Eigenvalue location for nonnegative and Z-matrices

Shaun M. Fallat ${ }^{\mathrm{a}, *, 1}$, Charles R. Johnson ${ }^{\mathrm{a}, 2,3}$, Ronald L. Smith ${ }^{\text {b,4,5 }}$, P. van den Driessche ${ }^{\mathrm{c}, 6,7}$
${ }^{\text {a }}$ Department of Mathematics, College of William and Mary, Williamsburg, VA 23185, USA
${ }^{\text {b }}$ Department of Mathematics, The University of Tennessee at Chattanooga. Chattanooga, TN 37403-2504, USA
${ }^{\text {c }}$ Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3P4

Received 27 December 1996; accepted 10 January 1997
Submitted by L. Elsner

Abstract

Let L_{0}^{k} denote the class of $n \times n Z$-matrices $A=t l-B$ with $B \geqslant 0$ and $\rho_{k}(B) \leqslant t$ $<\rho_{k+1}(B)$, where $\rho_{k}(B)$ denotes the maximum spectral radius of $k \times k$ principal submatrices of B. Bounds are determined on the number of eigenvalues with positive real parts for $A \in L_{0}^{k}$, where k satisfies, $\lfloor n / 2\rfloor \leqslant k \leqslant n-1$. For these classes, when $k=n-1$ and $n-2$, wedges are identified that contain only the unique negative eigenvalue of A. These results lead to new eigenvalue location regions for nonnegative matrices. © 1998 Elsevier Science Inc. All rights reserved.

Keywords: Eigenvalue location; Fisher's inequality; M-matrices; Nonnegative matrices

[^0]
1. Introduction

Let B be an entry-wise nonnegative $n \times n$ matrix (denoted $B \geqslant 0$), and, for $k=1,2, \ldots, n$, let $\rho_{k}(B)$ denote the maximum spectral radius of the $k \times k$ principal submatrices of B. For completeness, define $\rho_{0}(B)=-\infty$ and $\rho_{n+1}(B)=\infty$. Observe that $\rho_{n}(B)$ equals $\rho(B)$, the spectral radius of B. For $k=0,1, \ldots, n$, let $L_{0}^{n \cdot k}\left(L^{n, k}\right)$ denote the class of Z-matrices $A=t I-B$, in which $B \geqslant 0$ is an $n \times n$ matrix, and $\rho_{k}(B) \leqslant t<\rho_{k+1}(B) \quad\left(\rho_{k}(B)<t<\rho_{k+1}(B)\right)$. Throughout we consider matrices of order n, thus we use the notation L_{0}^{k} $\left(L^{k}\right)$ for $L_{0}^{n, k}\left(L^{n, k}\right)$. The classes $L_{0}^{0}, L_{0}^{1}, \ldots, L_{0}^{n}$ were introduced in [1] (denoted by $L_{0}, L_{1}, \ldots, L_{n}$), and observed to form a partition of the class of $n \times n Z$-matrices. Note that L^{n} is the class of nonsingular M-matrices, L_{0}^{n} is the class of (singular and nonsingular) M-matrices, see [2], ch. 6 and that L_{0}^{n-1} (denoted by N_{0}) and L_{0}^{n-2} were first studied in [3]. L_{0}^{n-2} was denoted by F_{0} in [4] and further studied in $[5,6]$. Note that if $A \in L_{0}^{n-1}$, then A is irreducible, and nonsingular (see [3]).

From the definitions it follows that $A \in L_{0}^{k}\left(A \in L^{k}\right)$ if and only if A is a Z matrix and each $k \times k$ principal submatrix of A is an M-matrix (nonsingular M-matrix), but there is at least one $(k+1)-\mathrm{by}-(k+1)$ principal submatrix that is not an M-matrix; see [1] Theorem 1.3, for the L_{0}^{k} case. In [7] nonsingular matrices in L_{0}^{k} were characterized in terms of the principal minors of their inverses.

We are interested in the spectrum of $A \in L_{0}^{k}$, and use the following notation. The characteristic polynomial of an $n-b y-n$ matrix A is $p_{A}(z)=\operatorname{det}(z I-A)$, and

$$
\begin{equation*}
p_{A}(z)=z^{n}-c_{1} z^{n-1}+c_{2} z^{n-2}-c_{3} z^{n-3}+\cdots+(-1)^{n} c_{n} \tag{1}
\end{equation*}
$$

where c_{k} is the sum of the $k \times k$ principal minors of A. In particular, $c_{1}=\operatorname{tr} A$ and $c_{n}=\operatorname{det} A$. The location of the eigenvalues of A can be specified by the inertia of A, which is the triple $i_{+}(A), i_{0}(A), i_{-}(A)$, specifying the number of eigenvalues with positive, zero, negative, real parts, respectively. Thus $i_{+}(A)+i_{0}(A)$ specifies the number of eigenvalues (counting multiplicities) in the closed right half-plane. For example, if $A \in L_{0}^{n}$, then $i_{+}(A)+i_{0}(A)=n$, since an M-matrix is positive semi-stable. In Section 3, for $A \in L_{0}^{k}\left(A \in L^{k}\right)$, where $\lfloor n / 2\rfloor \leqslant k \leqslant n-1$, we determine bounds on $i_{+}(A)+i_{0}(A)\left(i_{+}(A)\right)$. We also verify Conjecture 2.3 for $A \in L_{0}^{n-1}$, when $2 \leqslant n \leqslant 6$. In Section 4 , for $A \in L_{0}^{n-1}$ and $A \in L_{0}^{n-2}$ we determine a wedge containing only one eigenvalue of A, namely the negative eigenvalue.

