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Abstract
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1. Introduction

Let B be an entry-wise nonnegative » x n matrix (denoted B = 0), and, for

=1,2,....n, let p,(B) denote the maximum spectral radius of the k x k prin-
cipal submatrices of B. For completeness, define p,(B) = —oc and
P (B) = oo, Observe that p,(B) equals p(B), the spectral radius of B. For
k=0,1,...,n,let Lg‘k (L"*) denote the class of Z-matrices 4 = ¢/ — B, in which
B>0 is an nxn matrix, and p,(B) <t < p(B) (px(B) <t < pp (B)).
Throughout we consider matrices of order n, thus we use the notation L}
(L*) for LI* (L™). The classes L, L), ....L} were introduced in [1] (denoted
by Ly, Ly, ..., L,), and observed to form a partition of the class of n x n Z-ma-
trices. Note that L” is the class of nonsingular M-matrices, Lf is the class of
(singular and nonsingular) M-matrices, see [2], ch. 6 and that L' (denoted
by Np) and L} % were first studied in [3]. L}~ was denoted by F; in [4] and fur-
ther studied in [5,6]. Note that if 4 € L™, then 4 is irreducible, and nonsingu-
lar (see [3]).

From the definitions it follows that 4 € L% (4 € L*) if and only if 4 is a Z-
matrix and each k x & principal submatrix of 4 is an M-matrix (nonsingular
M-matrix), but there is at least one (k+ 1)—by—(k + 1) principal submatrix
that is not an M-matrix; see [1] Theorem 1.3, for the L{ case. In [7] nonsin-
gular matrices in L{ were characterized in terms of the principal minors of
their inverses.

We are interested in the spectrum of 4 € L, and use the following notation.
The characteristic polynomial of an n—by—n matrix 4 is p,(z) = det(zl — 4).
and

puz) =2 —ci2 et —er 4+ (1), (1)

where ¢; is the sum of the & x k principal minors of 4. In particular, ¢, = tr4
and ¢, = det 4. The location of the eigenvalues of 4 can be specified by the
inertia of A, which is the triple i, (4), ix(4), i_(4), specifying the number of
eigenvalues with positive, zero, negative, real parts, respectively. Thus
i.(A4) +ip(A) specifies the number of eigenvalues (counting multiplicities) in
the closed right half-plane. For example, if 4 € L{, then i, (4) + io(4) = n, since
an M-matrix is positive semi-stable. In Section 3, for 4 € L] (4 € L*), where
[n/2] <k <n— 1, wedetermine bounds on i, (4) + ip(4) (i, (4)). We also verify
Conjecture 2.3 for 4 € Li™', when 2<n<6. In Section 4, for 4 € L{™' and
A € L1 we determine a wedge containing only one eigenvalue of 4, namely
the negative eigenvalue.

2. Preliminary results

We begin with the following definition.
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Definition 2.1. For n = 2, let

n/2+1 n = 0(mod 4)
n/2—-1/2 n = 1(mod 4)
s=91",n n = 2(mod 4),
n/2+1/2 n = 3(mod 4)

Example 2.2. Let 4 = —F,, where P, is the basic n x # circulant (that is, the
circulant with first row (0,1,0,...,0)). Then 4 € LI~ where t = 0 = p,_,(P,).
It is readily verified that i | (4) = g(n) if n 2 0 (mod 4) and i, (4) + is(4) = g(n)
if # = 0 (mod 4), since the eigenvalues of P, have real parts cos(2ng/n) for
g=0,1,...,n—1.

Motivated by this example, by the fact that the Cauchy interlacing inequal-
ities imply that i, (4) = n — | for symmetric 4 € L{', and by numerical results
indicating that if 4 € L2~ it is usually the case that i, (4) = n — 1, we make the
following conjectures.

Conjecture 2.3. If n > 2 and 4 € LI~ in which n #0 (mod4) or 4 € L""! in
which » = 0 (mod 4), then

n—1z2i,(4) = gn).

It would follow from the above conjecture that if 4 € L)™' in which
n = 0 (mod 4), then

n—12i(4)+io(Ad) > g(n).

From the definition of L}~', the above conjectures are equivalent to the fol-
lowing conjecture concerning the location of eigenvalues of nonnegative matri-
ces.

