
Xn

i¼1

W iðx1; . . . ; xnÞF ðxiÞ
 !

W iðx1; . . . ; xnÞ ¼ wiðxiÞ=
Xn

j¼1

wjðxjÞ

0 6 W iðx1; . . . ; xnÞ 6 1;
Xn

i¼1

W iðx1; . . . ; xnÞ ¼ 1

Similar effect is achieved by the exponential weights in WGM: small weights cause con-
tributors close to one, and such contributors have insignificant effect on the multiplicative
aggregator. For high weights the effect of preferences on the value of aggregator is more
significant.

The idea of exponential weights is related to logarithmic sensitivity. In the case of QAM
we have

F ðyÞ ¼
Xn

i¼1

W iF ðxiÞ;
oF ðyÞ
oxi

¼ oF ðyÞ
oy

oy
oxi
¼ W i

oF ðxiÞ
oxi

W i ¼
oF ðyÞ

oy
oy
oxi

�
oF ðxiÞ

oxi
¼

oy
oxi

; if F ðxÞ ¼ x

o ln y
o ln xi

¼ xi

y
oy
oxi
ffi My

y

�
Mxi

xi
; if F ðxÞ ¼ ln x

8>><
>>:

Therefore, if the QAM generator function is linear then weights represent linear sensi-
tivity coefficients (the ratio between an absolute increment in x and the corresponding
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absolute increment in y). If the QAM generator function is logarithmic then we have expo-
nential weights that represent logarithmic sensitivity coefficients (the ratio between a rel-
ative increment in x and the corresponding relative increment in y).

Another significant form of contributor function is the implicative form that uses max-
normalized weights and the transformation function t: I ! I, as follows:

Cðxi;wiÞ ¼ ðwi ) tðxiÞÞ ¼ 1� ½wi ^ ð1� tðxiÞÞ�
¼ ð1� wiÞ _ tðxiÞ ¼ 1� wi; 0 6 tðxiÞ 6 1� wi

tðxiÞ; 1� wi 6 tðxiÞ 6 1

�

wi 2 ½0; 1�; maxðw1; . . . ;wnÞ ¼ 1; 1 6
Xn

i¼1

wi 6 n

The implicative approach is based on the concept that it is not acceptable that a requirement
(criterion) is important and it has low satisfaction. In other words, if a criterion is important,
it must be satisfied. In the simplest interpretation, this concept is an implication from weight
(relative importance) to preference (degree of satisfaction): wi ) xi, wi 2 I , xi 2 I .

In the case of multiplicative weights the weights are normalized so that their sum is 1. In
the case of implicative weights, however, the weights are normalized so that the maximum
weight is 1. Therefore, in the case of equal importance, all multiplicative weights are 1/n,
and all implicative weights are 1.

If tðxiÞ ¼ xi, and the aggregator is a pure and (cf. [16]), we get the weighted conjunction:

y^ ¼ ðw1 ) x1Þ ^ � � � ^ ðwn ) xnÞ ¼ ðw1 _ x1Þ ^ � � � ^ ðwn _ xnÞ
Using duality y_ ¼ y^ðx1; . . . ; xnÞ we get the weighted disjunction:

y_ ¼ ðw1 _ x1Þ ^ � � � ^ ðwn _ xnÞ ¼ ðw1 ^ x1Þ _ � � � _ ðwn ^ xnÞ
6.3. Implicative importance weighted aggregation between AND and OR