2. Preliminary results

We begin with the following definition.

Definition 2.1. For $n \geqslant 2$, let

$$
g(n)=\left\{\begin{array}{cl}
n / 2+1 & n \equiv 0(\bmod 4) \\
n / 2-1 / 2 & n \equiv 1(\bmod 4) \\
n / 2 & n \equiv 2(\bmod 4) \\
n / 2+1 / 2 & n \equiv 3(\bmod 4)
\end{array}\right.
$$

Example 2.2. Let $A=-P_{n}$, where P_{n} is the basic $n \times n$ circulant (that is, the circulant with first row $(0,1,0, \ldots, 0)$). Then $A \in L_{0}^{n-1}$, where $t=0=\rho_{n-1}\left(P_{n}\right)$. It is readily verified that $i_{+}(A)=g(n)$ if $n \not \equiv 0(\bmod 4)$ and $i_{+}(A)+i_{0}(A)=g(n)$ if $n \equiv 0(\bmod 4)$, since the eigenvalues of P_{n} have real parts $\cos (2 \pi q / n)$ for $q=0,1, \ldots, n-1$.

Motivated by this example, by the fact that the Cauchy interlacing inequalities imply that $i_{+}(A)=n-1$ for symmetric $A \in L_{0}^{n-1}$, and by numerical results indicating that if $A \in L_{0}^{n-1}$, it is usually the case that $i_{+}(A)=n-1$, we make the following conjectures.

Conjecture 2.3. If $n \geqslant 2$ and $A \in L_{0}^{n-1}$ in which $n \not \equiv 0(\bmod 4)$ or $A \in L^{n-1}$ in which $n \equiv 0(\bmod 4)$, then

$$
n-1 \geqslant i_{+}(A) \geqslant g(n)
$$

It would follow from the above conjecture that if $A \in L_{0}^{n-1}$ in which $n \equiv 0(\bmod 4)$, then

$$
n-1 \geqslant i_{+}(A)+i_{0}(A) \geqslant g(n)
$$

From the definition of L_{0}^{n-1}, the above conjectures are equivalent to the following conjecture concerning the location of eigenvalues of nonnegative matrices.

Conjecture 2.4. Let $B \geqslant 0$ be an $n \times n$ matrix with $n \geqslant 2$ and let $S=\{\lambda: \lambda$ is an eigenvalue of B with $\left.\operatorname{Re} \lambda \leqslant \rho_{n-1}(B)\right\}$. Then

$$
n-1 \geqslant|S| \geqslant g(n)
$$

In considering these conjectures in Section 3, we need the following inequality on the coefficients of the characteristic polynomial of a Z-matrix.

Lemma 2.5. Let i, j be positive integers satisfying $2 \leqslant i+j \leqslant k \leqslant n$, and let $A \in L_{0}^{k}$ be an $n \times n$ matrix with characteristic polynomial (1). Then

$$
\begin{equation*}
c_{i+j} \leqslant c_{i} \cdot c_{j} \tag{2}
\end{equation*}
$$

Moreover, if c_{i+j} is positive, the inequality is strict.

Proof. By the definition of L_{0}^{k} each principal minor of order at most k is nonnegative, hence $c_{p} \geqslant 0$ for $p=1,2, \ldots, k$. Thus if $c_{i+j}=0$, then the inequality holds. Now assume $c_{i+j}>0$. Consider a principal submatrix of A of order $i+j$. As $A \in L_{0}^{k}$, this submatrix is an M-matrix. Without loss of generality (since L_{0}^{k} is invariant under permutation similarity) assume that this submatrix has row and column indices $1,2, \ldots, i+j$, and denote it by $A[1,2, \ldots, i+j]$. By Fischer's inequality (see, for example, [8], p. 117)

$$
\operatorname{det} A[1,2, \ldots, i+j] \leqslant \operatorname{det} A[1,2, \ldots, i] \cdot \operatorname{det} A[i+1, i+2, \ldots, i+j]
$$

Multiply the right-hand side of (2) out. Each summand of c_{i+j} is less than or equal to a distinct product on the right-hand side of (2) by Fischer's inequality. Since there are other positive products on the right-hand side of (2) as well, inequality (2) is strict.

