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Abstract 
Let L~ denote  the class of  n x n Z-matrices A = tl  - B with B ~> 0 and pk(B) <~ t 

<- Pk+l (B), where pk(B) denotes the maximum spectral radius of  k x k principal subma- 
trices of  B. Bounds are determined on the number  of  eigenvalues with positive real parts 

for A E L~i, where k satisfies, [n/2j ~< k ~< n - 1. For  these classes, when k = n - 1 and 
n - 2, wedges are identified that  contain only the unique negative eigenvalue of  A. These 
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I. Introduction 

Let B be an entry-wise nonnegative n x n matrix (denoted B ~> 0), and, for 
k = 1 ,2 , . . . ,  n, let pk(B) denote the maximum spectral radius of the k × k prin- 
cipal submatrices of B. For  completeness, define po(B) = - o c  and 
p=.l(B) = oc. Observe that p,,(B) equals p(B), the spectral radius of B. For 
k = 0, 1 , . . . ,  n, let Lo k (L ='~) denote the class of Z-matrices A = tI - B, in which 
B >~ 0 is an n × n matrix, and pk(B) <~t < p~+l(B) (pk(B) < t < pk+l(B)). 
Throughout  we consider matrices of  order n, thus we use the notation Lg 
(L k) for L0 k (L"'k). The classes L~, L~,.. .  ,L; were introduced in [1] (denoted 
by Lo,LI,.. .  ,L,,), and observed to form a partition of  the class o f n  x n Z-ma- 
trices. Note that L" is the class of nonsingular M-matrices, L~; is the class of 
(singular and nonsingular) M-matrices, see [2], ch. 6 and that Lg 1 (denoted 
by N0) and L~ 2 were first studied in [3]. L; 2 was denoted by G in [4] and fur- 
ther studied in [5,6]. Note that ifA E L~ -1, then A is irreducible, and nonsingu- 
lar (see [3]). 

From the definitions it follows that A E L~I (A E L ~) if and only if A is a Z- 
matrix and each k × k principal submatrix of A is an M-matrix (nonsingular 
M-matrix), but there is at least one ( k +  1 ) - b y - ( k +  1) principal submatrix 
that is not an M-matrix; see [1] Theorem 1.3, for the L~ case. In [7] nonsin- 
gular matrices in L~I were characterized in terms of the principal minors of 
their inverses. 

We are interested in the spectrum of  A ¢ L~i, and use the following notation. 
The characteristic polynomial of an n - b y - n  matrix A is p4(z)= d e t ( z I - A ) ,  
and 

p A ( Z ) ~ - z n - - c I S ' I ÷ C 2  z'I 2--C3S'  3 + ' ' ' +  (--1)"C,,  (I) 

where c'k is the sum of the k x k principal minors of A. In particular, cl = t r /  
and c,, = detA. The location of the eigenvalues of A can be specified by the 
inertia of  A, which is the triple i+(A), io(A), i (A), specifying the number of 
eigenvalues with positive, zero, negative, real parts, respectively. Thus 
i+(A) + io(A) specifies the number of eigenvalues (counting multiplicities) in 
the closed right half-plane. For  example, if A E L'~'I, then i+ (A) + i0 (A) = n, since 
an M-matrix is positive semi-stable. In Section 3, for A E L~ (A C Lk), where 
Ln/2J ~< k ~< n - 1, we determine bounds on i+(A) + io(A) (i+(A)). We also verify 

,, , t,, 1 and Conjecture 2.3 for A E L  0 l when 2~<n~<6. In Section 4, for A E -0  
A E L'~'~ -2 we determine a wedge containing only one eigenvalue of A, namely 
the negative eigenvalue. 

2. Preliminary results 

We begin with the following definition. 
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Definition 2.1. Fo r  n >~ 2, let 

I n /2  + 1 n - O(mod 4), 

g(n) = n / 2 -  1/2 n - l ( m o d  4), 

n/2  n = 2(mod  4), 

n/2  + 1/2 n -= 3 (mod 4). 