Conjecture 2.4. Let B = 0 be an n x n matrix with » > 2 and let S = {4: Aisan
eigenvalue of B with Re A< p,_(B)}. Then

n—1218| = gn).

In considering these conjectures in Section 3, we need the following inequal-
ity on the coeflicients of the characteristic polynomial of a Z-matrix.

Lemma 2.5. Let i, j be positive integers satisfying 2<i+ j<k <n, and let A € L}
be an n x n matrix with characteristic polynomial (1). Then

iy <er- . 2)

Moreover, if ¢, ; is positive, the inequality is strict.
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Proof. By the definition of L} each principal minor of order at most k is
nonnegative, hence ¢, 20 for p=1,2,...,k. Thus if ¢;; =0, then the
inequality holds. Now assume ¢;; > 0. Consider a principal submatrix of 4 of
order i+ j. As 4 € Lk, this submatrix is an M-matrix. Without loss of
generality (since L& is invariant under permutation similarity) assume that this
submatrix has row and column indices 1,2,...,i+/, and denote it by
A[1,2,....i+ j]. By Fischer’s inequality (see, for example, [8], p. 117)

det A[1,2,....i+j]< det A[1,2,... 4] -det Ai+ 1,i+2,....i4].

Multiply the right-hand side of (2) out. Each summand of ¢;.; is less than or
equal to a distinct product on the right-hand side of (2) by Fischer’s inequality.
Since there are other positive products on the right-hand side of (2) as well, in-
equality (2) is strict. [

We make use of Routh’s scheme (see [9], Theorem 3.3, p. 142, [10], p. 177) in
Sections 3 and 4. A brief description of what we need of this method is as fol-
lows. For the polynomial p4(z) given by (1), construct the Routh array {r;}
having the first two rows

{ror.rozs 703, .-} = {lca,cqnn 0}, (3)

{ri riasrs, .} = {—c1,—¢3, —cs, .., (4)

and ith row defined by

Fiy = L ; (5)

fori=2,3,...,n. Further, the rows of the Routh’s Scheme are then filled with
zeros. Associated with each row of Routh’s array is a polynomial. Write
z = i, and let

5

filw) =" =" "+ and filw) = —co 3

+ C3CU"7’ — e

n—1

For j=3,4,...,n+ 1, inductively define f;(w)=fi_1(w)g;-2(w) — fi—2(w).
Thus —f;(w) is the remainder upon dividing f;_»(w) by fi_i(®). In [10], p.
178 it is shown that f;(w) is the polynomial associated with the jth row of
Routh’s array. If the array is regular, i.e., r;; # O for all i, then ip(4) = 0 and
i, (A4) is equal to the number of variations in sign in the sequence of entries
in the first column, namely {ro, 71, #21, . . . }. If there is a zero element in the first
column, then the scheme (5) cannot be continued; the array is singular, and two
types of singularity must be considered. In the type (/) singular case, an entry
r,i =0 with p > 1, but there is ¢ > 2 such that r,, # 0. Then, i(4) = 0. Re-
place #, by a parameter ¢ (assumed small) and continue the array according



S.M. Fallat et al. | Linear Algebra and its Applications 277 (1998 ) 187-198 191

to (5). In the type (ii) singular case, a row, say the (j + 1)st, consists entirely of
zero entries so that f;(w), the polynomial associated with the jth row, is the last
nonzero polynomial obtained by the Euclidean algorithm. In this case the poly-
nomials f1(w) and f3(w) associated with the first two rows of Routh’s array,
respectively, have a nontrivial GCD and, to continue Routh’s algorithm, we
replace f;.1(@) by f/(w) (if the roots of f](w) are not simple, it will be necessary
to repeat this process, see [10], p. 183). In this case iy(4) may be positive.

The following result, due to Nabben [11], is used in Section 3. We state it
here for convenience.

Lemma 2.6 ([11], Theorems 2.8 and 2.10). Let A € L} be an n x n matrix, where
|n/2| <k<n—1. Then A has exactly one negative eigenvalue and det 4 <0.

Moreover, it follows from the proof of Theorem 2.10 in [11] that, if 4 € LF,
then det 4 < 0.