We make use of Routh's scheme (see [9], Theorem 3.3, p. 142, [10], p. 177) in Sections 3 and 4. A brief description of what we need of this method is as follows. For the polynomial $p_{A}(z)$ given by (1), construct the Routh array $\left\{r_{i j}\right\}$ having the first two rows

$$
\begin{align*}
& \left\{r_{01}, r_{02}, r_{03}, \ldots\right\}=\left\{1, c_{2}, c_{4}, \ldots\right\}, \tag{3}\\
& \left\{r_{11}, r_{12}, r_{13}, \ldots\right\}=\left\{-c_{1},-c_{3},-c_{5}, \ldots\right\} \tag{4}
\end{align*}
$$

and i th row defined by

$$
r_{i j}=\frac{-\operatorname{det}\left[\begin{array}{cc}
r_{i-2.1} & r_{i-2 . j-1} \tag{5}\\
r_{i-1.1} & r_{i-1 . j+1}
\end{array}\right]}{r_{i-1.1}},
$$

for $i=2,3, \ldots, n$. Further, the rows of the Routh's Scheme are then filled with zeros. Associated with each row of Routh's array is a polynomial. Write $z=i \omega$, and let

$$
f_{1}(\omega)=\omega^{n}-c_{2} \omega^{n-2}+\cdots \quad \text { and } \quad f_{2}(\omega)=-c_{1} \omega^{n-1}+c_{3} \omega^{n-3}-\cdots
$$

For $j=3,4, \ldots, n+1$, inductively define $f_{j}(\omega)=f_{j-1}(\omega) q_{j-2}(\omega)-f_{j-2}(\omega)$. Thus $-f_{j}(\omega)$ is the remainder upon dividing $f_{j-2}(\omega)$ by $f_{j-1}(\omega)$. In [10], p. 178 it is shown that $f_{j}(\omega)$ is the polynomial associated with the j th row of Routh's array. If the array is regular, i.e., $r_{i 1} \neq 0$ for all i, then $i_{0}(A)=0$ and $i_{+}(A)$ is equal to the number of variations in sign in the sequence of entries in the first column, namely $\left\{r_{01}, r_{11}, r_{21}, \ldots\right\}$. If there is a zero element in the first column, then the scheme (5) cannot be continued; the array is singular, and two types of singularity must be considered. In the type (i) singular case, an entry $r_{p 1}=0$ with $p \geqslant 1$, but there is $q \geqslant 2$ such that $r_{p q} \neq 0$. Then, $i_{0}(A)=0$. Replace $r_{p 1}$ by a parameter ε (assumed small) and continue the array according
to (5). In the type (ii) singular case, a row, say the $(j+1)$ st, consists entirely of zero entries so that $f_{j}(\omega)$, the polynomial associated with the j th row, is the last nonzero polynomial obtained by the Euclidean algorithm. In this case the polynomials $f_{1}(\omega)$ and $f_{2}(\omega)$ associated with the first two rows of Routh's array, respectively, have a nontrivial GCD and, to continue Routh's algorithm, we replace $f_{j+1}(\omega)$ by $f_{j}^{\prime}(\omega)$ (if the roots of $f_{j}^{\prime}(\omega)$ are not simple, it will be necessary to repeat this process, see [10], p. 183). In this case $i_{0}(A)$ may be positive.

The following result, due to Nabben [11], is used in Section 3. We state it here for convenience.

Lemma 2.6 ([11], Theorems 2.8 and 2.10). Let $A \in L_{0}^{k}$ be an $n \times n$ matrix, where $\lfloor n / 2\rfloor \leqslant k \leqslant n-1$. Then A has exactly one negative eigenvalue and $\operatorname{det} A \leqslant 0$.

Moreover, it follows from the proof of Theorem 2.10 in [11] that, if $A \in L^{k}$, then $\operatorname{det} A<0$.

To obtain the wedge results of Section 4, we use the Cauchy index method, see for example [$10,12,13$, which is described as follows. For any fixed angle $\theta \in(0, \pi)$, write $z=r \mathrm{e}^{i \theta)}$ and

$$
\begin{equation*}
p_{A}(z)=p_{A}\left(r \mathrm{e}^{i f}\right)=U(r)+i V(r), \tag{6}
\end{equation*}
$$

where from (1)

$$
\begin{align*}
& U(r)=r^{n} \cos n \theta-c_{1} r^{n-1} \cos (n-1) \theta+\cdots+(-1)^{n} c_{n}, \tag{7}\\
& V(r)=r^{n} \sin n \theta-c_{1} r^{n-1} \sin (n-1) \theta+\cdots+(-1)^{n-1} c_{n-1} r \sin \theta \tag{8}
\end{align*}
$$

Let $I_{0}^{\times}(V(r) / U(r))$ denote the Cauchy index of the rational function $V(r) / U(r)$, namely the difference between the number of jumps from $-\infty$ to $+\infty$ and from $+\infty$ to $-\infty$ of the rational function $V(r) / U(r)$ as r increases from 0^{+}to ∞. Assuming that $p_{A}(z)$ has no root z with $\arg z=\theta$, and that $\cos n \theta \neq 0$, the number s of roots of $p_{A}(z)$ such that $|\arg z|<\theta$ is given by [12], Theorem 1 and Corollary 1:

$$
\begin{equation*}
s=I_{0}^{\infty} \frac{V(r)}{U(r)}+\frac{n}{\pi} \theta-\frac{1}{\pi} \arctan (\tan n \theta), \tag{9}
\end{equation*}
$$

where $U(r)$ and $V(r)$ are given in (7) and (8), respectively.