Example  2.2. Let A ---- -Pn ,  where P,, is the basic n × n circulant ( that is, the 
circulant with first row (0, 1,0 . . . .  ,0)). Then A E L~ I where t = 0 -- P,,-I (P,,). 
It is readily verified that  i+(A) = g(n) i fn  ~ 0 (mod 4) and i+(A) + io(A) = g(n) 
if n -= 0 (rood 4), since the eigenvalues of  P,, have real parts  cos(2nq/n)  for 
q = 0 , 1 , . . . , n -  1. 

Mot iva ted  by this example,  by the fact that  the Cauchy  interlacing inequal- 
1,, I and by numerical  results ities imply that  i+(A) = n - 1 for  symmetr ic  A E ~0 , 

indicating tha t  ifA E L~ -1, it is usually the case that  i+ (A) -- n - 1, we make  the 
following conjectures.  

Conjecture 2.3. I f  n >~ 2 and A E L~ i in which n ~ 0 (rood 4) or A E L" I in 
which n - 0 (rood 4), then 

n -  I >~ i+(A) >~ g(n). 

It would follow f rom the above  conjecture that  if A E L~ ~ in which 
n -= 0 (rood 4), then 

n - 1 >- i+ (A) + io(A) >~ g(n). 

F r o m  the definition of  LI' ) ~, the above  conjectures are equivalent  to the fol- 
lowing conjecture concerning the location of  eigenvalues of  nonnegat ive  matr i -  
ces. 

Conjeeture 2.4. Let B ~> 0 be an n × n matr ix  with n ~> 2 and let S = {2 : ~ is an 
eigenvalue of  B with Re 2 <~ P,,-1 (B)}. Then 

n - 1 / >  ISl > / g ( n ) ,  

In considering these conjectures in Section 3, we need the following inequal- 
ity on the coefficients of  the characterist ic po lynomia l  of  a Z-matr ix .  

Lemma 2.5. Let i, j be positive integers satisfying 2 <~ i + j <~ k <~ n, and let A E L~I 
be an n × n matrix with characteristic polynomial (1). Then 

ci+, ~< ci.  cj. (2) 

Moreover, i f  c~+/ is positive, the inequality is strict. 
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Proof. By the definition of L~ each principal minor of order at most k is 
nonnegative, hence Cp >>-0 for p = 1 ,2 , . . . , k .  Thus if ci+j = 0, then the 
inequality holds. Now assume ci+j > 0. Consider a principal submatrix of A of 
order i + j .  As A ¢ Lk0, this submatrix is an M-matrix. Without loss of 
generality (since L0 k is invariant under permutation similarity) assume that this 
submatrix has row and column indices 1 , 2 , . . . , i + j ,  and denote it by 
All, 2 . . . . .  i + j ] .  By Fischer's inequality (see, for example, [8], p. 117) 

det A [1 ,2 , . . . ,  i + j] ~< det A [1 ,2 , . . . ,  i]- dot A [i + 1, i + 2 , . . . ,  i + j]. 

Multiply the right-hand side of (2) out. Each summand of  ci+j is less than or 
equal to a distinct product on the right-hand side of (2) by Fischer's inequality. 
Since there are other positive products on the right-hand side of (2) as well, in- 
equality (2) is strict. []  

We make use of  Routh's  scheme (see [9], Theorem 3.3, p. 142, [10], p. 177) in 
Sections 3 and 4. A brief description of  what we need of this method is as fol- 
lows. For  the polynomial p4(z) given by (1), construct the Routh array {r~j} 
having the first two rows 

{rol,ro2,r03,...} = {1,c2,c4,. . .},  ( 3 )  

{FII,t"12,F13,-..} ~- {--C1,--C3,--C5,...}, 

and ith row defined by 

(4) 

_det [r~-2.J ri 2.j~l 1 
Lr~ 1,1 ri-l , j+l 

r , j  = , ( 5 )  
Fi 1.1 

for i = 2, 3 , . . . ,  n. Further, the rows of  the Routh's  Scheme are then filled with 
zeros. Associated with each row of Routh 's  array is a polynomial, Write 
z = io), and let 

fl(e)) =d' -c2o)"  : + . . .  and f 2 ( c O ) = - - C l C O  "-1 +C3O) n 3 . . . .  

