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Abstract

In this paper we present the code BiM, based on blended implicit methods (J. Comput. Appl. Math. 116
(2000) 41; Appl. Numer. Math. 42 (2002) 29; Recent Trends in Numerical Analysis, Nova Science Publ. Inc.,
New York, 2001, pp. 81.), for the numerical solution of sti8 initial value problems for ODEs. We describe in
detail most of the implementation strategies used in the construction of the code, and report numerical tests
comparing the code BiM with some of the best codes currently available. The numerical tests show that the
new code compares well with existing ones. Moreover, the methods implemented in the code are characterized
by a diagonal nonlinear splitting, which makes its extension for parallel computers very straightforward.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

After about 50 years, the numerical solution of initial value problems for ODEs is still an active
?eld of investigation, even though the required properties for the numerical methods underwent a
signi?cant qualitative evolution across the years. Indeed, until the 1950’s accuracy requirements were
considered as the most important for the methods. After that, stability requirements became focal, in
particular in connection with the numerical solution of sti8 problems. More recently, attention has
been devoted to methods well suited for particular di8erential problems (e.g. DAEs, Hamiltonian
problems, and so forth), and to methods well suited for an eBcient implementation on computers
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as well as to the de?nition of eBcient implementation techniques for the existing methods. As a
consequence, a number of reliable numerical codes have been developed for solving sti8 problems:
as an example, the codes DASSL [1], GAM [16], MEBDFDAE [9], RADAU5 and RADAU [11].

In this paper we describe a new code, called BiM, which is based on blended implicit methods
[2,3,7]. The latter are methods de?ned in order to favorably meet implementation requirements. The
code compares well with the above mentioned codes; moreover, the diagonal nonlinear splitting on
which it is based naturally induces its extension for parallel computers, which will be the subject of
future researches.

The organization of the paper is as follows: in Section 2 we recall the main facts about the
blended implicit methods implemented in the code BiM; in Section 3 we describe in detail the
implementation of the nonlinear iteration; Section 4 is devoted to the order and stepsize variation
strategies; in Section 5 we report some numerical tests comparing the code BiM with the above
mentioned ones and, ?nally, some concluding remarks. Concerning the problem of the eventual
re-evaluation of the Jacobian and/or the factorization involved in the nonlinear splitting, we refer to
[4].

2. Blended implicit methods

The numerical solution of the ODE problem

y′ = f(t; y); t ∈ [t0; T ]; y(t0) = y0 ∈Rm; (1)

is usually carried out by formally executing the following three steps:

(1) the de?nition of a suitable partition of the integration interval [t0; T ],
(2) the construction of a discrete problem de?ned on such a discrete set,
(3) the solution of the discrete problem.

Let us assume, for the moment, that a uniform partition with stepsize h is used, tn = t0 + nh, where
n = 0; : : : ; N and Nh = T − t0.

We will be concerned with the discrete problem generated by a block implicit method, namely

F(yn) ≡ A⊗ Imyn − hB⊗ Imfn − �n = 0; (2)

where A and B are r × r nonsingular matrices de?ning the method, the block vectors yn =
(yn+1; : : : ; yn+r)T and fn = (fn+1; : : : ; fn+r)T, where fj =f(tj; yj), contain the discrete solution, and
the vector �n only depends on already known quantities. Instances of methods falling in this class
are the majority of implicit Runge–Kutta methods, a number of General Linear methods [8,10,11]
and, more recently, block BVMs [6]. In particular, the block methods we shall deal with are such
that

[a |A] ≡




�(1)
0 �(1)

1 : : : �(1)
r

...
...

...
�(r)

0 �(r)
1 : : : �(r)

r


 ; [b |B] ≡




�(1)
0 �(1)

1 : : : �(1)
r

...
...

...
�(r)

0 �(r)
1 : : : �(r)

r


 ; (3)
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where the coeBcients on the ith row of the two matrices de?ne a suitable r-step LMF, and �n =
−a⊗ yn + hb⊗fn. Our goal is now that of deriving an eBcient nonlinear splitting for solving (2).

