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Abstract

In this paper, continuous methods are introduced to compute both the extreme and interior
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are also presented.
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1. Introduction

Let A ∈ Rn×n be a symmetric matrix. From the Real Schur Theorem, we know that
all eigenvalues of A are real and there exists an orthonormal matrix U =
(u1, u2, . . . , un) and a diagonal matrix � such that

A = U�UT, (1.1)

where

� = diag(λ1, λ2, . . . , λn), λ1 = · · · = λs < λs+1 � · · · � λn, (1.2)

and 1 � s � n. As a result, we denote

S = {
x ∈ Rn | Ax = λ1x, xTx = 1

}
. (1.3)

Obviously, the columns of U form an orthonormal basis in Rn and S is the sub-
set containing all the eigenvectors with l2-norm one corresponding to the smallest
eigenvalue of A. The extreme eigenvalue problem that we are interested in is to find
λ1 and an x ∈ S. While the interior eigenvalue problem is to find an eigenvalue in a
predefined interval [a, b], i.e.

Ax = λx, xTx = 1, λ ∈ [a, b], (1.4)

and its corresponding eigenvector. It should be mentioned that we do not assume that
there must exist an eigenvalue in [a, b]. Our new method is capable of detecting if
there is any eigenvalue in [a, b] or not.

The eigenvalue problem is a classical but very important problem (see [12]).
Besides the conventional methods in numerical analysis for the eigenvalue problem
(see [12] and the references therein), some continuous methods have been discussed
in [1–3] for the extreme eigenvalue problem. In [1,2], various ODE systems are
introduced for many numerical analysis problems. Sparked by Hopfield’s neural
network approach [6–8], Cichocki and Unbehauen [3] introduced a neural network
model for computing the minimum eigenvalue and the corresponding eigenvector.
The idea in [3] is to convert the minimum eigenvalue problem into a constrained
optimization problem. Then a neural network model was introduced to solve this
constrained problem by using either the penalty method or the Lagrange multiplier
method. However, the optimization problems formulated in [3] are not easy to solve.
Therefore, the application of their methods is quite limited. The interior eigenvalue
problem is relatively difficult comparing with the extreme eigenvalue problem. So
far, there are not any continuous methods for the interior eigenvalue problem in the
literature.

In this paper, we also convert both the extreme and interior eigenvalue problems
into some optimization problems (Section 2). However, our optimization problems are
to minimize a strictly concave function over a unit ball. Therefore, our optimization
problems are very easy to solve. For each resulting optimization problem, a continuous
method which consists of a merit function and an ordinary differential equation (ODE)
is introduced. The convergence of each ODE solution is proved for any starting point
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(Section 3). Some promising numerical results are reported (Section 4). Finally, some
conclusions are drawn (Section 5).

2. Equivalent optimization problems

To distinguish the two eigenvalue problems, we will discuss them in separate
subsections.

2.1. Extreme eigenvalue problem

To formulate the extreme eigenvalue problem into an optimization problem, we
consider

min
x∈Rn

xTAx (2.1)

s.t. xTx = 1.

For any x ∈ Rn, there exist αi , i = 1, . . . , n such that

x =
n∑

i=1

αiui, (2.2)

where ui’s are the column vectors of U .
Problem (2.1) is to minimize a quadratic function on the surface of a ball. The

difficulty for problem (2.1) is its constraint where the feasible region is not a convex
set. Now we further convert problem (2.1) into another optimization problem which
is much easier to solve. First, let us select a constant c such that

c � λn + 1. (2.3)

Since A is symmetric, from Corollary 2.3.2 in [4], we have

max
1�i�n

|λi | = ‖A‖2 � ‖A‖1, (2.4)

we can always choose c = ‖A‖1 + 1 (we will adopt this formula for c as the default
value in our numerical computation). Then we can establish the following problem:

min
x∈Rn

xTAx − cxTx (2.5)

s.t. xTx � 1.