For j - - 3 , 4 , . . . , n +  1, inductively define ~(co)=f)_l(co)qj_2(co)-  ~_2(e)). 
Thus - ~ ( m )  is the remainder upon dividing f j  2(0)) by J~ l(co). In [10], p. 
178 it is shown that fj(co) is the polynomial associated with the j th  row of  
Routh 's  array. If the array is regular, i.e., rij ¢i 0 for all i, then io(A) = 0 and 
i+(A) is equal to the number of variations in sign in the sequence of entries 
in the first column, namely {r0~, r~l, r21,...}. If there is a zero element in the first 
column, then the scheme (5) cannot be continued; the array is singular, and two 
types of  singularity must be considered. In the type (i) singular case, an entry 
rpl = 0 with p >~ 1, but there is q ~> 2 such that r m ¢ 0. Then, io(A) = 0. Re- 
place rp~ by a parameter ~ (assumed small) and continue the array according 
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to (5). In the type (ii) singular case, a row, say the (j + 1)st, consists entirely of  
zero entries so that ~(~)), the polynomial associated with the j th  row, is the last 
nonzero polynomial obtained by the Euclidean algorithm. In this case the poly- 
nomials f l  (co) and f2(~o) associated with the first two rows of Routh's  array, 
respectively, have a nontrivial GCD and, to continue Routh's  algorithm, we 
replace ~+j (o~) by fj((~) (if the roots of.~'(o)) are not simple, it will be necessary 
to repeat this process, see [10], p. 183). In this case io(A) may be positive. 

The following result, due to Nabben [11], is used in Section 3. We state it 
here for convenience. 

Lemma 2.6 ([11], Theorems 2.8 and 2.10). Let A E L~ be an n x n matrix, where 
~n/2j <~ k <~ n - 1. Then A has exactly one negative eigenvalue and det A ~< 0. 

Moreover, it follows from the proof  of Theorem 2.10 in [l 1] that, ifA ¢ U,  
then det A < 0. 

To obtain the wedge results of  Section 4, we use the Cauchy index method, 
see for example [10,12,13], which is described as follows. For  any fixed angle 
0 ¢ (0, ~), write z = re i° and 

PA (z) = PA (re i°) = U(r) + iV(r), (6) 

where from (1) 

U ( F )  = F n COS n 0  - - e l  Fn 1 COS(/'/ - -  1 ) 0 - [ - - ' '  ~- (-1)"c,,, (7) 

V(r) = r "  s i n n O - c l r " - l s i n ( n - l ) O + . . . + ( - 1 )  " lc,, lr sin 0. (8) 

Let lo~(V(r)/U(r))  denote the Cauchy index of  the rational function 
V(r) /U(r) ,  namely the difference between the number of  jumps from - ~ c  to 
+oc and from +oc to - o c  of the rational function V(r) /U(r)  as r increases 
from 0 + to oc. Assuming that PA(z) has no root z with arg z : 0, and that 
cos nO ¢ O, the number s of roots of PA(Z) such that I arg zl < 0 is given by 
[12], Theorem 1 and Corollary 1: 

V(r) n 1 
: - - a r c t a n ( t a n  nO), (9) s I,i ~ 7 ~  + ~ 0 

/t 

where U(r) and V(r) are given in (7) and (8), respectively. 

3. Inertia results for L0 k 

We now examine the inertia of  A E L~, where ~n/2] ~ k ~< n - 1 and, equiv- 
alently, the inertia of nonnegative matrices. For  matrices in L~-J with zero di- 
agonal, we have the following proposition. 
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Proposition 3.1. IJ A C L~I J and has zero diagonal, then i+(A), io(A), and i (A) 
agree with the number o f  nth roots o f  ( -1 )"  that have positive, zero, and negative 
real parts, respectively. 

Proof. Since A E Lg 1 has zero diagonal, A is monomial  [3], Theorem 2.2. Thus, 

pA(Z) = Z" + (--1)%,, = Z" + (--l)" det A, 

and since det A < 0 [3], Lemma 2.1, the result follows. [] 

Next we study i t (A)  for A C U in which Ln/2j ~< k ~< n - I. I fn  is odd (even), 
then i+(A) is even (odd) since det A < 0 and has exactly one negative (simple) 
eigenvalue, by Lemma 2.6. Thus 

n -  1 >~ i+(A) + io(A) >~ i+(A), 

giving the upper bound in Conjecture 2.3 for all n. I f  n/> 3 and odd, then 
i_(A) /> 2, since A is nonsingular and trA ~> 0. Observe that i+(A) = 1 for 
n - 2 a n d k = l .  