To obtain the wedge results of Section 4, we use the Cauchy index method,
see for example [10,12,13], which is described as follows. For any fixed angle

0 € (0, m), write z = re" and
pa(2) = pa(re”) = U(r) + iV (r), (6)
where from (1)
U(r) =7r"cos n) —cr" 'cos(n — O+ --- + (=1)"c,, (7)
V(r)=7r"sin n — ;" 'sin(n— )0+ -+ (=1)"'c,_yr sin 0. (8)

Let I*(V(r)/U(r)) denote the Cauchy index of the rational function
V(r)/U(r), namely the difference between the number of jumps from —oc to
+oc and from +oo to —oo of the rational function V(r)/U(r) as r increases
from 0" to co. Assuming that p,(z) has no root z with arg z = 0, and that
cos nf # 0, the number s of roots of p,(z) such that |arg z| < 6 is given by
[12], Theorem 1 and Corollary 1:

_ V)
s=1 U0

where U(r) and ¥ ()} are given in (7) and (8), respectively.

n 1
oy B
+ - arctan( tan n0), 9)

3. Inertia results for L}

We now examine the inertia of 4 € L, where [n/2| <k <n— 1 and, equiv-
alently, the inertia of nonnegative matrices. For matrices in L~ with zero di-
agonal, we have the following proposition.
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Proposition 3.1. [f 4 € L' and has zero diagonal, then i, (4), iv(4), and i (A)
agree with the number of nth roots of (—1)" that have positive, zero, and negative
real parts, respectively.

Proof. Since 4 € L' has zero diagonal, 4 is monomial [3], Theorem 2.2. Thus,
pa(z2) ="+ (=1)'c, ="+ (—1)" det 4,

and since det 4 < 0 [3], Lemma 2.1, the result follows. [

Next we study i, (4) for 4 € L* in which [n/2] <k <n— 1. If nis odd (even),
then i, (4) is even (odd) since det 4 < 0 and has exactly one negative (simple)
eigenvalue, by Lemma 2.6. Thus

n—12zi(4)+id) =i (4),

giving the upper bound in Conjecture 2.3 for all n. If n = 3 and odd, then
i_(A) =2, since 4 is nonsingular and tr 4 > 0. Observe that i, (4) =1 for
n=2and k= 1.

Theorem 3.2. If A € L¥, with n > 3 and |n/2) <k<n— 1, then
2 if nisodd,

n~12i,(A)>{ e
3 if nis even.

Proof. In view of the remarks preceeding the statement of the theorem, we only
need to consider the case in which » i1s even; so first assume n > 6 (and
consequently k > 3). Consider the Routh array for p4(z) given by (3), (4) and
(5) for 4 € L*. Since A € L*, every principal submatrix of 4 of order <k is a
nonsingular M-matrix and thus ¢;,cz,....c; > 0. The first three entries of the
first column are rgy =1, ) = —¢; <0, and ry = (c1ca —¢3)/c1 >0, by
Lemma 2.5. If the array is regular, then (3), (4), and (5) imply that the last
nonzero term in the odd rows is (—1)"¢c,; in particular, r,; = (—1)"¢, <0, by
Lemma 2.6. Thus, the number of variations in sign in the sequence of entries n
the first column of Routh’s array is at least 3, giving i, (4) = 3. If the array is
singular, then there is p > 3 such that r,; = 0. For type (i), io(4) = 0, replace
rp1 by € (small) and continue the scheme. This does not affect the last term in
the odd rows, so again i,.(4) > 3. Now assume there is a type (if) singularity
and 4 has no purely imaginary eigenvalue. Suppose fj.1(w) =0 and fj(w) is
the last nonzero polynomial obtained from the Euclidean algorithm. Then
fi(w) must be of even degree with its last nonzero coeflicient being ¢, < 0.
Upon replacing f;.1(w) by f(w) and continuing Routh’s algorithm, the last
row of Routh’s array is identical to the last row in the regular case and so
i+ (4) = 3. If 4 has purely imaginary eigenvalues, then there is n > 0 such that
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A4 —yl € L¥ has no such ecigenvalues. By above i, (4 —nl) > 3, and so by
continuity /. (4) 2 3. If n=4, then k=2 or 3. In either case, ¢, ca,
cica — ¢3 > 0 and the proof is identical to the proof of the first part. [

Applying a routine continuity argument gives the following corollary.