Problem (2.5) differs from problem (2.1) in that the objective function is quadratic
and strictly concave but the constraint is a simple ball constraint. The feasible region
for (2.5) is a closed convex set. Therefore, it is much easier to solve (2.5) than
(2.1).
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Lemma 2.1
(i) Every local minimizer of (2.5) is also a global minimizer of (2.5).

(ii) x is a global minimizer of (2.5) ⇐⇒ x ∈ S.

Proof. Using (2.2), problem (2.5) becomes

min
n∑
i

α2
i (λi − c) (2.6)

s.t.
n∑

i=1

α2
i � 1.

Since

0 > λi − c � λ1 − c, i = 1, . . . , n, (2.7)

the results in (i) and (ii) can be easily established. �

From Lemma 2.1, we can easily see that the minimum value of (2.5) is λ1 − c and
any optimal solution is an eigenvector corresponding to λ1.

2.2. Interior eigenvalue problem

First, let us consider the following optimization problem:

min
x∈Rn

xT(A − aIn)(A − bIn)x (2.8)

s.t. xTx = 1.

In problem (2.8), there is not any restriction on the values of a and b.
From (2.2), problem (2.8) becomes

min
α1,...,αn

n∑
i=1

α2
i (λi − a)(λi − b) (2.9)

s.t.
n∑

i=1

α2
i = 1.

From (2.9), it is easy to see that

κ � xT(A − aIn)(A − bIn)x � η, (2.10)

where

κ = max
1�i�n

(λi − a)(λi − b), (2.11)

η = (λk − a)(λk − b) = min
1�i�n

(λi − a)(λi − b), (2.12)

and k is an index achieving the minimum.
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Eq. (2.10) indicates that the objection function in (2.9) is always bounded. In
addition, the constraint in (2.8) or (2.9) can be easily satisfied. Therefore, problem
(2.8) or problem (2.9) is well defined. Now we explore an important property for
problem (2.8).

Lemma 2.2. Every local minimizer of (2.8) is also a global minimizer of (2.8).

Proof. Obviously, the global minimum value for (2.8) and (2.9) is η which is achiev-
able. Let x be a local but not global minimizer for (2.8). From (2.9)–(2.12), we
know

n∑
i=1

α2
i (λi − a)(λi − b) > η. (2.13)

Therefore, there must exist an index j such that αj /= 0 and (λj − a)(λj − b) > η.
Then, by reducing |αj | and increasing αk while maintaining

∑n
i=1 α2

i = 1, we can
reduce

∑n
i=1 α2

i (λi − a)(λi − b). This contradicts with our assumption that x is a
local minimizer. This completes the proof. �

Based on the result of Lemma 2.2, we can establish the following result.

Theorem 2.3. Let x∗ be a global minimizer of (2.8), then we have the following
results.

(i) η = (x∗)T(A − aIn)(A − bIn)x
∗.

(ii) If η > 0, then there exists no eigenvalue of A in the interval [a, b].
(iii) If η � 0, then there exists at least one eigenvalue of A in the interval [a, b]. In

addition, if there exists exactly one eigenvalue of A in the interval [a, b], then
(x∗)TAx∗ = λk is the eigenvalue and x∗ is the corresponding eigenvector.

(iv) If η = 0, then one of the eigenvalues of A must be either a or b.

Proof. (i) From the proof of Lemma 2.2, we know that the global minimum value for
(2.8) or (2.9) is η which is achievable at αk = 1 and αi = 0, i = 1, . . . , k − 1, k +
1, . . . , n.

(ii) If η > 0, from its definition in (2.12), then (λi − a) and (λi − b) have the same
sign for all i’s. Therefore, there exists no eigenvalue of A in the interval [a, b].

(iii) If η � 0, from (2.12), we know there exists an index k such that

a � λk � b. (2.14)

This guarantees that there exists at least one eigenvalue of A in the interval [a, b].
The rest of (iii) are straightforward.