Hereafter, I and O will denote the identity and the zero matrix of size r. For simplicity, let us
consider the ?rst application of the method, in order to omit the index n, and assume that the given
problem is the test equation,

y′ = �y; y(t0) = y0; Re(�)¡ 0; (4)

for which the discrete problem assumes the simpler form

(A− qB)y = �; q = h�: (5)

By setting C = A−1B, such an equation is equivalent to the following:

(I − qC)y = �1 ≡ A−1�; (C−1 − qI)y = �2 ≡ B−1�: (6)

By introducing the weighting function �(q) = (I − q�I)−1, where �¿ 0, one veri?es that �(0) = I
and �(q) → O, as q → ∞. As a consequence, the following equation:

M (q)y − �(q) ≡ (A(q) − qB(q))y − �(q)

≡ ((�(q)I + (I − �(q))�C−1) − q(�(q)C + (I − �(q))�I))y

−(�(q)�1 + (I − �(q))��2) = 0; (7)

has the same solution as (5). The previous equation de?nes a blended implicit method associated
with the block method (2), due to the fact that the discrete problem is obtained as the “blending”
of two equivalent forms of the same basic block method.

The key point concerning a blended implicit method is that its structure naturally induces the
choice of a splitting for iteratively solving (7). In fact, one easily veri?es that M (q) = I + O(q) ≈ I ,
when q ≈ 0, and M (q) =−�q(I + O(q−1)) ≈ −q�I , when q → ∞. Consequently, instead of solving
(7), one may think to solve iteratively

N (q)y(i+1) = (N (q) −M (q))y(i) + �(q); i = 0; 1; : : : ; (8)

where

N (q) = I − q�I ≡ �(q)−1: (9)

This is because N (0) =M (0), and N (q) ≈ M (q), for |q|�1. We shall call (8) the blended iteration
associated with the blended method (7). Obviously, such an iteration will converge if and only if
the spectral radius of the iteration matrix

I − N (q)−1M (q); (10)

say �(q), is smaller than 1. Following [12,13], the iteration is said to be A-convergent if �(q)¡ 1
for all q∈C−. Since �¿ 0, A-convergence is equivalent to require that the maximum ampli<cation
factor, �∗=maxx¿0 �(ix), with i denoting the imaginary unit, is smaller than 1. We observe that, from
(7)–(9), one obtains that �(0) = 0 and �(∞) ≡ limq→∞ �(q) = 0 since, in both cases, the iteration
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matrix is the zero matrix. Consequently, because of the second property, iteration (8) is well-suited
for sti8 problems, since the sti= ampli<cation factor �(∞) is 0 [12,13]. In such a case, an A-convergent
iteration is said to be L-convergent. Moreover, if the iteration matrix is well-de?ned in a neighbor-
hood of q = 0, a ?rst-order expansion shows that

�(q) ≈ �̃q; for q ≈ 0; (11)

where �̃ is the nonsti= ampli<cation factor. In [3] the parameter � has been chosen in order to
minimize the maximum ampli?cation factor �∗, thus giving L-convergent iterations for all methods
implemented in the code. For such methods, the matrix C is uniquely de?ned by imposing that all
the LMFs associated with the two matrices in (3) have an O(hr+1) truncation error, and by ?xing
its characteristic polynomial, say d(z), as the reciprocal, and scaled, polynomial at the denominator
of the ($; r) PadQe approximation to the exponential,

zrd(z−1) =
r∑

i=0

($ + r − i)!r!
($ + r)!i!(r − i)!

(−rz)i :

In particular, the following values of r and $ have been considered: $=r−1 for r=3 and $=r−2 for
r¿ 4, thus resulting in L-stable methods, whose order (hereafter denoted by p) is the one speci?ed
in the Table 1 (see, for example, [18]). For such methods, for which the results of Section 4 in [3]
apply, the following result holds true.

Theorem 1. Let &(C) be the spectrum of the matrix C, then the spectral radius of iteration matrix
(10) is given by

�(q) =
∣∣∣∣ q('1 − �)2

'1(1 − q�)2

∣∣∣∣ where |'1| = min
'∈&(C)

|'|: (12)

Moreover, again from the arguments in [3] and by denoting with )1 the argument of '1, the
following results easily follow:

� = |'1|; �∗ = 1 − cos )1; �̃ = 2|'1|�∗:
In Table 1 we list such parameters for the considered values of r. The reason for considering methods
of di8erent order (and, obviously, of di8erent computational cost per step) is due to the fact that
the code BiM implements a variable order-variable stepsize strategy for the methods. From Table 1
one obtains that all iterations are A-convergent ones and, then, also L-convergent, since �(∞) = 0, as
previously stated.