AIWA operators [17] can be interpreted as a form of GCD, and y^ and y_ are special cases
of AIWA for andness 1 and 0 respectively. In the case of AIWA, conjunction and disjunction
in expressions wi _ xi and wi ^ xi are implemented as the dual t-conorms and t-norms alge-
braic sum and product, i.e. the Reichenbach implication, wi _ xi ¼ 1� wið1� xiÞ, and
wi ^ xi ¼ wixi. The AIWA operators provide implicative importance weighting (in [17] just
called ‘‘importance weighting’’) for all degrees of andness in I:

haðw; xÞ ¼

Pn
i¼1ðwixiÞrPn

i¼1wr
i

� �1=r

a 6 1
2

1�
Pn

i¼1ðwið1� xiÞÞ1=rPn
i¼1w1=r

i

 !r

a P 1
2

8>>>><
>>>>:

with r ¼ 1
a� 1. At andness 1/2, the AIWA operator becomes the WAM. At andness 0 and 1,

the AIWA operator becomes h0ðw; xÞ ¼ maxn
i¼1ðwixiÞ and h1ðw; xÞ ¼ minn

i¼1ð1� wið1� xiÞÞ.

6.4. Illustration of the two weighting forms

To illustrate the difference between the two kinds of weightings, consider the query, for
n ¼ 2, Q ¼ ððw1;C1Þ; ðw2;C2ÞÞ where Ci is the ith criterion (constraint). Let xi ¼ CiðX Þ
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denote the degree of satisfaction of Ci , i ¼ 1; 2, by the option (object) X. Let
QaðX Þ ¼ kAIWAððw1; x1Þ; ðw2; x2Þ; aÞ ¼ haððw1;w2Þ; ðx1; x2ÞÞ denote the overall degree of sat-
isfaction of Q by X, by the AIWA operator (implicative) with andness a. Assume that the
implicative importance weights are ðw1;w2Þ ¼ ð0:4; 1Þ, and the set of options queried is
fA;Bg, with ða1; a2Þ ¼ ð0:1; 0:7Þ and ðb1; b2Þ ¼ ð0:9; 0:4Þ, and a ¼ 2=3. By r ¼ 1

a� 1, we find
r ¼ 1=2, hence

kAIWAððw1; x1Þ; ðw1; x2Þ; 2=3Þ ¼ 1� ðw1ð1� a1ÞÞ2 þ ðw2ð1� a2ÞÞ2

w2
1 þ w2

2

 !1=2

:

Therefore, the overall degrees of satisfaction of Q by A and B are, respectively

Q2=3ðAÞ ¼ kAIWAðð0:4; 0:1Þ; ð1; 0:7Þ; 2=3Þ ¼ 0:565

Q2=3ðBÞ ¼ kAIWAðð0:4; 0:9Þ; ð1; 0:4Þ; 2=3Þ ¼ 0:442

Since Q2=3ðAÞ > Q2=3ðBÞ, A is ranked before (better than) B; we denote A > B. The rea-
son is that the lower satisfaction of the highly important 2nd criterion ðw2 ¼ 1Þ by B ‘‘pun-
ishes’’ B more than the higher satisfaction of the less important 1st criterion ðw1 ¼ 0:4Þ
‘‘rewards’’ it. Let us now consider the similar problem using multiplicative importance
weighting, as by the weighted geometric mean (WGM). In the case of two variables, the
geometric mean has the global andness 2/3. So, kWGMððw1; x1Þ; ðw1; x2ÞÞ ¼ xW 1

1 xW 2
2 ,

W i ¼ wi=ðw1 þ w2Þ; i ¼ 1; 2. In this case,

Q2=3 Að Þ ¼ kWGM 0:4; 0:1ð Þ; 1; 0:7ð Þð Þ ¼ 0:401

Q2=3 Bð Þ ¼ kWGM 0:4; 0:9ð Þ; 1; 0:4ð Þð Þ ¼ 0:504

Now, Q2=3ðAÞ < Q2=3ðBÞ, yielding A < B, i.e. the reverse of the ranking obtained by the
implicative importance weighting as represented by the AIWA operator.

