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The cosmological constant problem is studied in a two component cosmological model. The universe
contains a cosmological constant of an arbitrary size and sign and an additional component with an
inhomogeneous equation of state. It is shown that, in a proper parameter regime, the expansion of the
universe with a large absolute value of the cosmological constant may asymptotically tend to de Sitter
space corresponding to a small effective positive cosmological constant. It is argued that such a behavior
can be regarded as a solution of the cosmological constant problem in this model. The mechanism behind
the relaxation of the cosmological constant is discussed. A connection with modified gravity theories
is discussed and an example of a possible realization of the cosmological constant relaxation in f (R)

modified gravity is described.
© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

The state of accelerated expansion of the present Universe
seems to be better and better confirmed by the cosmological ob-
servations [1–3]. The question of the dynamical mechanism re-
sponsible for the accelerated expansion, however, still lacks its
definite answer. The last decade has witnessed the arrival of nu-
merous models of the accelerated expansion including dark energy,
braneworld models, modified gravity and many others [4]. An in-
teresting fact is that when confronted against the observational
data, a simple �CDM model, in which the cosmological constant
(CC) is the cause of acceleration, fits the data very well. When the
conceptual simplicity of the �CDM model is taken into account, it
is easy to understand why it is a benchmark model for the anal-
ysis of cosmological observations. While it is quite clear why the
�CDM model is so appealing from the observational side, its status
from the fundamental theoretical perspective is much more prob-
lematic. It is by now a notorious fact that the CC value predicted
in Quantum Field Theory (QFT) differs from the observed value
by an embarrassingly large number of orders of magnitude [5].
The problem of explaining the observed value of the cosmologi-
cal constant is therefore one of the largest challenges in theoretical
physics [5–7]. This problem is sometimes referred to as the old cos-
mological constant problem. It is further exacerbated by the fact that
in all other approaches to the problem of the accelerated expan-
sion of the universe it is assumed that the CC problem is somehow
solved.
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Many attempts to solve the CC problem have been made dur-
ing several last decades [5–7]. However, so far none of them has
provided a fully satisfactory solution of the CC enigma. The most
frequent problem that models of various sorts encounter is the
necessity of fine-tuning. The parameters of the model have to be
chosen with extraordinary precision in order for the model to lead
to the resolution of the CC problem. Even a very small deviation
from these fine-tuned values disrupts the efficiency of the pro-
posed mechanisms.

In this Letter we propose a dynamical cosmological model with
a specific regime in which it is possible to contemplate the reso-
lution of the CC problem. The proposed model is simplified insofar
that it does not contain all the (matter or radiation) components
that naturally participate in the evolution of the universe. However,
given the difficulty of the CC problem and its resilience to differ-
ent attempts of solution, it seems preferable to first concentrate
on the very mechanism which could produce the observed value
of the effective cosmological constant for a universe with values of
Λ comparable to those predicted in QFT.

There exists additional problem related to the size of the cos-
mological constant energy density (or more generally the present
dark energy density). Namely, the observational data reveal that
the energy density of matter (which at present epoch comes pre-
dominantly from nonrelativistic matter) is of the same order of
magnitude as the CC (present DE) energy density. Dark energy
and nonrelativistic matter scale differently with the expansion of
the universe and it is quite remarkable that at present epoch
these two energy densities are comparable. This problem is also
called the cosmic coincidence problem. In this Letter we are pri-
marily concerned with the problem of the size of the cosmo-
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logical constant, whereas the cosmic coincidence problem is not
addressed.

The principal aim of this Letter is to study a two component
cosmological model which possesses a cosmological constant of a
large absolute value. We investigate conditions under which the
asymptotic expansion in this model is of de Sitter type where the
asymptotic value of the Hubble function corresponds to a small
value of the effective cosmological constant (H2

asym = Λeff/3). In
the studied models the solution of the cosmological constant is
understood as a situation in which the universe ends up in an
asymptotic de Sitter regime at large scale factor values charac-
terized by a small cosmological constant (small in a sense that
Λeff � |Λ|). The absence of fine-tuning in the model studied in
this Letter is achieved if the parameters of the model do not have
to cancel to many decimal places to lead to the solution of the
CC problem. The dynamical process in which the universe in the
studied model tends to de Sitter space with a small Λeff is also
referred to as the relaxation of the cosmological constant. In the
following sections we present a two component model in which
the relaxation of the cosmological constant is realized.