Table 1
Values of various parameters for the methods implemented in the code BiM

r PadQe p � �∗ �̃ �̃(∞)
r maxit faterr

3 (2,3) 4 0.7387 0.3398 0.5021 0.9201 10 7
4 (2,4) 6 0.8482 0.5291 0.8975 1.2476 12 6
6 (4,6) 8 0.7285 0.6299 0.9177 1.7295 14 5
8 (6,8) 10 0.6745 0.6885 0.9288 2.0413 16 4

10 (8,10) 12 0.6433 0.7276 0.9361 2.2621 18 3
12 (10,12) 14 0.6227 0.7560 0.9415 2.4282 20 —
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3. The nonlinear iteration

We now analyze in detail the nonlinear iteration generated by a blended implicit method applied
to problem (1). In fact, in such a case, the blended iteration (8) becomes

Ty(i) =−�(�((I − �C−1) ⊗ Imy(i) − h(C − �I) ⊗ Imf (i))

+�(C−1 ⊗ Imy(i) − hI ⊗ Imf (i)) − �); (13)

y(i+1) = y(i) + Ty(i); i = 0; 1; : : : ;

where y(i) = (y(i)
1 ; : : : ; y(i)

r )T, f (i) = (f(i)
1 ; : : : ; f(i)

r )T, f(i)
j = f(tj; y

(i)
j ), the vector � only depends on

the initial condition, and, if J denotes the Jacobian of f at (t0; y0),

� = I ⊗ +−1; + = (Im − h�J ): (14)

Consequently, if $ iterations are performed to obtain convergence, the overall computational cost is
approximately given by:

• the evaluation of the Jacobian matrix J ,
• the factorization of the m× m matrix + in (14),
• r$ function evaluations, and
• 2r$ system solvings with the factors of the matrix +.

Let us now brieUy sketch the choice of the starting vector y(0) and the stopping criterion for
iteration (13). Concerning the ?rst point, the adopted strategy is similar to that used in most of
the available codes: the default pro?le is obtained by using the interpolating polynomial over the
previous block of points; alternatively, we use a constant initial vector (namely, the starting point
repeated r times) in either one of the following cases:

• when we integrate over the very ?rst block,
• after a failure of the iteration,
• when the solution is very slow varying.

This last condition is recognized when, on the last block (whose size is r, if the order has not
been changed), the following test is true:

∀j = 1; : : : ; m :
|yrj − y0j|
1 + |y0j| ¡ min{10−2; 102 ∗ tolj} and ‖fr‖∞ ¡ 0:5; (15)

where tolj ≡ rtol (the prescribed relative tolerance) if |y0j| ¿ 10−1; tolj ≡ atol (the prescribed
absolute tolerance) if |y0j| ≤ 10−1 and, in general, y‘j is the jth entry of y‘.

Let us now analyze the stopping criterion for iteration (13). Let us consider the vector Ty(i), as
de?ned in that equation, and introduce the norm

‖Ty(i)‖ ≡ max
‘=1; ::: ;r

|Ty(i)
‘ | ≡ max

‘=1; ::: ;r

√√√√ 1
m

m∑
j=1

(
Ty‘j

1 + ratol|y0j|
)2

; (16)
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where ratol = rtol=atol is the ratio between the speci?ed relative (rtol) and absolute (atol)
tolerances, and y0 is the starting point for the current block. Then, the iteration ends as soon as the
following condition is satis?ed,

‖Ty(i)‖6max
{
c;

uround

rtol

}
∗ atol; (17)

where uround is the machine precision (on input, rtol¿ uround) and the parameter c = 0:1.
Moreover, in order to make more restrictive the stopping criterion when the solution has small
entries and/or is slowly varying, the value of the parameter c may be decreased as follows:

• when ‖y0‖−∞ ≡ |y0s|¡ 10−2, |f0s|¡ 10−4 and ‖f0‖∞ ¡ 10−3, then c = 5 · 10−3;
• when (15) holds true, then c = min{c; 5 · 10−2}.