Finally, we consider the weighted exponential mean with andness 2/3 as obtained by
r ¼ �3:

kWEMððw1; x1Þ; ðw1; x2ÞÞ ¼ �
1

3
lnðW 1e�3x1 þ W 2e�3x2Þ ¼ � 1

3
ln

w1e�3x1 þ w2e�3x2

w1 þ w2

� �

In this case:

Q2=3ðAÞ ¼ kWEMðð0:4; 0:1Þ; ð1; 0:7ÞÞ ¼ 0:402

Q2=3ðBÞ ¼ kWEMðð0:4; 0:9Þ; ð1; 0:4ÞÞ ¼ 0:484

Again we obtain A < B, as for the WGM. This could be expected, since the operators are
of the same kind, namely multiplicative importance weighted operators at andness 2/3. In
fact, the resulting values are rather close to that of the WGM. As these examples illustrate,
it is essential to choose the right kind of importance weighting for a decision problem. The
difference in the behavior between implicative and multiplicative importance weighting in-
creases as the andness moves away from 1/2. At andness 0 and 1, the importance weights
have no effect in the multiplicative case, while they have full effect in the implicative case;
at andness 1/2, both the implicative and the multiplicative operators represent the WAM
where the weights have full effect.
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7. Mandatory and sufficient requirements

In the area of system evaluation, we regularly have the situation where one or more of
inputs represent mandatory requirements. In the case of computer evaluation, suppose
that the final stage of aggregating preferences includes two components: hardware (x1)
and software (x2). The global preference of the evaluated computer is computed using
the andor function y ¼ x1Mx2. If x1 ¼ 0 (inappropriate hardware) we must reject such a
computer (the andor function must generate the result y ¼ 0). Similarly, if x2 ¼ 0 (e.g.
no software), then again y ¼ 0. Obviously, both good hardware and good software are
mandatory requirements that all computers must satisfy. Therefore, we need the andor

function that satisfies the condition x1M0 ¼ 0Mx2 ¼ 0 (rejection of system that does not
satisfy mandatory requirements).

Unfortunately, in this case, the pure conjunction y ¼ x1 ^ x2 cannot be used, because
such a rigid criterion would not be acceptable in regular cases where x1 > 0 and x2 > 0.
Indeed, the majority of evaluators would not accept the equality 0:5 ^ 0:5 ¼
1 ^ 0:5 ¼ 0:5 that claims that a system with an average hardware and software is equiva-
lent to the system having perfect hardware and an average software. In other words,
instead of pure conjunction we need a partial conjunction (andor) that satisfies the follow-
ing mandatory requirements conditions:

x1M0 ¼ 0Mx2 ¼ 0

x1Mðx1 þ aÞ > x1; x1 > 0; a > 0

For example, the geometric mean
ffiffiffiffiffiffiffiffi
x1x2
p

obviously satisfies these conditions, and so do the
weighted power means Mðx1; . . . ; xn; rÞ for r 6 0.

In addition to the use of mandatory requirements in GCD, this property is indispens-
able for generating the partial absorption function [8], and other more complex logic func-
tions [9,11].

Exponential means Eðx1; . . . ; xn; rÞ do not satisfy the mandatory requirements condi-
tions. However, this is a desirable feature in other applications, where the missing satisfac-
tion of one criterion should not eliminate the evaluated object, such as in object
recognition and information retrieval.

If we take a function that is dual to a partial conjunction that satisfies the mandatory
requirements conditions, we get a partial disjunction (orand) that satisfies the following
sufficient requirements conditions:

1Ox2 ¼ x1O1 ¼ 1

x1Oðx1 � aÞ < x1; x1 < 1; a > 0

Since the geometric mean
ffiffiffiffiffiffiffiffi
x1x2
p

satisfies the mandatory requirement conditions, it follows
that its dual x1Ox2 ¼ 1� ½ð1� x1Þð1� x2Þ�1=2 satisfies the sufficient requirement conditions.
However, such conditions occur seldom in system evaluation practice.
8. De Morgan’s GCD functions