2. The model set-up

We consider the cosmological model described by the FRW
metrics containing two components: the cosmological constant
with the energy density ρΛ and an additional cosmological com-
ponent with the energy density ρ . Throughout this Letter the
universe is assumed to be spatially flat (k = 0). The Friedmann
equation for this cosmological model is

H2 = 8πG

3
(ρΛ + ρ). (1)

The equation of state (EOS) of the cosmological constant is stan-
dard, pΛ = −ρΛ . On the other hand, for the equation of state of
the second component we take

p = wρ − 3ζ0 Hα+1, (2)

where p is the pressure of the second component and w , ζ0 and
α are real parameters. In the considerations given in this Letter we
limit ourselves to positive values of the parameter ζ0. Both com-
ponents satisfy the equation of continuity which for the cosmolog-
ical constant results in ρΛ = const and for the second component
reads as

dρ = −3(ρ + p)
da

a
, (3)

where a denotes the scale factor of the universe.
Although the preceding equations of this section describe a

simple cosmological model with interesting dynamical regimes, as
it will be shown in the following section, it is clear that in Eq. (2)
lies the nonstandard content of this model which requires physical
motivation. This equation of state can be described as an inhomo-
geneous equation of state in the framework of Ref. [8] (the same
authors consider very similar EOS in a different context). An inter-
esting example where an inhomogeneous dark energy EOS is rele-
vant in the structure formation process is given in [9]. Our primary
aim is to demonstrate a mechanism of this model which allows a
universe with a large |Λ| to end up in a de Sitter regime with
a small positive Λeff. An important issue of a more fundamen-
tal basis leading to (2) is left for future work. Still, an illustrative
example of a possible realization of the relaxation mechanism in
terms of f (R) gravity is given in Section 4. In the remainder of this
section we outline two physical frameworks [8] which give motiva-
tion for the inhomogeneous equation of state of the type (2). It is
important to stress that our approach in the study of the model is
mainly phenomenological. We primarily focus on the mechanism
of the CC relaxation whereas the model studied in this Letter is
mainly considered as a framework in which the said mechanism
could be studied.

The form of Eq. (2) is intentionally chosen to emphasize similar-
ity with bulk viscosity. Indeed, the identification ζ = ζ0 Hα brings
(2) in the form p = wρ − 3Hζ which is the standard form for the
bulk viscosity effects of imperfect cosmological fluid in FRW uni-
verse [10,11]. However, it should be noted that the dependence of
ζ on H , which is not a state variable of the fluid, does not corre-
spond to standard bulk viscosity. For the value α = 0 we recover
the bulk viscous imperfect fluid with the constant coefficient ζ .
Therefore, we are motivated by the bulk viscosity, we consider
its generalization and then proceed phenomenologically. Here it
would be preferable to call the inhomogeneous term the nonlinear
(bulk) viscosity [12]. Therefore, a possible identification of the sec-
ond component might be as an imperfect cosmological fluid with
nonlinear viscosity having a power-law dependence on the Hubble
parameter H .

An alternative view is to interpret (2) as an inhomogeneous
equation of state coming from modified gravity or braneworld
models (see appendix in [8]). The considerations given in Section 4
lend support to this interpretation.

In the following section we focus on the dynamical regimes of
the system of equations (1), (2) and (3) and the related phenomena
including the possibility of the relaxation of a large cosmological
constant (large in terms if its absolute value).

3. The model dynamics

The model defined in the preceding section is now analyzed
in detail. Combining (1) and (2) with (3) we obtain a dynamical
equation for the Hubble parameter

dH2 + 3(1 + w)
da

a

(
H2 − 8πGρΛ

3
− 8πGζ0

1 + w

(
H2)(α+1)/2

)
= 0. (4)

The analysis of this equation is further simplified by the introduc-
tion of the following notation:

h =
(

H

H X

)2

, s = a

aX
, λ = 8πGρΛ

3H2
X

,

ξ = 8πGζ0 Hα−1
X

1 + w
. (5)

Here H X denotes the value of the Hubble parameter at, in prin-
ciple arbitrary, value of the scale factor aX . Let us further stress
that although we assume ζ0 > 0, the parameter ξ may take val-
ues of both signs if we also allow the values w < −1. Applying the
described change of notation, Eq. (4) acquires the form

s
dh

ds
+ 3(1 + w)

(
h − λ − ξh

α+1
2

) = 0, (6)

with the initial condition h(1) = 1.
The inspection of Eq. (6) reveals that the value of the parameter

α may significantly influence the type of dynamics of the Hub-
ble parameter. The values α = −1 and α = 1 are specific points at
which we expect the change of dynamical behavior. Therefore we
analyze five characteristic intervals/points for α: (−∞,−1), −1,
(−1,1), 1 and (1,∞). For each of the intervals/points we make an
analytical treatment at one value of the parameter α and, when
necessary, support it with numerical calculations.