Iteration (13) fails if condition (17) is not satis?ed within maxit iterations, where this parameter
depends on the method currently used, according to Table 1. The iteration also fails if i¿ 2 and
�(i) ¿ 0:99, where �(i) is the estimate of the spectral radius of the iteration matrix at the ith iterate.
Such an estimate is obtained, after at least two iterations, as follows:

�(1) =
‖Ty(1)‖
‖Ty(0)‖ ; �(i) =

√
�(i−1) ‖Ty(i)‖

‖Ty(i−1)‖ if i¿ 2: (18)

In case of failure of iteration (13) the order of the method is decreased (if r ¿ 3) and the stepsize
is halved.

4. Stepsize and order variation

In this section we describe the strategies for the variation of both the stepsize of integration h and
the order of the method, which rely on the estimate of the local error, obtained through deferred
correction (see, for example, [6, Chapter 10]) as follows. As previously said, the basic block method
(2) is de?ned in order to have the equations on each row with an O(hr+1) truncation error. That is,
if ŷ denotes the vector obtained by projecting the continuous local solution at the discrete points,
and f̂ contains the corresponding values of f, then the local truncation errors for the equivalent
forms (6) are de?ned as

�1 ≡ I ⊗ Imŷ − hC ⊗ Imf̂ − �1; �2 ≡ �C−1 ⊗ Im�1: (19)

We recall that, due to the features of the basic block method (2), and provided that y(t) is suitably
regular, �1 admits the expansion:

�1 = vr+1 ⊗ hr+1y(r+1)(t0) + vr+2 ⊗ hr+2y(r+2)(t0) + · · · : (20)

In particular, the last entry of the vector vr+1 is zero. Consequently (see, for example [11, p. 123])
a ?rst-order approximation to the local error is given by (see (14))

e = ��1: (21)
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Then, it follows that we can obtain an eBcient estimate of the local error once an estimate of the
truncation error �1 is available. For this purpose, recall that it is possible to uniquely de?ne r×(r+1)
matrices, Ã and B̃,

[ã | Ã] ≡




−1 1
...

. . .
−1 1


 ; [b̃ | B̃] ≡




�̃(1)
0 �̃(1)

1 : : : �̃(1)
r

...
...

...
�̃(r)

0 �̃(r)
1 : : : �̃(r)

r


 ; (22)

such that the coeBcients on each row of the two matrices de?ne an r-step LMF with an O(hr+2)
truncation error (see, e.g., [6,18]). For such method, the following result holds true [5].

Theorem 2. Let y, f be the vectors computed by the basic block method (2). Let us consider (see
(22)) F̃(y) ≡ Ã ⊗ Imy − hB̃ ⊗ Imf − �̃, where �̃ = −ã ⊗ y0 + hb̃ ⊗ f0. It follows then that (see
(19)–(20)),

F̃(y) = −vr+1 ⊗ (h0rf0): (23)

One easily realizes that −F̃(y) provides a ?rst-order approximation to the leading term in (20).
However, in such a case the last block entry is 0, whereas it is known that it must be O(hp+1),
if p (see Table 1) is the order of the method. In order to obtain a corresponding approximation
also for er , the last block entry of e, we then consider the last block entry of the vector (see (14),
(19)–(20))

�(I − �)s(�C−1vr+1 ⊗ h0rf0); (24)

where s = 1, when r = 3, and s = 2, otherwise. This entry turns out to be the one of the largest
norm: this feature will be useful for what we shall see in Section 4.1. As a consequence, on one
hand, since the norm used to measure the error is the same norm de?ned in (16), from (14), (21),
(23) and (24) one obtains that

‖e‖ = max{!r |+−1g(r)(f0)|; |er|} = O(hr+1); (25)

where !r = ‖vr+1‖∞ and g(r)(f0) = h0rf0. On the other hand, the quantity

|er| =

√√√√ 1
m

m∑
j=1

(
erj

1 + ratol|y0j|
)2

= O(hp+1); (26)

already computed to obtain (25), provides an estimate for ‖eup‖, namely the error corresponding to
the use of the next higher-order method. This feature will be conveniently exploited when we shall
speak about the order variation strategy. Before that, let us consider the problem of the stepsize
variation in more detail. First of all, if rtol and atol are the prescribed relative and absolute
tolerances, then the current solution is accepted provided that (see (25))