Corollary 3.3. [f A € L, withn =3 and |n/2] <k<n— 1, then
2 if nisodd,

n—1z2i (4)+i(4) = e
3 if nis even.

Imposing an additional assumption on the diagonal entries of 4, we can ex-
tend this result for 4 € L' as follows.

Theorem 3.4. If A € L™ withn =3 and tr 4 > 0, then

] 2 if nisodd,
’7_1>l+(A)> e
3 if nis even.

Proof. If ¢» > 0, then a proof as given for Theorem 3.2 establishes the result. So
assume ¢» = 0 (and therefore from Lemma 2.5, ¢3;=c¢4 = =c¢,.1 =0).
Thus, py(z) =z" — 12" +¢,. Following Gantmacher [10], p. 185, let
pa(z) = Fi(2) + F(z), where Fi(z) =z + ¢, and F5(z) = —c1z"~". Since ¢, < 0
it is easily seen that the GCD of Fi(z) and F(z) is a constant. Thus p,(z) has no
root z for which —z is also a root and hence io(4) = 0. The result follows from
Corollary 3.3. [J

That it is necessary to state Corollary 3.3 in terms of the closed right half-
plane is seen by the following example.

Example 3.5. Consider

0 -1 0
A=0-B=i{-1 0 -1
0 -1 0
It is easily checked that p,_,(B) = p,(B) = 1, while p ,» (B) = p;(B) = 0, and
that the spectrum of B (and 4) is {—v/2, 0. v/2}. Thus 4 € L;"* has but one
eigenvalue in the open right half-plane.

Corollary 3.6. Let B = 0 be an n x n matrix withn =2 3 and let S = {/.: Zis an
eigenvalue of B with Re A< p|,;»(B)}. Then
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2 ifnisodd,

EEETES P
3 if nis even.

If B = 0 and » = 3 or 4, then Corollary 3.6 implies that all eigenvalues / dif-
ferent from p(B) satisfy
Re A< p ) (B).

The following example is an illustration.

Example 3.7. Consider,

6 2 3
B=15 6 0
1 4 6

Since B is row stochastic, it is obvious that p(B) =11, and, since
Piaj2)(B) = max{b;} = 6, all other eigenvalues of B lie in the disk x* +)* <

121 and on or to the left of the vertical line x = 6. In fact, the other two eigen-
values of B are 7/2 + iv/23/2.

Using Corollary 3.3 when k£ = n — 2,n — | gives the following.

Corollary 3.8. If A € L""2 U L""!, where n=23 or 4, then A has a unique negative
eigenvalue and the other eigenvalues of A have positive real parts. Furthermore, if
A€ Ll ULl where n=3 or 4, then A has a unique negative eigenvalue and
the other eigenvalues of A have nonnegative real parts.

Proposition 3.1 and Theorem 3.4 prove Conjecture 2.3 (and equivalently
2.4) for matrices of orders 2, 3, 4, 5 and 6. The smallest unknown case for
A€ Ly is n=17, with g(7) = 4, but the possibility of exactly 2 roots in the
open right half-plane has not been ruled out. For n =9, g(9) = 4, and taking
A = tl — Py, in which P is the basic 9 x 9 circulant and with suitably chosen #:
0 <1 < 1, shows that i, (4) can take on the values 4, 6 or 8. Again we do not
know whether i, (4) = 2 is possible for 4 € L:~' when n=9. For general n
odd (even), 4 = tI — P, and suitable 1, 0<t < 1, 4 € L' and i, (4) can achieve
any even (odd) integer in [g(n), n — 1].

4. Wedge results for Ly ' and L;™*
Recall that any matrix in L' U L2 has exactly one negative eigenvalue.

We show that in fact, if 4 € L7~!, then the negative eigenvalue is the only eigen-
value of 4 in a sector of semi-angle n/(n — 1) about the negative real axis.
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Similarly, if 4 € L2, then this is the only eigenvalue in a sector of semi-angle
n/n about the negative real axis. Our proof uses the Cauchy index method as in
[12], specifically (9) with § = n — nt/(n — 1), and 0 = n — nt/n, which implies in
either case, cos nfl # 0. In the special case, when n = 2, it is clear that if
A € Ly, then A4 has one positive and one negative eigenvalue.