Theorem 3.2. I rA  ¢ L k, with n >>, 3 and ln/2J <~ k <~ n - 1, then 

2 i f  17 is odd, 
n -  1 >~ i~ (A) >~ 3 i f  n is even. 

Proof. In view of the remarks preceeding the statement of  the theorem, we only 
need to consider the case in which n is even; so first assume n/> 6 (and 
consequently k ~> 3). Consider the Routh array for PA(Z) given by (3), (4) and 
(5) for A E L k. Since A E L k, every principal submatrix of  A of order ~< k is a 
nonsingular M-matr ix and thus e~, c2, •. •, ck > 0. The first three entries of  the 
first column are r01 = 1, rlj = - e l  < 0 ,  and r21 = ( c l c 2 - c 3 ) / c l  > 0 ,  by 
Lemma 2.5. I f  the array is regular, then (3), (4), and (5) imply that the last 
nonzero term in the odd rows is (-1)"c,,; in particular, r,1 = (-1)%,,  < 0, by 
Lemma 2.6. Thus, the number of  variations in sign in the sequence of entries in 
the first column of Routh ' s  array is at least 3, giving i+(A) ~> 3. I f  the array is 
singular, then there is p ~> 3 such that rpl = 0. For type (i), io(A) = 0, replace 
rpl by e, (small) and continue the scheme. This does not affect the last term in 
the odd rows, so again i+(A) ~> 3. Now assume there is a type (ii) singularity 
and A has no purely imaginary eigenvalue. Suppose ~+l  (uJ) = 0 and J).((o) is 
the last nonzero polynomial obtained from the Euclidean algorithm. Then 
J)(~)) must be of  even degree with its last nonzero coefficient being cn < 0. 
Upon replacing ~+1 (~o) by £!(o)) and continuing Routh 's  algorithm, the last 
row of Routh 's  array is identical to the last row in the regular case and so 
i+(A) >~ 3. I fA has purely imaginary eigenvalues, then there is r />  0 such that 
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A -  ql  ~ L k has no such eigenvalues. By above  i . ( A -  tll) ~> 3, and so by 
cont inui ty i+ (A)>~3 .  I f  n = 4 ,  then k = 2  or 3. In either case, cl ,  c2, 

c~c2 - c3 > 0 and the p r o o f  is identical to the p r o o f  of  the first part .  [ ]  

Applying  a routine cont inui ty  a rgument  gives the following corollary.  

Corollary 3.3. I./'A E L~i, with n >~ 3 and Ln/2] ~< k ~< n - 1, then 

2 ~/" n is odd, 
n - 1 >~ i+ (A) + io(A) >~ 3 ( [  n is even. 

Impos ing  an addit ional  assumpt ion  on the diagonal  entries of  A, we can ex- 
tend this result for A E L~ ~ as follows. 

Theorem 3.4. I r A  E L'~')-1 with n >~ 3 and tr A > 0, then 

2 i f  n is odd. 

n -  1 >~ i + ( A ) >~ 3 i [" n is even. 

Proof.  I f  c2 > 0, then a p r o o f  as given for Theorem 3.2 establishes the result. So 
assume c2 = 0 (and therefore f rom L e m m a  2.5, c3 = c4 . . . .  c,,_1 = 0). 
Thus,  p A ( Z ) = Z " - - C l Z  n l+C, ; .  Fol lowing G a n t m a c h e r  [10], p. 185, let 
p4(z) : FL(z) + F2(z), where Fl(z) = z" + c, and F2(z) : - c l g '  i. Since c, < 0 
it is easily seen that  the G C D  OfFl (z) and F2(z) is a constant .  Thus  PA (Z) has no 
root  z for which - z  is also a root  and hence io(A) = 0. The  result follows f rom 
Corol la ry  3.3. [ ]  

Tha t  it is necessary to state Corol la ry  3.3 in terms of  the closed right half- 
plane is seen by the following example.  

Example 3.5. Consider  

I 0 - 1  0 1 
A : O I - B  - 1  0 - 1  . 