3.1. α < −1: The relaxation mechanism for a large cosmological
constant

The analysis of the interval α < −1 reveals a dynamical mecha-
nism for the relaxation of a large cosmological constant to a much
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smaller effective CC value. The contents of this subsection com-
prise the main results of the present Letter. We start the analysis
of the Hubble dynamics with an analytical treatment for a repre-
sentative value α = −3. Eq. (6) now becomes

h dh

h2 − λh − ξ
= −3(1 + w)

ds

s
. (7)

The integration of the left-hand side of Eq. (7) is determined by
the zeros of its denominator which we denote by h∗1,2, i.e. h2 −
λh − ξ = (h − h∗1)(h − h∗2). Their specific values are

h∗1 = 1

2

(
λ +

√
λ2 + 4ξ

)
, (8)

h∗2 = 1

2

(
λ −

√
λ2 + 4ξ

)
. (9)

Generally we have h∗1 − h∗2 > 0. The solution of (7) is of the form(
h − h∗1

1 − h∗1

)A1(h − h∗2

1 − h∗2

)A2

= s−3(1+w), (10)

where A1 = h∗1/(h∗1 − h∗2) and A2 = −h∗2/(h∗1 − h∗2). Let us fur-
ther study separately cases of positive and negative values of the
parameter ξ .

For w > −1 the value of the parameter ξ is positive. In this case
we have h∗1 > 0 and h∗2 < 0 which leads to A1 > 0 and A2 > 0.
Eq. (10) readily provides information on the asymptotic behavior of
the parameter h. Namely, for small values of the scale factor, s → 0
the function h diverges

h ∼ (1 − h∗1)
A1 (1 − h∗2)

A2 s−3(1+w). (11)

For large values of the scale factor the function h tends to a con-
stant value

lim
s→∞ h = h∗1. (12)

As stated in (12), the parameter h (equivalently the Hubble pa-
rameter squared H2) asymptotically tends to a constant value at
large values of the scale factor. Let us consider the case when λ

is negative and very large in absolute value compared to
√

ξ , or,
more precisely, λ2 � 4ξ . The square root in the expression (8) can
now be expanded and we obtain

h∗1 	 ξ

|λ| , (13)

or, equivalently,

H2∗1 = 24πGζ0

(1 + w)|Λ| ≡ 3ζ0

(1 + w)|ρΛ| . (14)

For ρΛ very large in absolute value and negative, the universe
asymptotically tends to a small value of H2 which can be inter-
preted in a straightforward manner as a small value of the effective
cosmological constant. It is sufficient that Λ is negative and large
in absolute value and that ξ is sufficiently small. The model under
study in this Letter, therefore, provides a dynamical mechanism for
the relaxation of a negative Λ with a very large absolute value. The
dynamical mechanism does not incorporate fine-tuning of model
parameters and it can be considered as a solution of the cosmo-
logical constant problem in this model for a negative large Λ.

Although the choice α = −3 gives an analytically tractable ex-
ample of the relaxation of a negative Λ, we further support the
findings of the preceding paragraph with numerical solutions of
Eq. (6) for other values in the interval α < −1.

In Fig. 1 we present the evolution of the variable h = H2/H2
X as

a function of the scale factor for different values of the exponent α.
The most striking feature of the dynamics of h for all studied val-
ues of α, is the abrupt transition between two asymptotic regimes.
This feature could not be properly addressed from the study of the
Fig. 1. The evolution of h = H2/H2
X as a function of the scale factor for different

values of the exponent α. The value of α strongly influences the asymptotic value
of h at large a, whereas the behavior at small a is not affected by α. The values of
the parameters used are λ = −1000, ξ = 0.01 and w = −0.9.

Fig. 2. The dynamics of h = H2/H2
X as a function of the scale factor for different

values of the CC parameter λ. The value of λ affects the behavior at small values
of a, large values of a and the onset of the transition between two regimes. The
values of the parameters used are α = −3, ξ = 0.01 and w = −0.9.

asymptotic regimes alone, but it requires a numerical treatment to
be fully appreciated. The value of exponent α does not affect the
asymptotic evolution at small a, but it crucially affects the large a
asymptotic behavior.

Fig. 2 depicts the dependence of the dynamics of h on the CC
parameter λ. It is evident that the value of λ affects both asymp-
totic regimes (at large and small scale factor values) as well as the
onset of the abrupt transition between two regimes.

In Fig. 3 we study the dependence of the behavior of h on the
parameter ξ . From the figure it is clear that the dynamics of h
at small values of scale factor does not depend on ξ , but at large
values of a the asymptotic value of h is strongly influenced by the
value of ξ .