3. Inertia results for L_{0}^{k}

We now examine the inertia of $A \in L_{0}^{k}$, where $\lfloor n / 2\rfloor \leqslant k \leqslant n-1$ and, equivalently, the inertia of nonnegative matrices. For matrices in L_{0}^{n-1} with zero diagonal, we have the following proposition.

Proposition 3.1. If $A \in L_{0}^{n-1}$ and has zero diagonal, then $i_{+}(A), i_{0}(A)$, and $i_{-}(A)$ agree with the number of nth roots of $(-1)^{n}$ that have positive, zero, and negative real parts, respectively.

Proof. Since $A \in L_{0}^{n-1}$ has zero diagonal, A is monomial [3], Theorem 2.2. Thus,

$$
p_{A}(z)=z^{n}+(-1)^{n} c_{n}=z^{n}+(-1)^{n} \operatorname{det} A
$$

and since $\operatorname{det} A<0$ [3], Lemma 2.1, the result follows.
Next we study $i_{+}(A)$ for $A \in L^{k}$ in which $\lfloor n / 2\rfloor \leqslant k \leqslant n-1$. If n is odd (even), then $i_{+}(A)$ is even (odd) since $\operatorname{det} A<0$ and has exactly one negative (simple) eigenvalue, by Lemma 2.6. Thus

$$
n-1 \geqslant i_{+}(A)+i_{0}(A) \geqslant i_{+}(A)
$$

giving the upper bound in Conjecture 2.3 for all n. If $n \geqslant 3$ and odd, then $i_{-}(A) \geqslant 2$, since A is nonsingular and $\operatorname{tr} A \geqslant 0$. Observe that $i_{+}(A)=1$ for $n=2$ and $k=1$.

Theorem 3.2. If $A \in L^{k}$, with $n \geqslant 3$ and $\lfloor n / 2\rfloor \leqslant k \leqslant n-1$, then

$$
n-1 \geqslant i_{+}(A) \geqslant \begin{cases}2 & \text { if } n \text { is odd } \\ 3 & \text { if } n \text { is even } .\end{cases}
$$

Proof. In view of the remarks preceeding the statement of the theorem, we only need to consider the case in which n is even; so first assume $n \geqslant 6$ (and consequently $k \geqslant 3$). Consider the Routh array for $p_{A}(z)$ given by (3), (4) and (5) for $A \in L^{k}$. Since $A \in L^{k}$, every principal submatrix of A of order $\leqslant \mathrm{k}$ is a nonsingular M-matrix and thus $c_{1}, c_{2}, \ldots, c_{k}>0$. The first three entries of the first column are $r_{01}=1, r_{11}=-c_{1}<0$, and $r_{21}=\left(c_{1} c_{2}-c_{3}\right) / c_{1}>0$, by Lemma 2.5. If the array is regular, then (3), (4), and (5) imply that the last nonzero term in the odd rows is $(-1)^{n} c_{n}$; in particular, $r_{n 1}=(-1)^{n} c_{n}<0$, by Lemma 2.6. Thus, the number of variations in sign in the sequence of entries in the first column of Routh's array is at least 3 , giving $i_{+}(A) \geqslant 3$. If the array is singular, then there is $p \geqslant 3$ such that $r_{p 1}=0$. For type $(i), i_{0}(A)=0$, replace $r_{p 1}$ by ε (small) and continue the scheme. This does not affect the last term in the odd rows, so again $i_{+}(A) \geqslant 3$. Now assume there is a type (ii) singularity and A has no purely imaginary eigenvalue. Suppose $f_{j+1}(\omega)=0$ and $f_{j}(\omega)$ is the last nonzero polynomial obtained from the Euclidean algorithm. Then $f_{j}(\omega)$ must be of even degree with its last nonzero coefficient being $c_{n}<0$. Upon replacing $f_{j+1}(\omega)$ by $f_{j}^{\prime}(\omega)$ and continuing Routh's algorithm, the last row of Routh's array is identical to the last row in the regular case and so $i_{+}(A) \geqslant 3$. If A has purely imaginary eigenvalues, then there is $\eta>0$ such that
$A-\eta I \in L^{k}$ has no such eigenvalues. By above $i_{+}(A-\eta I) \geqslant 3$, and so by continuity $i_{+}(A) \geqslant 3$. If $n=4$, then $k=2$ or 3 . In either case, c_{1}, c_{2}, $c_{1} c_{2}-c_{3}>0$ and the proof is identical to the proof of the first part.

Applying a routine continuity argument gives the following corollary.