0 - 1  0 

It is easily checked that  p,, j(B) = P2(B) = 1, while pen~ 2 (B)  : p l (B)  = O, and 

that  the spect rum of  B (and A) is { -~ f2 ,  0, x/2}. Thus  A E L6 ''/2~ has but  one 

eigenvalue in the open right half-plane. 

Corollary 3.6. L e t  B >~ 0 be an n × n m a t r i x  with n >>- 3 and let S - {2 : 2 is an 

eigenvalue o f  B with Re ~ ~< PL,;/2j (B)}. Then 
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2 ( f  n is odd, 

n -  1 >>.IS[ >>. 3 i f  n is even. 

I f B  ~> 0 and n = 3 or  4, then Corol la ry  3.6 implies that  all eigenvalues 2 dif- 
ferent f rom p(B) satisfy 

Re ,k ~< PL,/2j (B). 

The  fol lowing example  is an illustration. 

Example  3.7. Consider ,  

B =  6 . 

4 

Since B is row stochastic,  it is obvious  that  p ( B ) =  11, ands since 
Pf,/2j (B) = max{bii} = 6, all o ther  eigenvalues o f  B lie in the disk x 2 + y2 ~< 

121 and on or to the left o f  the vertical line x = 6. In fact, the other  two eigen- 

values of  B are 7/2  :~ i~/23/2. 

Using Corol la ry  3.3 when k : n - 2, n - 1 gives the following. 

Corollary 3.8. I f  A E L "-2 U L" 1, where n = 3 or 4, then A has a unique negative 
eigenvalue and the other eigenvalues o f  A have positive real parts. Furthermore, i f  
A E L~ -2 U L~ I where n = 3 or 4, then A has a unique negative eigenvalue and 
the other eigenvalues o f  A have nonnegative real parts. 

Propos i t ion  3.1 and Theo rem 3.4 prove  Conjecture  2.3 (and equivalently 
2.4) for  matr ices  of  orders 2, 3, 4, 5 and 6. The  smallest unknown  case for  
A c L~ -I is n = 7, with g(7) = 4, but  the possibility of  exactly 2 roots  in the 
open right half-plane has not  been ruled out. Fo r  n -- 9, g(9) = 4, and taking 
A = tI - P9, in which P9 is the basic 9 x 9 circulant and with suitably chosen t: 
0~<t < 1, shows that  i+(A) can take on the values 4, 6 or  8. Again we do not  
know whether  i+(A) = 2 is possible for A E L~'~ l when n = 9. Fo r  general n 
odd (even), A = tI - P,, and suitable t, 0 ~< t < 1, A E Lg -I and i+(A) can achieve 
any  even (odd) integer in [g(n), n - 1]. 

4. Wedge results for Lg 1 and L~ -~ 

Recall  that  any matr ix  in L~ -j ULg 2 has exactly one negative eigenvalue. 
We show that  in fact, ifA E L~ -~, then the negative eigenvalue is the only eigen- 
value o f  A in a sector o f  semi-angle n / (n  - 1) abou t  the negative real axis. 
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Simi l a r ly ,  i f  A E L~ -2, t hen  this  is the  on ly  e igenva lue  in a sec to r  o f  s emi - ang l e  
r~/n a b o u t  the  nega t ive  real  axis.  O u r  p r o o f  uses the  C a u c h y  index  m e t h o d  as in 
[12], spec i f ica l ly  (9) w i th  0 = rc - ~/(n  - 1), a n d  0 = r~ - r~/n, which  impl ies  in 
e i the r  case ,  cos  nO ¢ 0. In  the  spec ia l  case ,  w h e n  n = 2, it is c lea r  t h a t  if  
A E L~ J, t hen  A has  one  pos i t i ve  a n d  one  nega t ive  e igenva lue .  

T h e o r e m  4.1. Let  A be an n x n matr ix  with n ~ 3. I f  A c L ~  -1, then all 
eigenvalues o f  A distinct f rom the negative eigenvalue lie in the wedge 
l a rg  z I ~<~z-  ~ / ( n -  1). 