Finally, in Fig. 4 we present the dynamics of h as a function of
the scale factor a for various values of the parameter w . The plots
in the figure reveal that the behavior at small a is strongly affected
by w , whereas the asymptotic behavior at large scale factor values
does not depend on w .

Next we return to our analytically tractable case of α = −3, but
this time we consider a positive value of the cosmological con-
stant λ. We also choose w < −1 so that the parameter ξ becomes
negative. In this setting we have h∗1 > 0 and h∗2 > 0 which re-
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Fig. 3. The dependence of h as a function of the scale factor on the parameter ξ .
It is evident that the behavior at small values of a does not depend on ξ , but the
asymptotic dynamics at large a is strongly affected by the value of the parameter ξ .
The values of the parameters used are λ = −1000, α = −3 and w = −0.9.

Fig. 4. The evolution of h as a function of scale factor for different values of the
parameter w . The dynamics at small a is clearly affected by the value of w and
the dynamics at large values of a is insensitive to parameter w . The values of the
parameters used are λ = −1000, α = −3 and ξ = 0.01.

sults in A1 > 0 and A2 < 0. The asymptotic behavior of the Hubble
parameter now obeys the following laws:

lim
s→0

h = h∗1 (15)

and

lim
s→∞ h = h∗2. (16)

We see that for large values of the scale factor the scaled Hubble
parameter tends to a constant value h∗2. For very large values of λ

(such that λ2 � −4ξ ) the universe asymptotically acquires a small
value

h∗2 	 − ξ

λ
, (17)

or, equivalently,

H2∗2 = − 24πGζ0

(1 + w)Λ
≡ − 3ζ0

(1 + w)ρΛ

. (18)

For a very large value ρΛ and a small value of |ξ | the asymptotic
value (18) is very small. This small value of H2 can be directly in-
terpreted as a small effective positive cosmological constant. As for
the case of negative λ, we have at hand a dynamical mechanism
Fig. 5. The dependence of h on scale factor for different values of the exponent α.
The graphs reveal that the behavior of h at small values of a is insensitive to the
value of α, whereas at large values of a there is a strong dependence of the asymp-
totic value of h on α. The values of the other model parameters used are λ = 1000,
ξ = −0.01 and w = −1.1.

Fig. 6. The dynamics of h as a function of the scale factor for various values of the
parameter λ. The CC parameter λ affects the behavior at small and large values of
the scale factor as well as the onset of the abrupt transition between two asymp-
totic regimes. The values of the other parameters used are α = −3, ξ = −0.01 and
w = −1.1.

of the cosmological constant relaxation which does not incorpo-
rate fine-tuning of model parameters. Therefore, within the model
studied in this Letter, we have presented a solution of the CC prob-
lem for a positive cosmological constant. It is important to notice
that ρ in this case must be negative. This fact implies that the
component with an energy density ρ is an effective description of
some other dynamical mechanism, possibly modified gravity.

As for the case of negative CC, we further support the analytical
treatment for α = −3 with numerical analyses for other values in
the interval α < −1 and other model parameters.

In Fig. 5 the dependence of h on the scale factor for differ-
ent values of the exponent α is depicted. The behavior of h for
small values of the scale factor shows no dependence on the ex-
ponent α. At large values of the scale factor the asymptotic value
of h is strongly influenced by the value of α. As in the case with
the negative CC with a large absolute value, here the transition be-
tween dynamical regimes at small and large values of a is abrupt.
Another significant difference compared to the case of negative CC
is that both at small and large values of the scale factor the expan-
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Fig. 7. The dependence of h on the scale factor for various values of the parame-
ter ξ . The dynamics at small a is not influenced by ξ , but at large a the asymptotic
behavior is sensitive to the value of ξ . The values of the parameters used in this
figure are α = −3, λ = 1000 and w = −1.1.

Fig. 8. The dependence of h as a function of a for different values of the parame-
ter w . This parameter affects the form of transition between asymptotic values of h
which are insensitive to w . The values of the parameters used are α = −3, λ = 1000
and ξ = −0.01.

sion is of de Sitter type (for negative CC we have a de Sitter-like
expansion only at large values of the scale factor).

The dependence of h on the scale factor for various values of
the CC parameter λ is given in Fig. 6. The value of λ affects the
dynamics at small and large values of a and the onset of the abrupt
transition between two regimes.

The sensitivity of the dynamics of h as a function of a on the
parameter ξ is presented in Fig. 7. The dynamics at small values of
a is not affected by the value of ξ , but at large values of the scale
factor the asymptotic value of h depends strongly on ξ .