Corollary 3.3. If $A \in L_{0}^{k}$, with $n \geqslant 3$ and $\lfloor n / 2\rfloor \leqslant k \leqslant n-1$, then

$$
n-1 \geqslant i_{+}(A)+i_{0}(A) \geqslant \begin{cases}2 & \text { if } n \text { is odd } \\ 3 & \text { if } n \text { is even } .\end{cases}
$$

Imposing an additional assumption on the diagonal entries of A, we can extend this result for $A \in L_{0}^{n-1}$ as follows.

Theorem 3.4. If $A \in L_{0}^{n-1}$ with $n \geqslant 3$ and $\operatorname{tr} A>0$, then

$$
n-1 \geqslant i_{+}(A) \geqslant \begin{cases}2 & \text { if } n \text { is odd }, \\ 3 & \text { if } n \text { is even } .\end{cases}
$$

Proof. If $c_{2}>0$, then a proof as given for Theorem 3.2 establishes the result. So assume $c_{2}=0$ (and therefore from Lemma $2.5, c_{3}=c_{4}=\cdots=c_{n-1}=0$). Thus, $p_{A}(z)=z^{\prime \prime}-c_{1} z^{n-1}+c_{n}$. Following Gantmacher [10], p. 185, let $p_{4}(z)=F_{1}(z)+F_{2}(z)$, where $F_{1}(z)=z^{n}+c_{n}$ and $F_{2}(z)=-c_{1} z^{n-1}$. Since $c_{n}<0$ it is easily seen that the GCD of $F_{1}(z)$ and $F_{2}(z)$ is a constant. Thus $p_{A}(z)$ has no root z for which $-z$ is also a root and hence $i_{0}(A)=0$. The result follows from Corollary 3.3 .

That it is necessary to state Corollary 3.3 in terms of the closed right halfplane is seen by the following example.

Example 3.5. Consider

$$
A=0 I-B=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

It is easily checked that $\rho_{n-1}(B)=\rho_{2}(B)=1$, while $\rho_{\text {nn/2 }}(B)=\rho_{1}(B)=0$, and that the spectrum of B (and A) is $\{-\sqrt{2}, 0, \sqrt{2}\}$. Thus $A \in L_{0}^{n / 2}$ has but one eigenvalue in the open right half-plane.

Corollary 3.6. Let $B \geqslant 0$ be an $n \times n$ matrix with $n \geqslant 3$ and let $S=\{\lambda: \lambda$ is an eigenvalue of B with $\left.\operatorname{Re} i \leqslant \rho_{\lfloor n / 2\rfloor}(B)\right\}$. Then

$$
n-1 \geqslant|S| \geqslant \begin{cases}2 & \text { if } n \text { is odd }, \\ 3 & \text { if } n \text { is even } .\end{cases}
$$

If $B \geqslant 0$ and $n=3$ or 4 , then Corollary 3.6 implies that all eigenvalues i different from $\rho(B)$ satisfy

$$
\operatorname{Re} i \leqslant \rho_{[n / 2]}(B) .
$$

The following example is an illustration.
Example 3.7. Consider,

$$
B=\left[\begin{array}{lll}
6 & 2 & 3 \\
5 & 6 & 0 \\
1 & 4 & 6
\end{array}\right] .
$$

Since B is row stochastic, it is obvious that $\rho(B)=11$, and, since $\rho_{[n / 2]}(B)=\max \left\{b_{i i}\right\}=6$, all other eigenvalues of B lie in the disk $x^{2}+y^{2} \leqslant$ 121 and on or to the left of the vertical line $x=6$. In fact, the other two eigenvalues of B are $7 / 2 \pm i \sqrt{23} / 2$.

Using Corollary 3.3 when $k=n-2, n-1$ gives the following.
Corollary 3.8. If $A \in L^{n-2} \cup L^{n-1}$, where $n=3$ or 4, then A has a unique negative eigenvalue and the other eigenvalues of A have positive real parts. Furthermore, if $A \in L_{0}^{n-2} \cup L_{0}^{n-1}$, where $n=3$ or 4 , then A has a unique negative eigenvalue and the other eigenvalues of A have nonnegative real parts.

Proposition 3.1 and Theorem 3.4 prove Conjecture 2.3 (and equivalently 2.4) for matrices of orders $2,3,4,5$ and 6 . The smallest unknown case for $A \in L_{0}^{n-1}$ is $n=7$, with $g(7)=4$, but the possibility of exactly 2 roots in the open right half-plane has not been ruled out. For $n=9, g(9)=4$, and taking $A=t I-P_{9}$, in which P_{9} is the basic 9×9 circulant and with suitably chosen t : $0 \leqslant t<1$, shows that $i_{+}(A)$ can take on the values 4,6 or 8 . Again we do not know whether $i_{+}(A)=2$ is possible for $A \in L_{0}^{n-1}$ when $n=9$. For general n odd (even), $A=t I-P_{n}$ and suitable $t, 0 \leqslant t<1, A \in L_{0}^{n-1}$ and $i_{+}(A)$ can achieve any even (odd) integer in $[g(n), n-1]$.