(iv) If η = 0, then (λk − a)(λk − b) = 0. Therefore, either a or b must be an
eigenvalue of A. �
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From Theorem 2.3, we know that if there are more than one eigenvalue of A in the
interval [a, b]. (x∗)TAx∗ may not be an eigenvalue of A. This can be easily checked
from ‖Ax∗ − (x∗)TAx∗x∗‖. In the case that there is more than one eigenvalue in the
interval [a, b], we can solve

(λi − a)(λi − b) = η

to obtain two λi’s. Then by checking ‖Ax∗ − λix
∗‖, the desired eigenvalue can be

easily located.
Now the key point is to solve problem (2.8). Problem (2.8) is to minimize a

quadratic function on the surface of a ball. The difficulty for solving problem (2.8) is
that its constraint set is not a convex set. Now we further convert problem (2.8) into
the following optimization problem which is much easier to solve.

min
x∈Rn

xT(A − aIn)(A − bIn)x − cxTx (2.15)

s.t. xTx � 1,

where c > κ + 1. From the requirement on c, we can see that [cIn − (A − aIn)(A −
bIn)] is a positive definite matrix.

Problem (2.15) differs from problem (2.8) in that the objective function is still a
quadratic function, but it is a strictly concave function. In addition, the constraints
are a simple ball constraint. Therefore, it is much easier to solve (2.15) than (2.8).

Lemma 2.4
(i) Every local minimizer of (2.15) is also a global minimizer of (2.15).

(ii) x is a global minimizer of (2.8) ⇐⇒ x is a global minimizer of (2.15).

Proof. It is easy to see that problem (2.15) is equivalent to

min
α1,...,αn

n∑
i=1

α2
i [(λi − a)(λi − b) − c] (2.16)

s.t.
n∑

i=1

α2
i � 1.

Obviously, the global minimum value for (2.16) isη − c which is achievable atαk = 1,
αi = 0, ∀i /= k.

(i) Assume that x is a local but not a global minimizer of (2.15). Since (2.15) and
(2.16) are equivalent, we have

0 �
n∑

i=1

α2
i [(λi − a)(λi − b) − c] > η − c, (2.17)

where αi’s are defined in (2.2).
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From (2.17), we know that there must exist an index j such that αj /= 0 and
(λj − a)(λj − b) > η. (Otherwise the objective function in (2.16) would be

∑n
i=1 ×

α2
i (η − c). This would contradict with our assumption on x.) Thus, by reducing αj and

increasing αk , we can maintain
∑n

i=1 α2
i � 1 and reduce the objective function value

in (2.16). This contracts with our assumption on x. Therefore every local minimizer
of (2.15) must also be a global minimizer of (2.15).

(ii) Since (2.15) and (2.16) are equivalent, then we have

0 �
n∑

i=1

α2
i [(λi − a)(λi − b) − c] � (η − c)

n∑
i=1

α2
i . (2.18)

But the global minimum value for (2.16) is η − c. Therefore from (2.18), we know that
any global minimizer of (2.16) must satisfy

∑n
i=1 α2

i = 1. Again from the equivalence
of (2.8) and (2.9), we can easily see that (ii) is true. �

3. Continuous methods

Similar to our discussion in the previous section, we will consider the continuous
methods for problem (2.5) (extreme eigenvalue problem) and problem (2.15) (interior
eigenvalue problem) in the following two subsections.

3.1. A continuous method for extreme eigenvalue problem

Now we focus on problem (2.5). Generally speaking, a continuous method for an
optimization problem consists of two components: a merit function (bounded below)
and a dynamical system. In addition, the merit function must be monotonically nonin-
creasing along the solution of the dynamical system. Following the model developed
in [9], we have our continuous method for problem (2.5):

Merit function:

f (x) = xTAx − cxTx. (3.1)

Dynamical system:

dx(t)

dt
= −[x − P�(x − ∇f (x))], (3.2)

where � = {x ∈ Rn | xTx � 1} and P�(·) is the projection onto � defined as

P�(y) = argmin
x∈�

‖x − y‖2, ∀y ∈ Rn.