Finally, in Fig. 8 the dependence of h on the scale factor for
several values of w is depicted. The plots in the figure reveal that
the value of w does not affect the asymptotic values of h at small
and large values of the scale factor, but they do affect the transi-
tion between these asymptotic values. For all studied values of w
this transition remains quite abrupt.

3.2. α = −1

The solution of (6) for α = −1 can be expressed in a familiar
form

h = λ + ξ + (1 − λ − ξ)s−3(1+w). (19)
This expression describes the universe with the cosmological con-
stant energy density ∼ 3

8πG (λ+ξ) and the matter component with
the scaling ∼ a−3(1+w) . Clearly, for w = 0 our model fully mimics
the �CDM model. If we wish to have a small effective value of
the cosmological constant ∼ λ + ξ , for a large value of λ we need
to have a cancellation of λ and ξ which necessarily introduces
fine-tuning. Therefore, for α = −1 we do not have an efficient
mechanism for the relaxation of the cosmological constant.

3.3. −1 < α < 1

In this interval for the value of α we consider the case α = 0.
Eq. (6) now reads

y dy

y2 − ξ y − λ
= −3

2
(1 + w)

ds

s
, (20)

where y = h1/2. The solution of this equation can be cast in the
form(

y − y∗1

1 − y∗1

)B1( y − y∗2

1 − y∗2

)B2

= s− 3
2 (1+w), (21)

where

y∗1 = 1

2

(
ξ +

√
ξ2 + 4λ

)
, (22)

y∗2 = 1

2

(
ξ −

√
ξ2 + 4λ

)
, (23)

with B1 = y∗1/(y∗1 − y∗2) and B2 = −y∗2/(y∗1 − y∗2). We again
study two interesting cases

1. We consider w < −1 where we have ξ < 0. For the value
of the cosmological constant λ let us take a positive value
which is sufficiently small, so that ξ2 � 4λ. Now we have
y∗1 > 0, y∗2 < 0 with y∗1 − y∗2 > 0 and B1,2 > 0. The asymp-
totic behavior of the system is given by lims→0 y = y∗1 and
lims→∞ y = ∞ with y ∼ (1 − y∗1)

B1 (1 − y∗2)
B2 s−3(1+w)/2. At

large values of the scale factor we do not have a de Sitter
regime although there is one at small values of a.

2. Another interesting regime is obtained for w > −1 which im-
plies ξ > 0. We study the case of a negative λ which is again
sufficiently small in absolute value i.e. ξ2 � 4|λ|. Then we
have y∗1 > 0, y∗2 > 0 with y∗1 − y∗2 > 0 and B1 > 0, B2 < 0.
The asymptotic behavior of the system is lims→0 y = y∗2 and
lims→∞ y = y∗1. From (22) it is easy to see that y∗2 	 −λ/ξ

and y∗1 	 ξ . For a large value |λ|, ξ2 has to be even larger
and therefore at large values of the scale factor we have
H2 ∼ y2∗2 ∼ ξ2 what does not correspond to a small value of
effective CC.

3.4. α = 1

For α = 1 and ξ �= 1 the solution of Eq. (6) acquires the form

h = λ

1 − ξ
+

(
1 − λ

1 − ξ

)
s−3(1+w)(1−ξ). (24)

There are two cases of interest for the CC problem:

1. For w < −1 we have ξ < 0. Let us further consider the case
λ > 0 with λ/(1 − ξ) � 1. Under these conditions the asymp-
totic behavior of h is the following: at small values of the
scale factor we have lims→0 h = λ/(1 − ξ), whereas for large
values of the scale factor we have lims→∞ h = ∞ with h ∼
(1 − λ/(1 − ξ))s−3(1+w)(1−ξ) . In this case there is no asymp-
totic de Sitter solution for large values of a.
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2. If w > −1 then ξ > 0. Let us take 1 − ξ < 0 with ξ � 1 and
λ/(1 − ξ) � 1. Then we again have lims→0 h = λ/(1 − ξ) and
lims→∞ h = ∞ with h ∼ (1 − λ/(1 − ξ))s−3(1+w)(1−ξ) . Again
there is no realization of the scenario of interest.

For α = 1 and ξ = 1 the solution for the dynamics of h becomes

h = 1 + 3λ(1 + w) ln s. (25)

This solution does not asymptotically lead to de Sitter space at
large scale factor values.