De Morgan’s laws are a convenient mechanism for creating GCD functions that
have various specific properties. Generally, De Morgan’s GCD functions are defined as
follows:
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y ¼
kðx1; . . . ; xn; xÞ
1� kð1� x1; . . . ; 1� xn; 1� xÞ

; either x P
1

2
or x 6

1

2
:

�

Of course, such functions always satisfy De Morgan’s laws, which for GCD can be written
as follows:

x1O � � �Oxn ¼ 1� ð1� x1ÞM � � �Mð1� xnÞ
x1M � � �Mxn ¼ 1� ð1� x1ÞO � � �Oð1� xnÞ

These formulas show how to make a partial disjunction if we have a model of partial con-
junction and vice versa. In addition, if x1M . . .Mxn is a partial conjunction with andness
ag ¼ c, then 1� ð1� x1ÞM . . .Mð1� xnÞ is the partial disjunction with orness xg ¼ c.

Proof. Let �x denote the mean value of x, and let l ¼ x1M . . . Mxn ¼R 1
0 dx1 . . .

R 1
0 ðx1M . . .MxnÞdxn. Then,

1� ð1� x1ÞM . . .Mð1� xnÞ ¼ 1�
Z 1

0

dx1 . . .

Z 1

0

½ð1� x1ÞM . . .Mð1� xnÞ�dxn

¼
1� xi ¼ yi

dxi ¼ �dyi

i ¼ 1; . . . ;n

�������
�������¼ 1�

Z 1

0

dy1 . . .

Z 1

0

ðy1M . . .MynÞdyn ¼ 1� l

ag ¼
n� ðnþ 1Þðx1M . . .MxnÞ

n� 1
¼ n� ðnþ 1Þl

n� 1
¼ c

xg ¼
ðnþ 1Þ½1� ð1� x1ÞM . . .Mð1� xnÞ� � 1

n� 1
¼ ðnþ 1Þð1� lÞ � 1

n� 1
¼ n� ðnþ 1Þl

n� 1
¼ c

If the partial conjunction is modeled using the geometric mean then the corresponding
(dual) partial disjunction can be modeled as follows:

y ¼ x1M . . .Mxn ¼ ðx1 . . . xnÞ1=n
; ag ¼ ageo

g ðnÞ ¼ c; 1� 1=e 6 c 6 2=3

z ¼ x1O . . .Oxn ¼ 1� ½ð1� x1Þ . . . ð1� xnÞ�1=n
; xg ¼ c ¼ ageo

g ðnÞ

The above partial conjunction can be used to model the mandatory requirements
(xi ¼ 0 yields y=0, and it is necessary to have xi > 0; i ¼ 1; . . . ; n to produce y > 0). Sim-
ilarly, the dual partial disjunction can be used to model the sufficient requirements (it is
sufficient to have xi ¼ 1; i 2 f1; . . . ; ng, to produce z ¼ 1). Using the harmonic mean,
the same effects can be achieved at a higher level of andness/orness, ahar

g ð2Þ ¼
ln 16� 2 ¼ 0:77 [6]:

x1M . . .Mxn ¼ n=ð1=x1 þ � � � þ 1=xnÞ
x1O . . .Oxn ¼ 1� n=½1=ð1� x1Þ þ � � � þ 1=ð1� xnÞ�

If we want to avoid mandatory and sufficient requirements we could use the quadratic
mean to model the orand and andor, as follows:

x1O . . .Oxn ¼ ½ðx2
1 þ � � � þ x2

nÞ=n�1=2

x1M . . .Mxn ¼ 1� f½ð1� x1Þ2 þ � � � þ ð1� xnÞ2�=ng1=2
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In this case, neither orand can model sufficient requirements, nor can andor model manda-
tory requirements. If n = 2, then the orness of the quadratic mean is xquad

g ð2Þ ¼ ðlnð1þffiffiffi
2
p
ÞÞ=

ffiffiffi
2
p
¼ 0:623 [6]. The andness of the corresponding andor is the same, a ¼ xquad

g ð2Þ,
i.e. it is slightly below the andness of the geometric mean.