Theorem 4.1. Let A be an n x n matrix with n = 3. If A eLg”, then all
eigenvalues of A distinct from the negative eigenvalue lie in the wedge
larg z|<m—mn/(n—1).

Proof. Consider 4 € L~ with p,(z) given by (6), U(r) and V(r) given by (7)
and (8), respectively, with 6 =t —n/(n — 1). Since the theorem is true for
n =3 or for ¢, =0 (see Lemma 3.1), we may assume that » > 4 and ¢, > 0.
Further, assume without loss of generality that 4 has no eigenvalue on
|arg z| = 1 — n/(n — 1) (otherwise consider 4 + &/ € Li™!).

From (9), the number s of roots of p,(z) such that |arg z| < n —n/(n— 1) is
given by

Vir) n

s=1 +E(1t—n/(n—1))—%arctan(tan n(n—n/(n-1)))

C U
« V()

—I“ Wr)‘l‘/’l—l. (10)
Recall that for 4 € L', ¢, 20 for p=1,2,...,n -1, and ¢, < 0. Consider
first the case when » is even. For U(r) in (7) with 0 = n — =n/(n — 1), the coef-
ficient of #" is cos n(n —n/(n—1)) < 0. For k=1,2.... n~— 1 the coefficient
of r'=* is

(=1)¢x cos(n—k)(m—n/(n—1)).

Thus the coefficients of #'~',»72,... ¥/ are <0, and the coefficients of
P21 .,rare =0. The constant term in U(r) is ¢, < 0. Since the number
of sign changes in the coefficients of U(r) is either 0 or 2, U(#) has either no
positive root or two positive roots, by Descartes’ rule of signs. For V() in
(8) with § = m— n/(n — 1), the coefficient of 7 is > 0, the coefficient of r"~!

is zero, and for k =2,3, ..., n — 1, the coefficient of »'~* is

(=)' sin(n—k)(m = n/(n — 1)) <0.

Hence ¥ (#) has no more than one positive root. If ¥(r) has no positive root,
then I;°(V(r)/U(r)) = 0 and s = n — 1. So assume ¥ (r) has one positive root,
say v. If U(r) has no positive roots, then from (10), s = n — 1. Otherwise, U(r)
has two positive roots uy <ua. If ¢ =0, thenc¢; = ¢4 =--- =¢,, = 0, by Lem-
ma 2.5. Hence V() has no positive root, and s = n — 1. So assume ¢, > 0. Fol-
lowing [13], consider ¥ (v)/v = 0. Since the coefficient of »"~! in ¥V (r) is zero,
solving for v"~! gives
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ol . sin(n — k)0
s - -1 kvl o n—k—1 Sin (‘I’l
! (=) e sin nf

T
(S8

where 0 = n — nt/(n — 1). Substituting for v"~' in U(v), gives

n

Uv) =Y (yer+ dierer e

1=2

where 7, = (—1)"(sin 6/sin 0) and 6, = (=1)"""'sin(n — [+ 1)0/sin 0. Thus
it follows that 4, = y,¢, + d,c1¢,-1 <0 for / =2,3,...n, and hence U(r)<0.
Then 4, < 0 as ; =0, and 7, < 0 hence U(v) < 0. Thus v < u; or v > u». In

either case /j° %)) =0 and s = n — 1. In a similar fashion it can also be shown

that s = »n — 1 if n is odd. Therefore 4 has exactly one eigenvalue in the sector
|arg z] > 1 — n/(n — 1), which must be the negative eigenvalue. The result
follows. [

A restatement of Theorem 4.1 for nonnegative matrices follows.

Corollary 4.2. Let B = 0 be an n x n matrix with n = 2. Then, the spectral radius,
p(B), is the only eigenvalue in the wedge

{z: larg(z = p,_1(B))] < m/(n = 1)}

Consider now A € L%, with ps(z) given by (6). Then ¢, >0 for
p=12...,n~2 and ¢, <0, with ¢,_; <0 if ¢, =0 [4], Lemma 2.4. In the
special case n = 3, then i_(4) 4 iy(4) = 2 by Corollary 3.3.