3.5. α > 1

As a representative and analytically tractable case in this inter-
val of the exponent α we study the dynamics of h for the value
α = 3. The dynamical equation (6) can now be written

dh

h2 − h
ξ

+ λ
ξ

= 3(1 + w)ξ
ds

s
. (26)

Introducing the notation h2 − h/ξ + λ/ξ = (h − h∗1)(h − h∗2) we
have

h∗1 = 1

2

(
1

ξ
+

√
1

ξ2
− 4λ

ξ

)
, (27)

h∗1 = 1

2

(
1

ξ
−

√
1

ξ2
− 4λ

ξ

)
, (28)

which leads to the following solution:

h − h∗1

h − h∗2
= 1 − h∗1

1 − h∗2
s3(1+w)ξ(h∗1−h∗2). (29)

Let us now restrict ourselves to the parameters satisfying 1 −
4ξλ > 0 as a prerequisite for having real asymptotic values for h.
Again we consider two cases:

1. For w > −1 which implies ξ > 0 the condition of real-
ity of asymptotic values of h leads to the requirement λ <

1/(4ξ). We have h∗1 − h∗2 > 0, h∗1 > 0 whereas h∗2 > 0 for
0 < λ < 1/(4ξ) and h∗2 < 0 for λ < 0. For λ > 0 we have
lims→0 h = h∗1 and lims→∞ h = h∗2. For λ � 1/(4ξ) we obtain
h∗1 	 1/ξ and h∗2 	 λ. This scenario is not fully satisfactory
since λ itself is the effective CC at large scale factor values
and, therefore, λ cannot have its natural QFT value. For λ < 0
there is no de Sitter behavior at large values of the scale factor.

2. In the case when w < −1 we have ξ < 0. The condition of re-
ality of asymptotic values results in a requirement λ > 1/(4ξ).
We further have h∗1 − h∗2 > 0, h∗2 < 0 and h∗1 > 0 for λ > 0
whereas h∗1 < 0 for 1/(4ξ) < λ < 0. The only case at which
we could have a de Sitter behavior at large values of the
scale factor is for λ > 0. However, the asymptotic behavior is
lims→0 h = h∗1 and at large a there is no de Sitter behavior.

4. The general conditions for a small effective CC and a hint from
modified gravity

Many results of this Letter, and especially the main results pre-
sented in Section 3.1, stem from the analysis of the asymptotic
behavior of the dynamics of h. The solutions for the function h(s)
which tend to a small positive constant value at large values of the
scale factor have been interpreted as solutions of the cosmological
constant in our approach. In this Letter we use a specific form of
the inhomogeneous EOS for the component ρ with ζ(H) = ζ0 Hα .
A natural and important following step would be to consider a
broader class of functional behavior for ζ(H). In general, the dy-
namics of the Hubble function would then be governed by the
equation

s
dh

ds
+ 3(1 + w)

(
h − λ − ξ ′h1/2ζ(h)

) = 0, (30)

where ξ ′ is a constant. A prerequisite for a solution of the CC prob-
lem for the function ζ(H) is the existence of a small and positive
root h∗ � |λ| of the equation

h − λ − ξ ′h1/2ζ(h) = 0. (31)

An additional condition is that the function h asymptotes to h∗ at
large values of the scale factor.

As already stated in Section 2 and elaborated in [8], a theory
behind the inhomogeneous EOS of the type (2) could be some for-
mulation of modified gravity. In the remainder of this section we
perform an analysis of a possible asymptotic behavior in a model
of f (R) modified gravity and discuss its implications for the solu-
tion of the CC problem. For a review of the f (R) modified gravity
see [13] and [14].

We consider a f (R) theory with a arbitrarily large cosmological
constant energy density. In a universe with the FRW metric the
dynamics of H is given by the equation [14]

3 f ′(R)H2 − 1

2

(
R f ′(R) − f (R)

) + 3H Ṙ f ′′(R) = 8πGρΛ ≡ Λ, (32)

where prime denotes the differentiation of f (R) with respect to
its argument and R = 12H2 + 6Ḣ . Next we choose

f (R) = R + bR2 − μ2(n+1)

Rn
, (33)

which satisfies the requirements of stability and positivity of the
effective gravitational coupling [14,15]. Here b > 0, μ and n are
the parameters of the model. In general in this model, as well as in
many other models of f (R) gravity, there is not flat solution (with
R = 0). Furthermore, modified gravity theories can be subjected to
stringent local gravity tests, e.g. measurements in the Solar system.
We assume that the values of parameters n, b and μ used here
are consistent with the bounds from local gravity tests. Next we
focus on the asymptotic behavior of H and search for constant H
solutions of Eq. (32). We neglect all time derivatives and (32) can
now be written as

3H2 − Λ − 1

2

μ2(n+1)

(12H2)n

(
1 + n

2

)
= 0. (34)