‖e‖6 atol: (27)
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The new stepsize to be used by the same method is then obtained through extrapolation

hnew = h
(
sftyerr ∗ atol

‖e‖
)1=r+1

; (28)

where sftyerr= 1
20 if (27) holds true and sftyerr= 1

10 otherwise. Similarly, if r ¡ 12 the stepsize
to be used by the next higher-order method would be

hup = h
(
sftyup ∗ atol

‖eup‖
)1=p+1

; (29)

where the approximation ‖eup‖= |er| has been used (see (26)) and, moreover, we have set sftyup=
sftyerr=2. We shall use such an estimate for the stepsize of the higher-order method when dis-
cussing the order variation strategy. Moreover, we set

hnew = min{max{hnew; 0:12 × h}; 10 × h; (T − t0)=8}:
In addition to this, if 0:1× h6 t× uround, then the execution ends because the selected stepsize is
too small. Finally, we also use the following heuristics: if nfail consecutive failures have occurred
(either for the convergence of the iteration or for the accuracy) before the last successful step, then
the stepsize is increased only after at least nfail + 1 consecutive successful steps occur.

Let us now consider the problem of the order variation. The aim is that of reducing the global
computational cost for getting a discrete solution with a prescribed accuracy. For this purpose, we
normalize the cost with respect to the width of the covered interval. By neglecting, for sake of
simplicity, Jacobian and function evaluations, whose cost in general is strongly problem dependent,
we then introduce the following speci<c cost per step function for the method with blocksize r:

ctot($; r; m; h) =
cfatt + cit + cerr

rh
; (30)

where cfatt is the cost for the factorization of the matrix + in (14), cit is the number of Uops required
by $ iterations in (13), and cerr is the cost for computing estimate (25) of the local error. In particular,
in case of full m×m Jacobians, cfatt ≈ 2m3=3, cit ≡ cit(r; $; m) ≈ 4r$m2, and cerr ≈ 4 m2, if r = 3, or
6 m2, otherwise. Corresponding formulae are used in case of banded Jacobians. Therefore, the next
higher-order method, with blocksize rup (see the ?rst column in Table 1), requiring $up iterations
for satisfying the same stopping criterion, and using a stepsize hup for getting the same accuracy,
would be preferable in the subsequent step provided that

ctot($up; rup; m; hup)¡ctot($new; r; m; hnew); (31)

where hnew and $new are the stepsize and the number of expected iterations for the current-order
method. Therefore, the problem is easily solved, once we have an estimate for the above quantities.
We have already seen how to get estimates for hnew and hup (see (28) and (29), respectively). It
remains to obtain estimates for $new and $up. We observe that, if the same stopping criterion has to
be satis?ed, then the following equalities should approximately hold,

�$ = (�new)$new = (�up)$up :
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In the above equation, � is the spectral radius of the current iteration matrix (estimated by (18)), $
is the (known) number of iterations carried out to satisfy the convergence criterion (17), and �new,
�up are the spectral radii of the iteration matrices of the current-order method, by using the new
stepsize hnew, and of the next higher-order method, respectively. By taking into account that the
sti8 ampli?cation factor of both methods is 0, and considering (11), we then obtain the following
estimates,

$new = $
log �

log �(hnew=h)
; $up = $

log �
log �(�̃up=�̃)(hup=h)

; (32)

where �̃ and �̃up are the nonsti8 ampli?cation factors of the current and next higher-order methods,
respectively (see Table 1). Finally, in order to prevent erratic behaviour in some pathological cases,
the previous strategy is applied provided that all the following three conditions are satis?ed:

(1) 0:8h6 hnew6 1:25h,
(2) at least max{2; nfail} successful consecutive steps have been carried out with the current-order

method, when the previous nfail steps failed to satisfy the accuracy requirement (27),
(3) the (estimated) spectral radius of the current iteration, say �, is “adequately small”. The latter

condition is assumed to be ful?lled, provided that �¡�p, where the parameter �p is de?ned
so that all methods do have a prescribed absolute cost to obtain convergence. In more detail,
by setting

�4 = 10−2|log10 min{10−1; rtol}|; (33)

we impose that, for all allowed orders p, the quantity cit(rp; $p; m) (see Table 1 and (30)) is
constant, for the same stopping criterion, where rp and $p are the blocksize and the number of
iterations required by the pth order method, p = 4; 6; 8; 10; 12; 14. This leads to the equalities,

rp$p = rp−2$p−2; �$p
p = �$p−2

p−2 ; p = 6; 8; 10; 12; 14;

which provide the following recursion with starting value given by (33)

�p = (�p−2)rp=r(p−2) ; p = 6; 8; 10; 12; 14: (34)

We observe that the sequence {�p} is a decreasing one.