P roof .  C o n s i d e r  A E L~ -1 wi th  pA(z) given by  (6), U(r) a n d  V(r) given by  (7) 
a n d  (8), r espec t ive ly ,  w i th  0 = ~ -  ~ / ( n -  1). Since  the  t h e o r e m  is t rue  for  
n = 3 o r  fo r  cl = 0 (see L e m m a  3.1), we m a y  a s s u m e  t h a t  n >~ 4 a n d  cl > 0. 
F u r t h e r ,  a s s u m e  w i t h o u t  loss  o f  gene ra l i t y  t ha t  A has  no  e igenva lue  on  

I n -  1 l a rg  z I = ~ - ~/ (n  - 1) (o the rwise  c o n s i d e r  A + eI E ~o ). 
F r o m  (9), the  n u m b e r  s o f  r o o t s  o fpA(z)  such t ha t  [ a rg  z] < ~ - r~/(n - 1) is 

g iven  by  

V(r )  n 1 
s = I o ~ - ~ + ~ ( ~  - r~/(n - 1)) - - a r c t a n ( t a n r ~  n(~ - ~ / (n  - 1))) 

= 1 , 7 ~ + n - 1 .  (lO) u()  
Reca l l  t h a t  fo r  A E L; ~, Cp >>- 0 fo r  p = 1 , 2 , . . . , n -  1, a n d  c,, < 0. C o n s i d e r  
first  the  case  when  n is even.  F o r  U(r) in (7) wi th  0 = rc - ~/(n  - 1), the  coef-  
f icient  o f / '  is cos  n(r~ - n / (n  - 1)) < 0. F o r  k = 1,2 . . . .  ,n  - 1 the  coeff ic ient  
o f  r ' '-k is 

( -1 )xck  c o s ( n  - k ) (x  - x / ( n  - 1)). 

T h u s  the  coeff ic ients  o f  r" ~,r" 2 . . . .  , / ' / 2  a re  ~<0, and  the coeff ic ients  o f  
r" /2-1 , . . . ,  r are  >~ 0. T h e  c o n s t a n t  t e rm in U(r) is c,, < 0. Since  the  n u m b e r  
o f  s ign c h a n g e s  in the  coeff ic ients  o f  U(r) is e i the r  0 or  2, U(r) has  e i the r  no  
pos i t i ve  r o o t  o r  t w o  pos i t i ve  roo t s ,  by  D e s c a r t e s '  ru le  o f  signs.  F o r  V(r) in 
(8) w i th  0 = r~ - rc/(n - 1), the  coeff ic ient  o f / '  is > 0, the  coeff ic ient  o f  r" l 
is zero ,  a n d  for  k = 2, 3 , . . . ,  n - 1, the  coeff ic ient  o f  r "-k is 

( -  1)Xck s in (n  - k ) (~  - r~/(n - 1)) ~<0. 

H e n c e  V(r) has  no  m o r e  t h a n  one  pos i t ive  roo t .  I f  V(r) has  no  pos i t ive  roo t ,  
t hen  l ~ ( V ( r ) / U ( r ) )  = 0 a n d  s = n - 1. So a s s u m e  V(r) has  one  pos i t ive  roo t ,  
say  v. I f  U(r) has  no  pos i t i ve  roo t s ,  t hen  f r o m  (10), s = n - 1. O the rwi se ,  U(r) 
has  two  pos i t ive  r o o t s  ul ~< u2. I f  c2 = 0, t hen  c3 = c4 . . . . .  c,,_l = 0, by  L e m -  
m a  2.5. H e n c e  V(r) has  no  pos i t i ve  roo t ,  a n d  s = n - 1. So a s s u m e  c2 > 0. F o l -  
l owing  [13], c o n s i d e r  V(v) / v  = 0. Since  the  coeff ic ient  o f  r ' ' - l  in V(r) is zero ,  
so lv ing  fo r  v" J gives 
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. I s i n  ( n  - k )  0 
v" I = ~-- '~(_l)~-lckv, ,-k 1 sin nO 

k 2 

where  0 = ~ - n/ (n  - 1). S u b s t i t u t i n g  for  v "-I in U(v), gives 

~t 

U(v)  = + , )v" - ' ,  
l - 2  

where  7 / =  ( - 1 ) "  Z(sin lO/sin O) a n d  6 / -  ( - 1 ) / - 1  s i n ( n -  l +  l ) 0 / s i n  0. Thus  
it fo l lows  t ha t  A~ = 7lcz + fizcjc/ 1 ~  0 fo r  l = 2 ,3  . . . .  n, a n d  hence  U(v)<~ O. 
T h e n  Az < 0 as ,Sz = 0, a n d  72 < 0 hence  U(v) < 0. T h u s  v < ul o r  v > ue. In  

v(r/  __ 
e i t h e r  case  I ~  ~ - 0 a n d  s = n - 1. In  a s imi la r  f a sh ion  it can  a lso  be s h o w n  

tha t  s = n - 1 i f  n is odd .  T h e r e f o r e  A has  exac t ly  one  e igenva lue  in the sec to r  