Finally, for illustration purposes, we choose n = 1 and a possible
asymptotic value of H is determined by the equation

H4 − Λ

3
H2 − μ4

48
= 0, (35)

the solutions of which are

H2∗1,2 = 1

2

(
Λ

3
±

√(
Λ

3

)2

+ μ4

12

)
. (36)

For a negative Λ with a large absolute value (so that 3μ4/

4Λ2 � 1) the ‘+’ solution becomes

H2∗1 	 1

16

μ4

|Λ| . (37)

The comparison with the results of Section 3.1 shows a striking
similarity with our model containing a component with inhomoge-
neous EOS. In the modified gravity model (33) there is an asymp-
totic de Sitter behavior corresponding to a small Λeff. This finding
strongly supports a conjecture that the relaxation of a large |Λ|
is also feasible directly in modified gravity theories. The details of
the relaxation mechanism in f (R) modified gravity theories will
be elaborated elsewhere [16].
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5. Discussion

The preceding sections define our model, explain its inherent
mechanism for the solution of the cosmological constant problem
and outline its potential connection with the modified gravity the-
ories. In this section we further discuss the aspects of the model
which are of relevance for cosmological issues.

There are at least two sources of motivation for the definition of
component ρ in terms of an inhomogeneous EOS. The first one is
nonlinear (bulk) viscosity and the second one is modified gravity.
Although both of these possibilities contain many specific variants,
in this Letter the focus has been on the approach valid for both of
them.

As described in Section 3.1, in suitable parameter regimes it is
possible to have the solution of the CC problem for both positive
and negative CC of large absolute value. Still, for negative Λ the
energy density ρ remains positive throughout the evolution of the
universe, whereas for positive Λ the energy density ρ must be
negative. This is a strong signal that, at least for positive Λ, we
should consider the component ρ as an effective description of a
more fundamental dynamics, possibly coming from the modifica-
tions of gravity.

In our treatment we assumed that ζ0 > 0 in order to stay
aligned with a possible interpretation that inhomogeneous term
in (2) might come from some sort of nonlinear (bulk) viscosity.
This assumption immediately relates the signs of parameters 1+ w
and ξ . With this approximation, the relaxation of a large positive
CC requires w < −1, i.e. the parameter of the EOS should be of
the phantom type [17]. Since in modified gravity models it is pos-
sible to obtain the phantom-like effective dark energy [18], the
interpretation of the component ρ as an effective description of
the modification of gravity gains further support. The requirement
ζ0 > 0 allows us to simultaneously treat both sources of motivation
for the inhomogeneous EOS of the component ρ . The relaxation of
this requirement, i.e. allowing for negative values of ζ0 opens up
space for scenarios that might be realized in specific theories of
modified gravity. The study of models with negative ζ0 is an im-
portant challenge of future work.

Quantum field theory provides various positive and negative
contributions to Λ. Negative contributions come from the zero
point energy of the fermionic degrees of freedom and some con-
densates. On the other hand, positive contributions come from the
zero point energy of the bosonic degrees of freedom. In the analy-
sis of the cosmological constant problem the size and interplay of
positive and negative contributions is of considerable importance
and so is the sign of the resulting Λ. An important conclusion of
the present Letter is that for any sign of Λ in the model with the
inhomogeneous EOS (2) we can end up in a universe with a small
and positive effective cosmological constant. Whereas our model
provides mechanism for the relaxation of both positive and neg-
ative CC, the interpretation of the component ρ might differ. The
present analysis shows that for the relaxation of a negative Λ with
a large absolute value ρ could equally play a role of a real cosmic
fluid with nonlinear viscosity or be an effective description of the
modified gravity effects. In the case of large positive Λ the effec-
tive nature of ρ seems more plausible.

The analysis of Section 3.1 further reveals that for both signs of
the cosmological constant we can have two phases of accelerated
expansion connected with an abrupt transition between them1. It
is important to stress that these two phases of the accelerated ex-
pansion correspond to very different energy densities. It is an open
question for future research whether these two phases of accel-

1 For a negative Λ we need to have w < −1/3 to have an accelerated expansion
at small values of the scale factor.
erated expansion and the abrupt transition between them could
be useful in the description of the inflationary dynamics and the
graceful exit.