Some GCD functions do not satisfy De Morgan’s laws. Two such examples of GCD
based on the weighted power mean are:

MMSðx1; . . . ; xn; rÞ ¼ lim
s!r

Xn

i¼1

W ixs
i

 !1=s

; r ¼ qnðagÞ; 0 6 ag 6 1

MMSðx1; . . . ; xn; rÞ ¼ 1� lim
s!2�r

Xn

i¼1

W ið1� xiÞs
 !1=s

; �1 6 r 61

The MS version for ag P ageo
g ðnÞ can model the mandatory requirements but cannot

model the sufficient requirements. Similarly, the MS version cannot model the mandatory
requirements but for r P 2 can model the sufficient requirements; e.g. for r ¼ 3 we have

MMSðx1; . . . ;xn;3Þ¼ 1�1=
Xn

i¼1

W i=ð1� xiÞ; MMSðx1; . . . ;xn;3Þ¼ 1; xi¼ 1; i2f1; . . . ;ng:

If n ¼ 2, the andness ag ¼ 2=3 (and the satisfaction of mandatory requirements) can be
achieved using the geometric mean y ¼ ffiffiffiffiffiffiffiffi

x1x2
p

, which belongs to the MS version of the
GCD based on WPM. The same level of andness, but without mandatory requirements,
can be achieved using the MS type of the GCD function:

y ¼ 1� ½0:5ð1� x1Þr þ 0:5ð1� x2Þr�1=r
; r ¼ 2:41:

The MS and MS versions of GCD do not satisfy De Morgan’s law. However, the cor-
responding errors are sufficiently small [7], so that the above functions are suitable in many
applications.

Two versions of GCD that use weighted power means and satisfy De Morgan’s law are:

MMSðx1; . . . ; xn; rÞ ¼
lim
s!r

Pn
i¼1

W ixs
i

� �1=s

; �1 6 r 6 1

1� lim
s!2�r

Pn
i¼1

W ið1� xiÞs
� �1=s

; 1 6 r 61

8>>><
>>>:

MMSðx1; . . . ; xn; rÞ ¼
1� lim

s!2�r

Pn
i¼1

W ið1� xiÞs
� �1=s

; �1 6 r 6 1

lim
s!r

Pn
i¼1

W ixs
i

� �1=s

; 1 6 r 61

8>>><
>>>:

The MS version of GCD for r 6 0 satisfies the mandatory requirements and for r P 2 sat-
isfies the sufficient requirements. In the case of the MS version, neither the mandatory con-
ditions nor the sufficient conditions are satisfied for all finite values of r: This function has
similar properties as the exponential mean.

The presented four characteristic cases ðMS;MS;MS;MSÞ expand the spectrum of
properties of the GCD based on weighted power mean.
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9. Other models of simultaneity and replaceability

In addition to GCD, there are many other ways to model simultaneity and replaceabil-
ity. For example, the intersection operators (t-norms) and the union operators (t-conorms)
[15], shown in Fig. 1, do not support internality, idempotency, and sensitivity to orness,
but have other useful properties, such as associativity and the existence of a neutral (iden-
tity) element (namely 1 and 0, respectively); see, for instance, [17].

Some authors propose to combine intersection (denoted x1Mtx2) and union operators
(denoted x1Otx2) to obtain aggregators with adjustable levels of andness/orness. The idea
of such models is either an additive combination x1}tx2 ¼ qðx1Otx2Þ þ ð1� qÞðx1Mtx2Þ, or a
multiplicative form x1}tx2 ¼ ðx1Otx2Þqðx1Mtx2Þ1�q

; 0 6 q 6 1 where q is used to adjust the
level of orness, and 1� q is used to adjust the level of andness. Such operators, proposed
by Zimmermann and Zysno [23], are x1}tx2 ¼ ð1� �x1�x2Þqðx1x2Þ1�q (based on geometric
mean) or x1}tx2 ¼ qð1� �x1�x2Þ þ ð1� qÞðx1x2Þ (based on the arithmetic mean). Pseudo
averaging models of the form x1}x2 ¼ c0 þ c1x1 þ c2x2 þ c12x1x2 are frequently used in
the utility theory [2,14].