To simplify the following discussion, we define

e(x) = x − P�(x − ∇f (x)). (3.3)
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First, let us reveal an important property for e(x).

Lemma 3.1. e(x) = 0 with x /= 0 ⇐⇒ x is an eigenvector of A with ‖x‖ = 1.

Proof. “⇐” This is straightforward. “⇒” e(x) = 0 implies

x =
{[x − ∇f (x)]/‖x − ∇f (x)‖, if ‖x − ∇f (x)‖ > 1,

x − ∇f (x), if ‖x − ∇f (x)‖ � 1.
(3.4)

If ‖x − ∇f (x)‖ � 1, from (3.4), we have

∇f (x) = 2(A − cIn)x = 0. (3.5)

But (cIn − A) is a positive definite matrix, (3.5) implies x = 0 which contradicts with
x /= 0. Therefore, it must be true that ‖x − ∇f (x)‖ > 1. Let γ =
‖x − ∇f (x)‖ − 1 > 0, then from (3.4), we have

(A − cIn)x = −γ

2
x. (3.6)

Eq. (3.6) indicates that x is an eigenvector of A. From (3.4), it is easy to see that
‖x‖ = 1 if ‖x − ∇f (x)‖ > 1. This completes our proof. �

Now we are ready to analyze the convergence properties for the solution of (3.2).
These results will be summarized in the following theorems.

Theorem 3.2. For any x0 ∈ Rn, there exists a unique solution x(t) of the dynamical
system (3.2) with x(t = t0) = x0 in [t0, +∞).

Proof. Since the right-hand-side of (3.2) is continuous in Rn, the Cauchy–Peano
theorem ensures that there exists a solution x(t) of the dynamical system (3.2) with
x(t = t0) = x0. For this solution x(t), we define

E(x(t)) = ‖x(t) − P�(x(t))‖2. (3.7)

Obviously, E(x(t)) is the square of the distance of x(t) to set �. Then we have from
(3.2) and (3.3) that

dE(x(t))

dt
=

{
−2

(
1 − 1

‖x‖
)

xTe(x), if ‖x‖ > 1,

0, if ‖x‖ � 1.
(3.8)

From (3.3), we have

xTe(x) =
{

xTx − (2c+1)xTx−2xTAx
‖(2c+1)x−2Ax‖ , if ‖(2c + 1)x − 2Ax‖ > 1,

2xTAx − 2cxTx, if ‖(2c + 1)x − 2Ax‖ � 1.
(3.9)

From the requirement on c in (2.3), we have

‖(2c + 1)x − 2Ax‖ � ‖2cx − 2Ax‖ − ‖x‖ � ‖2x‖ − ‖x‖ = ‖x‖. (3.10)
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Eqs. (3.9) and (3.10) indicate

xTe(x) = xTx − (2c + 1)xTx − 2xTAx

‖(2c + 1)x − 2Ax‖ > 0 if ‖x‖ > 1. (3.11)

Eqs. (3.8) and (3.11) indicate that E(x(t)) is monotonically nonincreasing in t . There-
fore, we have

‖e(x)‖ � ‖x − P�(x)‖ + ‖P�(x) − P�(x − ∇f (x))‖ � ‖x(t0)‖ + 3.

(3.12)

Eq. (3.12) indicates that the right-hand-side of (3.2) is bounded for any given x0.
Again the Cauchy–Peano theorem ensures that the solution x(t) exists in [t0, +∞).

Since � is a closed convex set, from the nonexpansive property of the projection
operator, we have

‖P�(u) − P�(v)‖ � ‖u − v‖, ∀u, v ∈ Rn.