Actually, the last condition is relaxed when $6 3 and both the conditions of stepsize stagnation
and convergence stagnation, as described in Section 4.1 below, are veri?ed.

So far, we have dealt with the strategy for increasing the order of the method to be used at the
subsequent step of numerical integration. However, it may be convenient to decrease the order of the
method as well. Obviously, the criterion based on the minimization of the speci?c cost per step (30)
could be, in principle, also used to decrease the order of the method, provided that an estimate for
hlow, namely the stepsize to be used by the next lower-order formula, is available. Its computation,
based on a procedure similar to that required for evaluating hnew, would require an additional linear
system with the matrix + to be solved. Nevertheless, we decided not to systematically resort to such
a criterion for decreasing the order, because there is numerical evidence that it is seldom e8ective.
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Instead, we chose to lower the order p to p − 2 (when r ¿ 3, see Table 1), in either one of the
following two situations:

• a failure of the nonlinear iteration (13) occurs (in such a case, hnew = h=2, as we have already
said at the end of Section 3);

• all the following four conditions hold true:
(1) in the last step the current-order method has been successful,
(2) the nonlinear iteration (13) has required more than three iterations,
(3) the (estimated) spectral radius of the iteration matrix, �, satis?es �¿�p, where �p is again

de?ned according to (34), but with the initial condition, in place of (33),

�4 = 0:5; (35)

(4) if condition (37) below is satis?ed, then hlow¿ hnew.

In this case, the new stepsize is set equal to{
hlow if (37) and hlow ¿ hnew hold true;
min{hlow; hnew} otherwise:

4.1. Order reduction recovery

A particular handling is required in order to get rid of the so-called order reduction phenomenon
(see, for example, [11, Chapter IV, 15]). Such a phenomenon occurs when, in test equation (4),
h → 0 but q = h� is large. In such a case, in fact, expansion (20) of the truncation error becomes

�1 = qr+1vr+1y0 + qr+2vr+2y0 + · · · ;
and the local error is given by (I − qC)−1�1. The latter expression admits di8erent expansions,
depending on the “size” of q. In particular,

• when |q| is small, then

(I − qC)−1�1 = qr+1vr+1y0 + qr+2(vr+2 + Cvr+1)y0 + · · · ;
and the principal term of each entry behaves like qr+1, with the exception of the last one, which
depends on higher-order terms;

• when |q| is large, then

(I − qC)−1�1 ≈ −qrC−1vr+1y0 + · · · : (36)

In such a case, the principal term of each entry behaves like qr , including the last one.
The conclusions in the latter case make evident the fact that |er| (see (26)) is no more an estimate

for ‖eup‖. On the other hand, when q is large, it happens that, see (25) and (26),

|er| ≡ ‖e‖; (37)

i.e., the norm of the last (block) entry of the vector de?ned in (24). Moreover, the latter vector
turns out to be an approximation to the principal term of expansion (36). In conclusion, if the order
reduction phenomenon occurs, then the strategy for the order variation previously described, which
relies on the higher-order accuracy of the last entry of the local error, may fail. Indeed, this actually
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happens for the well-known Prothero–Robinson problem (see [11]). In such a case, also the stepsizes
stagnate. In the code BiM, the order reduction phenomenon is recognized when (37) holds true or
all the following conditions are satis?ed:

Order stagnation: the order of the method has not been increased by the above mentioned strategy;
Error stagnation: |er| faterr¿ ‖e‖, where the parameter faterr is chosen according to Table 1.