Means that do not have adjustable parameter can be interpreted as GCD functions with
constant andness. For example, for Heronian mean we have

hðx; yÞ ¼ ðxþ ffiffiffiffiffi
xy
p þ yÞ=3; ag ¼ 0:5556

This result can be generalized:

hðx; y; pÞ ¼ p
xþ y

2
þ ð1� pÞ ffiffiffiffiffixy

p
; 0 6 p 6 1; ag ¼ ð4� pÞ=6

For the logarithmic mean we have

Lðx; yÞ ¼ y � x
log y � log x

; ag ¼ 0:613

For the centroidal mean we have

cðx; yÞ ¼ 2

3

x2 þ xy þ y2

xþ y

� �
; ag ¼ 0:4091

For each of these functions we can create the corresponding De Morgan dual. For in-
stance, in the case of centroidal mean:

dðx; yÞ ¼ cð�x; �yÞ ¼ 1� 2

3

ð1� xÞ2 þ ð1� xÞð1� yÞ þ ð1� yÞ2

2� x� y

 !
;

ag ¼ 1� 0:4091 ¼ 0:5909:

These forms of GCD are useful in decision models where the continuous adjustment of
andness is not needed.

10. GCD with positional weights

In fuzzy logic, the term ‘‘averaging operators’’ is used for mappings H : ½0; 1�n !
½0; 1�; n > 1, that are monotonic increasing in all its arguments, continuous, symmetric
in all its arguments, and idempotent. We notice that GCD functions satisfy these require-
ments and therefore also are averaging operators.
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A particularly interesting family of averaging operators are the OWA (ordered
weighted averaging) operators [16,17,19–22]. An OWA operator is characterized by a vec-
tor of positional weights ðv1; . . . ; vnÞ 2 In that satisfies v1 þ � � � þ vn ¼ 1. The aggregate y of
an argument vector ðx1; . . . ; xnÞ 2 In is defined by

y ¼ v1xð1Þ þ � � � þ vnxðnÞ

where ð�Þ is an index permutation such that xð1Þ P � � �P xðnÞ. The andness a and orness x
of such an operator are functions of the OWA weighting tuple, namely:

a ¼ v2 þ � � � þ vn�1ðn� 2Þ þ vnðn� 1Þ
n� 1

;

x ¼ v1ðn� 1Þ þ v2ðn� 2Þ þ � � � þ vn�1

n� 1
; aþ x ¼ 1

From this definition, if vi ¼ 1=n; i ¼ 1; . . . n, the OWA operator represents the arith-
metic mean, with a ¼ x ¼ 1=2. If v1 ¼ 1 ðvi ¼ 0 for i > 1Þ, it represents the pure or (the
max operator), with orness x ¼ 1, and if vn ¼ 1 ðvi ¼ 0 for i < nÞ, it represents the pure
and (the min operator), with orness x ¼ 0. If n ¼ 2, then x ¼ v1 and a ¼ v2 (the weight
of the larger argument represents the orness and the weight of the smaller argument rep-
resents the andness). The OWA measures of orness and andness can be shown to comply
with the measures of global and mean local andness/orness (Section 5).