Theorem 4.3. Let A be an n x n matrix with n>4. If A€ L and A is
nonsingular, then all eigenvalues of A distinct from the negative eigenvalue lie in
the wedge |arg z| <n —n/n. If A is singular, then all eigenvalues of A distinct
from the negative eigenvalue lie in the wedge {arg z| <nm —n/(n—1).

Proof. First assume 4 € L~ is nonsingular with p4(z) given by (6), U(r) and
V(r) given by (7) and (8), respectively, with 6 = n — nt/n. Assume without loss
of generality that 4 has no eigenvalue on |arg z| = n — nt/n (otherwise take
A + ¢l). The number s of roots of p4(z) such that |arg z| < n — n/n is given by

)
= o)
V(r)

+%(1r —n/n) — %arctan(tan n(n—m/n))

Recall that for 4 € L%, ¢, 2 0 for p=1,2,...,n— 2, and in this case ¢, < 0.
First consider the case when # is even. For U{r) in (7) with § = n — nt/n, the
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coeflicient of #" is cos n{n — n/n) < 0. Fork =1,2....,n — 1, the coefficient of
Pk s

(=1Y¢ cos(n — k)(m — n/n).

Thus the coefficients of #'. ... #/2*! are <0, the coefficient of »/? is zero,
and the coefficients of #/> — 1,...,7* are > 0. The constant term in U(r) is
¢, < 0. By Descartes’ rule of signs, U(r) has either no positive root or two pos-
itive roots. For ¥ (r) in (8) with § = n — n/n, the coefficient of +" is zero, and for
k=1,2,...,n — 1 the coefficient of ¥ is

(=1)*e; sin(n — k){(n — n/n),

which is <0, if k<n — 2. For k = n — 1, the coefficient of »'* (i.e. of r) is op-
posite in sign from ¢,_;. So if ¢,-; = 0, then V(r) has no positive root and hence
I(V(r)/U(r)) =0 and (11) implies that s =n — 1. If ¢, <0, then V(r) has
exactly one positive root . If U(») has no positive root, then from (11),
s =n— 1. If U(r) has two positive roots, denote them by u;.u, with u; <u>.
If uy < v <u, then IJ(V(r)/U(r)) =2, so s =n+ 1, which is impossible;
and if v = u; or u; (or both), then IF*(V(r)/U(r)) = 1, so s = n, which is also
impossible. This leaves v < u; <us, or u; <u» < v and in either of these cases
I (V(r)/U(r)) =0, so from (11), s = n — 1. Thus the statement is proved for
A nonsingular and » even. The case where 4 is nonsingular and » odd 1is similar.
Now suppose 4 € Li7? is singular, that is, ¢, =0 and ¢, ; < 0. In (1) let
pa(2) = 2+ p,(2), where

ﬁA(Z) — zn~-1 = C]Z"iz 4+t (—1)’]M2C,,‘QZ+ (—1)’]4(‘,1,|.

where ¢, 20 for p=1,2,...,n—2, and ¢, <0. If 4 has no eigenvalue on
larg z| = n —n/(n — 1), take p,(z) = U(r) + iV (r), where z = re/™ (=11 By
the same argument as given in the first part of the proof (for 4 nonsingular
and ¢,.; 20), A4 has exactly one eigenvalue in the sector
larg z] > m—n/(n —1). In each case the wedge contains only the negative
eigenvalue. The theorem follows. [J

A restatement of Theorem 4.3 for nonnegative matrices follows.

Corollary 4.4. Let B = 0 be an n x n matrix with n = 3. Then, the spectral radius,
p(B), is the only eigenvalue in the wedge

{z: larg(z = p,2(B))| < m/n}.
Example 4.5. Consider the basic circulant £,. Then p,_(P,) = p,_»(P,) =0,

and it can easily be verified (see Example 2.2) that p(P,) (which is equal to 1), is
the only eigenvalue in the wedge {z: |arg z| < n/(n — 1)}.
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Usually Corollaries 4.2 and 4.4 will each provide independent information
on localization. However, when p,_(B) = p,_,(B) (as was the case in the pre-
vious example), the information from Corollary 4.4 is redundant.
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