[ a rg  z[ > ~t - rt/(n - 1), which  m u s t  be the  nega t ive  e igenva lue .  The  resu l t  

fo l lows .  [ ]  

A r e s t a t e m e n t  o f  T h e o r e m  4.1 fo r  n o n n e g a t i v e  m a t r i c e s  fo l lows.  

C o r o l l a r y  4.2. Let B >1 0 be an n × n matrix  with n >~ 2. Then, the spectral radius, 
p(B), is the only eigenvalue in the wedge 

{z :  I a rg (z  - p,, I(B))[ < ~ t / ( n -  1)}. 

C o n s i d e r  n o w  A E L~ 2, wi th  pA(Z) given by  (6). T h e n  Cp ~> 0 for  
p --  1 , 2 , . . . ,  n - 2, a n d  c,, ~< 0, wi th  c,,_l < 0 i f  c ,  = 0 [4], L e m m a  2.4. In  the  
spec ia l  case  n = 3, t hen  i~(A) + io(A) = 2 by  C o r o l l a r y  3.3. 

T h e o r e m  4.3. Let  A be an n x n matrix with n >~ 4. I f  A E L~ -2 and A is 
nonsingular, then all eigenvalues oJ'A distinct J?om the negative eigenvalue lie in 
the wedge { a rg  z[ <~ rt - rt/n. I f  A is singular, then all eigenvalues o f  A distinct 
f rom the negative e(genvalue lie in the wedge l a rg  z[ <~ rt - rt/(n - l ) .  

P roof .  F i r s t  a s s u m e  A E L~) -2 is n o n s i n g u l a r  w i th  pA(Z) given  by  (6), U(r) a n d  
V(r) given by  (7) a n d  (8), r espec t ive ly ,  w i th  0 = rt - 7t/n. A s s u m e  w i t h o u t  loss  
o f  g ene ra l i t y  t h a t  A has  no  e igenva lue  on  ] a rg  z[ = rt - rc/n (o the rwise  t ake  
A + J ) .  The  n u m b e r  s o f  r o o t s  ofp,4(z) such t h a t  [ a rg  z[ < rt - rt/n is g iven by  

- - a r c t a n ( t a n  n(rt - 7t/n)) 
V(r) n 1 

s : I °  ~ + ~  (Tz-rr /n)  7r 

v(r)  n = + - - 1 .  ( l l )  

Reca l l  t h a t  fo r  A c L~ -2, Cp >~ 0 fo r  p = 1 , 2 , . . . ,  n - 2, a n d  in this  case  c ,  < 0. 
F i r s t  c o n s i d e r  the  case  when  n is even.  F o r  U(r) in (7) w i th  0 = rt - rt/n, the  
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coeff ic ient  o f  f is cos  n(rt - ~ /n )  < 0. F o r  k = 1,2 . . . . .  n - 1, the  coeff ic ient  o f  

r ' '-k is 

( - 1 ) % ,  c o s ( r / -  k ) (~  - ~ / n ) .  