An advantage of the OWA family is that, for any degree of orness in (0, 1), it allows us
to construct multiple averaging operators with different properties. For instance, the fol-
lowing OWA weighing tuples (illustrated with n ¼ 5) all have orness x ¼ 0:5:

ð1=5; 1=5; 1=5; 1=5; 1=5Þ ðArithmetic meanÞ
ð0; 0; 1; 0; 0Þ ðMedianÞ
ð0; 1=3; 1=3; 1=3; 0Þ ðOlympic meanÞ

OWA operators are further characterized by the dispersion of OWA weights. The dis-
persion is, in its normalized form, defined by:

dispðv1; . . . ; vnÞ ¼ �ðv1 ln v1 þ � � � þ vn ln vnÞ= ln n

For instance, the dispersion of the above shown three OWA weighting vectors are, respec-
tively, 1, 0, and 0.683.

An iterative OWA operator (ItOWA) was proposed in [9] and analyzed in [11].
We assume xi P xiþ1; i > 0; y ¼ vn1x1 þ � � � þ vnnxn; n > 1, and ðvn1; . . . ; vnnÞ 2 In;
vn1 þ � � � þ vnn ¼ 1; ðx1; . . . ; xnÞ 2 In. The first step in making an ItOWA operator is to
select the desired values of ItOWA andness a and ItOWA orness x ¼ 1� a. The concept
of andness and orness is the same as in other forms of GCD, but its numeric values are
specific for ItOWA. The ItOWA weights are computed directly from the desired values
of andness/orness. If n ¼ 2 the iterative model is the same as OWA:

y ¼ x1}x2 ¼ xðx1 _ x2Þ þ aðx1 ^ x2Þ ¼ xx1 þ ax2

v21 ¼ x; v22 ¼ a

In the case of 3 variables, the function y ¼ x1}x2}x3 is defined by the following iterative
procedure:
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while ðx1 � x3 > eÞ ==e ¼ a small error

f
x12 ¼ xx1 þ ax2; x13 ¼ xx1 þ ax3; x23 ¼ xx2 þ ax3;

x1 ¼ x12; y ¼ x2 ¼ x13; x3 ¼ x23;

g

This procedure can be expressed in a matrix form as follows:

y

y

y

2
64
3
75 ¼ lim

k!þ1

v21 v22 0

v21 0 v22

0 v21 v22

2
64

3
75

k x1

x2

x3

2
64

3
75 ¼ lim

k!þ1

x a 0

x 0 a

0 x a

2
64

3
75

k x1

x2

x3

2
64

3
75

The resulting GCD for 3 variables is:

y¼ x1}x2}x3¼ v31x1þv32x2þ v33x3¼
x2x1þaxx2þa2x3

a2þaxþx2
¼

x1; x¼ 1

ðx1þ x2þx3Þ=3; x¼ 1=2

x3; x¼ 0

8><
>:

The ItOWA version of GCD is consistent with OWA averaging operators for a ¼ 0; 0:5; 1,
and differs for other values of andness. The main difference is that ItOWA computes
weights from desired andness/orness, while OWA computes andness/orness from the val-
ues of weighs. More details can be found in [11].

The concept of ordered weighted averaging is to model simultaneity by emphasizing the
role of low preferences, and to model replaceability by emphasizing the role of high pref-
erences. OWA and ItOWA operators use the arithmetic mean. Consequently, they are not
suitable for modeling mandatory and sufficient requirements. However, the same idea can
be used in the context of other weighted power means and their combinations with De
Morgan’s law. Examples of OWA-like operators that satisfy the mandatory and sufficient
requirements are WGM (partial conjunction) and its De Morgan dual (partial
disjunction):

y ¼ expðvn1 ln x1 þ � � � þ vnn ln xnÞ
y ¼ 1� expðvn1 lnð1� x1Þ þ � � � þ vnn lnð1� xnÞÞ
x1 P � � �P xn; n > 1

An extension to (implicative) importance weighted OWA operators is analyzed in [16]
and presented in [17] in a form that represents the WAM for orness 0.5. There are several
other extensions and properties of OWA operators described in the literature, but the
above brief introduction will suffice for the scope of this paper.
11. Conclusions and future work

The GCD operators can be organized, interpreted, and used in a variety of ways. We
focused on interpretations in continuous preference logic, and briefly introduced the fuzzy
logic averaging operator interpretation. The organization of the GCD operators based on
weighted power means is shown to be the most attractive for interpretations in preference
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logic and applications in system evaluation. We also analyzed a GCD organization based
on exponential means. We introduced a distinction between two kinds of importance
weighting, namely multiplicative and implicative. These new concepts deserve future
research. Comparison of various approaches to definition of andness and orness, as well
as new forms of GCD based on Bajraktarević means, also deserve future research.