4. Wedge results for L_{0}^{n-1} and L_{0}^{n-2}

Recall that any matrix in $L_{0}^{n-1} \cup L_{0}^{n-2}$ has exactly one negative eigenvalue. We show that in fact, if $A \in L_{0}^{n-1}$, then the negative eigenvalue is the only eigenvalue of A in a sector of semi-angle $\pi /(n-1)$ about the negative real axis.

Similarly, if $A \in L_{0}^{n-2}$, then this is the only eigenvalue in a sector of semi-angle π / n about the negative real axis. Our proof uses the Cauchy index method as in [12], specifically (9) with $\theta=\pi-\pi /(n-1)$, and $\theta=\pi-\pi / n$, which implies in either case, $\cos n \theta \neq 0$. In the special case, when $n=2$, it is clear that if $A \in L_{0}^{n-1}$, then A has one positive and one negative eigenvalue.

Theorem 4.1. Let A be an $n \times n$ matrix with $n \geqslant 3$. If $A \in L_{0}^{n-1}$, then all eigenvalues of A distinct from the negative eigenvalue lie in the wedge $|\arg z| \leqslant \pi-\pi /(n-1)$.

Proof. Consider $A \in L_{0}^{n-1}$ with $p_{A}(z)$ given by (6), $U(r)$ and $V(r)$ given by (7) and (8), respectively, with $\theta=\pi-\pi /(n-1)$. Since the theorem is true for $n=3$ or for $c_{1}=0$ (see Lemma 3.1), we may assume that $n \geqslant 4$ and $c_{1}>0$. Further, assume without loss of generality that A has no eigenvalue on $|\arg z|=\pi-\pi /(n-1)$ (otherwise consider $A+\varepsilon I \in L_{0}^{n-1}$).

From (9), the number s of roots of $p_{A}(z)$ such that $|\arg z|<\pi-\pi /(n-1)$ is given by

$$
\begin{align*}
s & =I_{0}^{\times} \frac{V(r)}{U(r)}+\frac{n}{\pi}(\pi-\pi /(n-1))-\frac{1}{\pi} \arctan (\tan n(\pi-\pi /(n-1))) \\
& =I_{0}^{\times} \frac{V(r)}{U(r)}+n-1 \tag{10}
\end{align*}
$$

Recall that for $A \in L_{0}^{n-1}, c_{p} \geqslant 0$ for $p=1,2, \ldots, n-1$, and $c_{n}<0$. Consider first the case when n is even. For $U(r)$ in (7) with $\theta=\pi-\pi /(n-1)$, the coefficient of r^{n} is $\cos n(\pi-\pi /(n-1))<0$. For $k=1,2, \ldots, n-1$ the coefficient of $r^{\prime \prime-k}$ is

$$
(-1)^{k} c_{k} \cos (n-k)(\pi-\pi /(n-1))
$$

Thus the coefficients of $r^{n-1}, r^{n-2}, \ldots, r^{n / 2}$ are $\leqslant 0$, and the coefficients of $r^{n / 2-1}, \ldots, r$ are $\geqslant 0$. The constant term in $U(r)$ is $c_{n}<0$. Since the number of sign changes in the coefficients of $U(r)$ is either 0 or $2, U(r)$ has either no positive root or two positive roots, by Descartes' rule of signs. For $V(r)$ in (8) with $\theta=\pi-\pi /(n-1)$, the coefficient of r^{n} is >0, the coefficient of r^{n-1} is zero, and for $k=2,3, \ldots, n-1$, the coefficient of r^{n-k} is

$$
(-1)^{k} c_{k} \sin (n-k)(\pi-\pi /(n-1)) \leqslant 0
$$

Hence $V(r)$ has no more than one positive root. If $V(r)$ has no positive root, then $I_{0}^{\infty}(V(r) / U(r))=0$ and $s=n-1$. So assume $V(r)$ has one positive root, say v. If $U(r)$ has no positive roots, then from (10), $s=n-1$. Otherwise, $U(r)$ has two positive roots $u_{1} \leqslant u_{2}$. If $c_{2}=0$, then $c_{3}=c_{4}=\cdots=c_{n-1}=0$, by Lemma 2.5. Hence $V(r)$ has no positive root, and $s=n-1$. So assume $c_{2}>0$. Following [13], consider $V(v) / v=0$. Since the coefficient of $r^{\prime \prime-1}$ in $V(r)$ is zero, solving for v^{n-1} gives

$$
v^{n-1}=\sum_{k=2}^{n-1}(-1)^{k+1} c_{k} v^{n-k-1} \frac{\sin (n-k) \theta}{\sin n \theta},
$$

where $\theta=\pi-\pi /(n-1)$. Substituting for v^{n-1} in $U(v)$, gives

$$
U(v)=\sum_{l=2}^{n}\left(\gamma_{l} c_{l}+\delta_{l} c_{1} c_{l-1}\right) v^{n-l}
$$