When such a condition holds true, this means that the last entry of the local error is “not too small”,
with respect to the remaining ones. This is, indeed, usually the case, when it correctly estimates
the error for the next higher-order method. The parameter faterr is, at the moment, chosen in a
heuristic way;

Stepsize stagnation: the ratio between the new stepsize, hnew, and the current one, h, belongs to
the interval [0:95; 1:05];
Convergence stagnation: the ratio between the current estimated spectral radius, � (see (18)), and

the one of the previous iteration, �old, belongs to the interval [0:95; 1:05].
Once the error reduction phenomenon is recognized, it is possible to get rid of it, as explained in

the sequel. The basic idea is to obtain an estimate for ‖eup‖ in a form similar to (25):

‖eup‖ ≈ !rup |+−1g(rup)(f)|: (38)

Indeed, the quantity !rup is known. Concerning the second term, g(rup)(f) can be approximated by
suitable ?rst (in the case r = 3) or second (in the case r ¿ 3) di8erences of g(r)(f), since this
function has already been computed at the previous blocks. Once estimate (38) is available, the
usual formula (29) can then be used, in order to predict hup.

An additional question needs to be considered, at this point, by observing that, when q is not
small, then (11) is not valid. The latter approximated equality, in turn, was used in order to predict
�p and �up from the knowledge of �, h, hnew, hup (see (32)). However, when q is large, from (12)
it is not diBcult to prove the following result.

Theorem 3. For |q|�1 the spectral radius of the iteration matrix (10) is approximately given by

�(q) ≈ |'1 − �|2
|'1|�2|q| ≡

�̃(∞)

|q| ; �̃(∞) =
�̃

|'1|2 ≡ 2�∗

|'1| :

The corresponding values of the parameter �̃(∞) are listed in Table 1. The previous result allows
us to derive the following estimates for $new and $up, alternative to (32):

$new = $
log �

log �(h=hnew)
; $up = $

log �

log �(�̃(∞)
up =�̃(∞))(h=hup)

;

where �̃(∞) is the parameter of the current-order method, and �̃(∞)
up is that of the next higher-order

one. The above estimates are then used to check (31), in order to decide whether to increase the
order of the method used in the subsequent step, when the order reduction phenomenon is diagnosed.
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Finally, we mention that, for robustness, when (37) holds true, the order is not increased when the
following two conditions are ful?lled:

• hup¿ h,
• the estimated spectral radius for the higher-order method,

�up = �
�̃(∞)

up

�̃(∞)

h
hup

; (39)

is larger than the corresponding maximum allowed value, as de?ned by (34) and (35).

Indeed, the ?rst condition ensures that approximation (39), derived from Theorem 3, is appropriate
also for the next higher-order method.

5. Numerical tests and conclusions

In this section we report the results obtained on a few test problems taken from [11] and from
the former CWI testset [17], now available at the University of Bari [14]. In the tests, we compare
the code BiM [15] with some of the best codes currently available for the numerical integration of
ODE-IVPs: the codes DASSL [1], GAM [16], MEBDFDAE [9], RADAU5 and RADAU [11]. In Fig. 1we
report the work-precision diagrams for the following problems: (a) Van der Pol; (b) Robertson; (c)
Plate; (d) Bruss (1D di8usion); (e) Beam; (f) Emep; (g) Hard Ring Modulator. All executions have
been carried out on a Pentium based computer, under Linux, and by using the same compilation
options (-O3). The execution times (on the y-axis) are in seconds. As usual, on the x-axis there
is the number of signi?cant computed digits (scd) in the numerical solution. The parameters listed
in the following table have been used for all codes (h0 is the initial stepsize; rtol and atol have
been already de?ned in Section 3).

Problem (a) (b) (c) (d) (e) (f) (g)

h0 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=4) 10−7 10−(4+‘=2)

rtol 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=4) 10−(2+‘=2) 10−(4+‘=2)

atol 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=2) 10−(2+‘=4) 1 10−(4+‘=2)

‘-range 0; : : : ; 22 0; : : : ; 24 0; : : : ; 22 0; : : : ; 24 0; : : : ; 20 0; : : : ; 20 0; : : : ; 16

It is worth mentioning that for the code BiM we have always got a correct answer, whereas, for
the other codes, possible failures have occurred when using either the coarsest or the ?nest accuracy
requirements.

From the results obtained, we can conclude that the code BiM turns out to be a robust and reliable
one. Moreover, it is competitive with some of the best existing codes. Finally, its parallelization,
naturally induced by the fact that the splitting is block-diagonal, seems to be very promising, by
considering that the code BiM implements methods with blocksize r ranging from 3 to 12. Future
extensions of this research will deal with such a parallelization, as well as with the extension of the
code to deal with implicit di8erential equations (IDEs) and di8erential algebraic equations (DAEs).
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Fig. 1. Computed work-precision diagrams.
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