From the analysis of the Section 3.1 we can see that the asymp-
totic value of the Hubble function H depends on parameters ξ and
λ, i.e. on their ratio. Let us discuss our expectations of the size of
these parameters. In the remainder of this paragraph we use the
terms “large” and “small” loosely for illustration purposes. For the
parameter ξ we do not expect to be “large”. Namely, it describes
either effects of nonlinear viscosity or deviations from general rel-
ativity. A natural size of ξ could be described as “small”. On the
other hand, from QFT we expect the absolute value of Λ to be
“large”. When ξ is “small” and λ is “large”, the resulting value
of H2 is very small especially compared to |Λ|/3. Therefore, for
proper values of α and for the parameters ξ and λ taking their
“natural” values we have a small asymptotic value of H2. Within
our model this solves the cosmological constant problem for any
sign of Λ.

One of the most important issues towards a complete cosmo-
logical model which would incorporate the mechanism of the CC
relaxation is the addition of matter and radiation components. The
cosmological model should reproduce the eras of radiation domi-
nation and matter domination to be consistent with the available
observational data. A dedicated analysis is required to account for
details of the model with matter and radiation components. It
will be particularly interesting to see how the addition of mat-
ter and radiation components interacts with the abrupt transition
characteristic for the CC relaxation mechanism. The cosmic coin-
cidence problem could be possibly addressed only in such a full
cosmological model. Although the full treatment is needed for the
understanding of the entire dynamics of the full model, it is possi-
ble to argue that the addition of matter and radiation components
will not affect the asymptotic behavior of the model and therefore
the very CC relaxation mechanism. Namely, the energy densities
of matter and radiation components decrease quickly with the ex-
pansion and at a sufficiently large scale factor value they become
negligible. Then we are effectively back to the two component
model presented in this Letter and asymptotically we have the CC
relaxation.

Finally, the focus of this Letter is on the verification of the very
effect of the relaxation of the large CC. There are many important
questions that need to be addressed before our model with the in-
homogeneous EOS could become a complete cosmological model.
As already stated, it is important to learn if and how the behavior
of the model changes when other cosmological components like
radiation or nonrelativistic matter are added. Another question of
considerable importance is which types of the inhomogeneous EOS
apart from the one studied in this Letter are capable of the re-
laxation of the large CC. The connection with the modified gravity
theories seems especially worth pursuing. The growth and stability
to perturbations is a relevant question too and so is the realization
of the relaxation mechanism in astrophysical gravitationally bound
systems. These questions are left for future work.

6. Summary and conclusions

The cosmological constant problem is a spot in theoretical
physics landscape where the inadequacy of standard theoreti-
cal approaches is evident. An unconventional new ingredient is
clearly called for. It is unclear, however, how big a deviation
from the standard principles this new ingredient should repre-
sent. In this Letter we have presented a simple approach based
on a cosmological component with an inhomogeneous equation
of state. The new ingredient is an inhomogeneous term in (2)
which can be interpreted as nonlinear viscosity or the effect of
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modified gravity. In a particular parameter regime, which by itself
requires no specific fine-tuning, the universe with a cosmologi-
cal constant of any sign and an arbitrarily large absolute value
asymptotically ends up in de Sitter regime with a small value of
the effective cosmological constant. This result provides a solu-
tion of the CC problem without the need of fine-tuning. A pre-
liminary analysis of a f (R) modified gravity theory lends sup-
port to the claim that the mechanism of the CC relaxation stud-
ied for a model with EOS (2) also functions for modified gravity
theories. The main results of this Letter exemplify a scenario in
which a large Λ coming naturally from QFT calculations coexists
with a small asymptotic value of the effective cosmological con-
stant. The said results further open a possibility that the measured
value of the cosmological constant is not the value coming from
QFT, but it is determined by the QFT value. Apart from the in-
trinsic value of these results, they also allow us a bit different
perspective on cosmological parameter puzzles: maybe instead of
devising complex nonstandard ways of understanding the cosmo-
logical parameter values we should try to understand how the
values of these cosmological parameters influence simple non-
standard dynamics. The relaxation mechanism for the cosmolog-
ical constant presented in this Letter hopefully follows the latter
route.
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[16] H. Štefančić, in preparation.
[17] R.R. Caldwell, Phys. Lett. B 545 (2002) 23.
[18] F. Briscese, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Lett. B 646 (2007) 105;

S. Jhingan, S. Nojiri, S.D. Odintsov, M. Sami, I. Thongkool, S. Zerbini, Phys. Lett.
B 663 (2008) 424.


	The solution of the cosmological constant problem from the inhomogeneous equation of state - a hint from modified gravity?
	Introduction
	The model set-up
	The model dynamics
	alpha< -1: The relaxation mechanism for a large cosmological constant
	alpha= -1
	-1 < alpha< 1
	alpha= 1
	alpha> 1

	The general conditions for a small effective CC and a hint from modified gravity
	Discussion
	Summary and conclusions
	Acknowledgements
	References