where $\gamma_{l}=(-1)^{n-l}(\sin l \theta / \sin \theta)$ and $\delta_{l}=(-1)^{1-1} \sin (n-l+1) \theta / \sin \theta$. Thus it follows that $\Delta_{l}=\gamma_{l} c_{l}+\delta_{l} c_{1} c_{l-1} \leqslant 0$ for $l=2,3, \ldots n$, and hence $U(v) \leqslant 0$. Then $A_{2}<0$ as $\delta_{2}=0$, and $\gamma_{2}<0$ hence $U(v)<0$. Thus $v<u_{1}$ or $v>u_{2}$. In either case $I_{0}^{\infty} \frac{V(r)}{U(r)}=0$ and $s=n-1$. In a similar fashion it can also be shown that $s=n-1$ if n is odd. Therefore A has exactly one eigenvalue in the sector $|\arg z|>\pi-\pi /(n-1)$, which must be the negative eigenvalue. The result follows.

A restatement of Theorem 4.1 for nonnegative matrices follows.
Corollary 4.2. Let $B \geqslant 0$ be an $n \times n$ matrix with $n \geqslant 2$. Then, the spectral radius, $\rho(B)$, is the only eigenvalue in the wedge

$$
\left\{z:\left|\arg \left(z-\rho_{n-1}(B)\right)\right|<\pi /(n-1)\right\} .
$$

Consider now $A \in L_{0}^{n-2}$, with $p_{A}(z)$ given by (6). Then $c_{p} \geqslant 0$ for $p=1,2, \ldots, n-2$, and $c_{n} \leqslant 0$, with $c_{n-1}<0$ if $c_{n}=0$ [4], Lemma 2.4. In the special case $n=3$, then $i_{+}(A)+i_{0}(A)=2$ by Corollary 3.3.

Theorem 4.3. Let A be an $n \times n$ matrix with $n \geqslant 4$. If $A \in L_{0}^{n-2}$ and A is nonsingular, then all eigenvalues of A distinct from the negative eigenvalue lie in the wedge $|\arg z| \leqslant \pi-\pi / n$. If A is singular, then all eigenvalues of A distinct from the negative eigenvalue lie in the wedge $|\arg z| \leqslant \pi-\pi /(n-1)$.

Proof. First assume $A \in L_{0}^{n-2}$ is nonsingular with $p_{A}(z)$ given by (6), $U(r)$ and $V(r)$ given by (7) and (8), respectively, with $\theta=\pi-\pi / n$. Assume without loss of generality that A has no eigenvalue on $|\arg z|=\pi-\pi / n$ (otherwise take $A+\varepsilon I)$. The number s of roots of $p_{A}(z)$ such that $|\arg z|<\pi-\pi / n$ is given by

$$
\begin{align*}
s & =I_{0}^{\infty} \frac{V(r)}{U(r)}+\frac{n}{\pi}(\pi-\pi / n)-\frac{1}{\pi} \arctan (\tan n(\pi-\pi / n)) \\
& =I_{0}^{\infty} \frac{V(r)}{U(r)}+n-1 . \tag{11}
\end{align*}
$$

Recall that for $A \in L_{0}^{n-2}, c_{p} \geqslant 0$ for $p=1,2, \ldots, n-2$, and in this case $c_{n}<0$. First consider the case when n is even. For $U(r)$ in (7) with $\theta=\pi-\pi / n$, the
coefficient of r^{n} is $\cos n(\pi-\pi / n)<0$. For $k=1,2, \ldots, n-1$, the coefficient of r^{n-k} is

$$
(-1)^{k} c_{k} \cos (n-k)(\pi-\pi / n)
$$

Thus the coefficients of $r^{n-1}, \ldots, r^{n / 2+1}$ are $\leqslant 0$, the coefficient of $r^{n / 2}$ is zero, and the coefficients of $r^{n / 2}-1, \ldots, r^{2}$ are $\geqslant 0$. The constant term in $U(r)$ is $c_{n}<0$. By Descartes' rule of signs, $U(r)$ has either no positive root or two positive roots. For $V(r)$ in (8) with $0=\pi-\pi / n$, the coefficient of r^{n} is zero, and for $k=1,2, \ldots, n-1$ the coefficient of r^{n-k} is