We have presented and discussed several properties of GCD operators. All operators
based on means satisfy the bounded quality range (internality) condition, and are commu-
tative, monotonic, continuous, and idempotent. For the usability of such operators, the
level of andness/orness should be easily adjustable. The importance of satisfying compo-
nent criteria should be easily adjustable through weights. Weighted operators should be a
generalization of unweighted operators, so that unweighted operators are obtained when
the inputs are evenly weighted. The two kinds of importance weighting generalizations,
multiplicative and implicative, should be supported; the choice between these kinds
depends on the kind of the decision problem. The multiplicative form is primarily applied
for estimating the level of satisfaction of requirements, as applied in, for instance, system
evaluation. The implicative form primarily is applied for ranking of options according to
their satisfaction of joint criteria (constraints), as applied in selection, classification, and
recognition problem solving.

An often-required property in system evaluation is the mandatory requirements prop-
erty. This says that, regardless of the andness and the (positive) importance weights, the
aggregate must evaluate to zero, if at least one of the criteria is not satisfied at all. For
other kinds of problems, absence of the mandatory property may be required; for instance,
in recognition, where the failure to satisfy a single criterion should not invalidate the
option, but just ‘‘punish’’, depending on the importance of satisfying the criterion.

Associativity and distributivity are not properties of GCD operators. However, these
properties can be approximated with a tolerable small error. The De Morgan duality
applying to GCD operators may also be computationally useful.

Finally, for multiplicative importance weighted GCD operators, we need the sensitivity
property oy=oxi > 0. In addition, assuming that all inputs are not equal, and are positive,
the condition oy=ox > 0, where x is the orness, must be satisfied. The property oy=ox > 0
does not hold in general for implicative importance weighting.

We have seen that the weighted power means provide a set of useful properties; the
mandatory property is obtained for non-positive values of the parameter r, yielding and-
ness degree above about 2/3. The lowest global andness for which the mandatory property
is obtained corresponds to the geometric mean ðr ¼ 0Þ with andness between 0.667 (at
n ¼ 2) and 0.632 ðn
 1Þ. If absence of the mandatory property is required with multipli-
cative weighting for all degrees of andness, then a possible choice is the exponential mean.
A nice feature of the exponential mean is its symmetry: for r ¼ 0 it generates the arithmetic
mean, and the andness for r equals the orness for �r.

The implicative importance weighting is provided by the AIWA operators [17] that are
based on the power means. These operators do not have the mandatory requirements
property.

The GCD function emerges in various forms in system evaluation, classification, recog-
nition, and in other areas. In the continuous logic it is interpreted as a model of adjustable
simultaneity and replaceability. In the fuzzy logic it is interpreted as the averaging opera-
tor. Various application areas generate a rich spectrum of desired and achieved GCD
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forms and properties. Our goal was to present various forms and interpretations of GCD
in a unifying and comparative way that might cause more convergence in the future
research.
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Mat. Fiz. Hrvatske, Ser. II 13 (1958) 243–248.

[2] V. Belton, T.J. Stewart, Multiple Criteria Decision Analysis: an Integrated Approach, Kluwer Academic
Publishers, 2002.

[3] P.S. Bullen, Handbook of Means and Their Inequalities, Kluwer, 2003.
[4] E.U. Choo, B. Schoner, W.C. Wedley, Interpretation of Criteria Weights in Multicriteria Decision Making,

Computers and Industrial Engineering 37 (1999) 527–541.
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