T h u s  the  coeff ic ients  o f  r ''-~ . . . . .  r ''/2+1 are  ~< 0, the  coeff ic ient  o f  r ''/2 is zero ,  
a n d  the coeff ic ients  o f / , / 2  _ 1 . . . . .  r 2 a re  ~> 0. The  c o n s t a n t  t e rm  in U(r)  is 
c,, < 0. By D e s c a r t e s '  ru le  o f  signs,  U(r)  has  e i ther  no  pos i t ive  r o o t  or  two  pos -  
i t ive roo t s .  F o r  V(r)  in (8) w i th  0 = ~ - ~/n,  the  coeff ic ient  o f / '  is zero ,  a n d  for  
k --  1 , 2 , . . . ,  n - 1 the  coeff ic ient  o f / , - k  is 

(--1)kCk s in (n  -- k ) (~  - ~z/n), 

which  is ~< 0, i f  k <~ n - 2. F o r  k = n - 1, the  coeff ic ient  o f  r" k (i.e. o f  r)  is op -  
pos i t e  in sign f r o m  c,,_~. So i f  c,,_~ > /0 ,  then  V(r) has  no  pos i t ive  r o o t  and  hence  
l ~ ) ( V ( r ) / U ( r ) )  = 0 a n d  (11) impl i e s  t ha t  s --  n - 1. I f  c,,-L < 0, then  V(r)  has  
exac t ly  one  pos i t i ve  r o o t  v. I f  U(r)  has  no  pos i t ive  roo t ,  t hen  f r o m  (11), 
s = n - 1. I f  U(r)  has  two  pos i t i ve  roo t s ,  d e n o t e  t h e m  by  Ul, u2 wi th  ul <~ u2. 
I f  Ul < v < u2, t hen  I ~ ( V ( r ) / U ( r ) )  = 2, so s = n + 1, which  is imposs ib l e ;  
a n d  if  t~ = ul o r  uz (o r  b o t h ) ,  t hen  l i ~ ( V ( r ) / U ( r ) )  = 1, so s - n, wh ich  is a l so  
imposs ib l e .  Th i s  leaves  v < u~ <~ u2, or  uL <~ u2 < v a n d  in e i the r  o f  these  cases  
I i ~ ( V ( r ) / U ( r ) )  = 0, so f r o m  (11), s = n -  1. T h u s  the  s t a t e m e n t  is p r o v e d  for  
A n o n s i n g u l a r  a n d  n even.  T h e  case  where  A is n o n s i n g u l a r  a n d  n o d d  is s imi lar .  
N o w  s u p p o s e  A ~ L['~ -2 is s ingu la r ,  t ha t  is, c,, = 0 and  c,, ~ < 0. In  (1) let 

iz~ (z) = z .  P.4 (z), where  

p A ( z ) = z  "~1 - c l z "  ~ - + . . . + ( - 1 ) " - 2 c n _ 2 z + ( - 1 )  '' Ic, i, 

where  cp > /0  for  p = 1 , 2 , . . . , n -  2, a n d  c,,_~ < 0. I f  A has  no  e igenva lue  on  
] a rg  z I = ~ - r~/(n - 1), t ake  [~A(Z) = U(r)  + iV(r) ,  where  z = re ii~ ~//,, ~/!. By 
the s ame  a r g u m e n t  as g iven  in the  first  p a r t  o f  the  p r o o f  ( for  A n o n s i n g u l a r  
a n d  c,, t >~ 0), A has  exac t ly  one  e igenva lue  in the  sec to r  
] a rg  z] > r~ - ~ / ( n  - 1). In  each  case  the  wedge  c o n t a i n s  on ly  the  nega t ive  
e igenva lue .  T h e  t h e o r e m  fo l lows .  [ ]  

A r e s t a t e m e n t  o f  T h e o r e m  4.3 fo r  n o n n e g a t i v e  ma t r i ce s  fo l lows.  

C o r o l l a r y  4.4. Le t  B >~ 0 be an n x n matrbc with n >~ 3. Then, the spectral radius. 
p(B) ,  is the only eigenvalue in the wedge 

{z:  l a r g ( z -  p,, 2(B)) I < ~/n} .  

E x a m p l e  4.5. C o n s i d e r  the  bas ic  c i r cu l an t  P,,. T h e n  p , , _ l ( P , , ) - :  Pn 2(P,,) = O, 
a n d  it can  eas i ly  be  ver i f ied  (see E x a m p l e  2.2) t h a t  p(P,,) (which  is equa l  to  1), is 
the  on ly  e igenva lue  in the  w e d g e  {z : h a rg  zl < r~/(n - 1)}. 
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Usually Corollaries 4.2 and 4.4 will each provide independent information 
on localization. However, when p,,_l(B) = P,,-2(B) (as was the case in the pre- 
vious example), the information from Corollary 4.4 is redundant. 
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