$$
(-1)^{k} c_{k} \sin (n-k)(\pi-\pi / n)
$$

which is $\leqslant 0$, if $k \leqslant n-2$. For $k=n-1$, the coefficient of r^{n-k} (i.e. of r) is opposite in sign from c_{n-1}. So if $c_{n-1} \geqslant 0$, then $V(r)$ has no positive root and hence $I_{0}^{\times}(V(r) / U(r))=0$ and (11) implies that $s=n-1$. If $c_{n-1}<0$, then $V(r)$ has exactly one positive root v. If $U(r)$ has no positive root, then from (11), $s=n-1$. If $U(r)$ has two positive roots, denote them by u_{1}, u_{2} with $u_{1} \leqslant u_{2}$. If $u_{1}<v<u_{2}$, then $I_{0}^{\times}(V(r) / U(r))=2$, so $s=n+1$, which is impossible; and if $v=u_{1}$ or u_{2} (or both), then $I_{0}^{\infty}(V(r) / U(r))=1$, so $s=n$, which is also impossible. This leaves $v<u_{1} \leqslant u_{2}$, or $u_{1} \leqslant u_{2}<v$ and in either of these cases $I_{0}^{\mathrm{x}}(V(r) / U(r))=0$, so from (11), $s=n-1$. Thus the statement is proved for A nonsingular and n even. The case where A is nonsingular and n odd is similar. Now suppose $A \in L_{0}^{n-2}$ is singular, that is, $c_{n}=0$ and $c_{n-1}<0$. In (1) let $p_{A}(z)=z \cdot \tilde{p}_{A}(z)$, where

$$
\tilde{p}_{A}(z)=z^{n-1}-c_{1} z^{n-2}+\cdots+(-1)^{n-2} c_{n-2} z+(-1)^{n-1} c_{n-1},
$$

where $c_{p} \geqslant 0$ for $p=1,2, \ldots, n-2$, and $c_{n-1}<0$. If A has no eigenvalue on $|\arg z|=\pi-\pi /(n-1)$, take $\tilde{p}_{A}(z)=U(r)+i V(r)$, where $z=r \mathrm{e}^{i(\pi-\pi /(n-1))}$. By the same argument as given in the first part of the proof (for A nonsingular and $\left.c_{n-1} \geqslant 0\right), A$ has exactly one eigenvalue in the sector $|\arg z|>\pi-\pi /(n-1)$. In each case the wedge contains only the negative eigenvalue. The theorem follows.

A restatement of Theorem 4.3 for nonnegative matrices follows.

Corollary 4.4. Let $B \geqslant 0$ be an $n \times n$ matrix with $n \geqslant 3$. Then, the spectral radius, $\rho(B)$, is the only eigenvalue in the wedge

$$
\left\{z:\left|\arg \left(z-\rho_{n-2}(B)\right)\right|<\pi / n\right\}
$$

Example 4.5. Consider the basic circulant P_{n}. Then $\rho_{n-1}\left(P_{n}\right)=\rho_{n-2}\left(P_{n}\right)=0$, and it can easily be verified (see Example 2.2) that $\rho\left(P_{n}\right)$ (which is equal to 1), is the only eigenvalue in the wedge $\{z:|\arg z|<\pi /(n-1)\}$.

Usually Corollaries 4.2 and 4.4 will each provide independent information on localization. However, when $\rho_{n-1}(B)=\rho_{n-2}(B)$ (as was the case in the previous example), the information from Corollary 4.4 is redundant.

References

[1] M. Fiedler, T. Markham, A classification of matrices of class Z, Linear Algebra Appl. 173 (1992) 115-124.
[2] A. Berman. R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
[3] G. Johnson, A generalization of N-matrices. Linear Algebra Appl. 48 (1982) 201-217.
[4] R. Smith, On the spectrum of N_{0}-matrices, Linear Algebra Appl. 83 (1986) 129-134.
[5] R. Smith, Bounds on the spectrum of nonnegative matrices and certain Z-matrices, Linear Algebra Appl. 129 (1990) 13-28.
[6] Y. Chen, Notes on F_{0}-matrices, Linear Algebra Appl. 142 (1991) 167-172.
[7] R. Smith, Some results on a partition of Z-matrices, Linear Algebra Appl. 223 (1995) 619-629.
[8] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, New York, 1991.
[9] S. Barnett, Polynomials and Linear Control Systems, Marcel Dekker, New York, 1983.
[10] F.R. Gantmacher, The Theory of Matrices, vol. II, Chelsea, New York, 1959.
[11] R. Nabben, Z-matrices and inverse Z-matrices, Linear Algebra Appl. 256 (1997) 31-48.
[12] L. Fang, On the spectra of P - and P_{0}-matrices, Linear Algebra Appl. 119 (1989) 1-25.
[13] C.R. Johnson, D.D. Olesky, M. Tsatsomeros, P. van den Driessche, Spectra with positive elementary symmetric functions, Linear Algebra Appl. 180 (1993) 247-261.

[^0]: * Corresponding author. E-mail: sfallat@math.wm.edu.
 ${ }^{1}$ The work of this author was supported by an NSERC PGS A award.
 ${ }^{2}$ The work of this author was supported in part by the Office of Naval Research contract N00014-90-J-1739 and NSF grant 92-00899.
 ${ }^{3}$ E-mail: crjohnso@math.wm.edu.
 ${ }^{4}$ The work of this author was supported in part by the CECA Scholars Program of the Center of Excellence for Computer Applications at the University of Tennessee at Chattanooga.
 ${ }^{5}$ E-mail: rsmith@cecasun.utc.edu.
 ${ }^{6}$ The work of this author was partially supported by an NSERC research grant and the University of Victoria Committee on Faculty Research and Travel.
 ${ }^{7}$ E-mail: pvdd@smart.math.uvic.ca.