Therefore,

‖e(x) − e(y)‖ = ‖x − P�(x − ∇f (x)) − y + P�(y − ∇f (y))‖
� ‖x − y‖ + ‖P�(x − ∇f (x)) − P�(y − ∇f (y))‖
� ‖x − y‖ + ‖x − y‖ + ‖∇f (x) − ∇f (y)‖
� (2 + 2‖A‖ + 2c)‖x − y‖, ∀x, y ∈ Rn. (3.13)

Eq. (3.13) implies that e(x) in (3.3) is Lipschitz continuous in Rn. From the Picard–
Lindelöf theorem, the proof is completed. �

The result of Theorem 3.2 indicates that our dynamical system (3.2) is well defined.
In the proof of Theorem 3.2, we can see that if x0 /∈ �, then the solution x(t) of (3.2)
will move towards the feasible region, and if x0 ∈ �, then the solution x(t) of (3.2)
will stay in � from then on. Before we prove the convergence of the solution of (3.2),
we need to observe the following properties. First, from (2.2), we can define

x(t) =
n∑

i=1

αi(t)ui = Uα(t), (3.14)

where x(t) is the solution of (3.2), ui’s are the column vectors of U defined in (2.1),
and α(t) = (α1(t), . . . , αn(t))

T. Then from (3.1), we have

g(α) ≡ f (x) =
n∑

i=1

α2
i (t)(λi − c). (3.15)

Therefore, it is straightforward to see that (3.2) is equivalent to

dα(t)

dt
= −[α − P�(α − ∇g(α))]. (3.16)
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In order to prove the convergence of the ODE solution x(t), we need the following
lemma.

Lemma 3.3. Suppose scalar function h(t) is differentiable on [t0, T ] with h(t0) = 0.
If there exists an M > 0 such that

∣∣ dh
dt

∣∣ � M|h(t)|, t ∈ [t0, T ], then h(t) = 0, t ∈
[t0, T ].

Proof. See Exercise 26, p. 119, [10]. �

It is easy to see that T can be extended to +∞. Now we prove the following
important convergence results for the solution of (3.2).

Theorem 3.4. For any x0 ∈ �, let x(t) be the solution of (3.2) with x(t = t0) = x0.
Then (i) if e(x0) = 0, x(t) ≡ x0, ∀t � t0; (ii) if e(x0) /= 0, then limt→+∞ e(x(t)) =
0.

Proof. (i) From (3.16), we have for i = 1, . . . , n,

dαi(t)

dt
=

{
−αi(t) + (2c+1−2λi)αi (t)‖α(t)−∇g(α)‖ , if ‖α(t) − ∇g(α)‖ > 1,

2(c − λi)αi(t), if ‖α(t) − ∇g(α)‖ � 1.
(3.17)

In both cases, we have for i = 1, . . . , n,∣∣∣∣dαi(t)

dt

∣∣∣∣ � 2(c − λ1 + 1)|αi(t)|, ∀t � t0. (3.18)

If e(x0) = 0, then from Lemma 3.1, we know either x0 = 0 or x0 is an eigenvector
of A with ‖x0‖ = 1. If x0 = 0, from (3.14) we have α(t0) = 0. Therefore, (3.18) and
Lemma 3.3 imply α(t) ≡ 0, ∀t � t0. Thus, x(t) ≡ 0, ∀t � t0. If x0 is an eigenvector
of A with ‖x0‖ = 1, let

Ax0 = λkx0.

Then from (3.14), αi(t0) = 0 if λi /= λk . Then from (3.18) and Lemma 3.3, we have

αi(t) ≡ 0, ∀t � t0, ∀i with λi /= λk.

Therefore, ‖α(t) − ∇g(α)‖ = (2c + 1 − 2λk)‖α(t)‖. Since ‖α(t0)‖ = 1, 2c + 1 −
2λk > 1, and α(t) ∈ � ∀t , (3.17) indicates that ∃ a t̄ > t0 such that

dαj (t)

dt
≡ 0, ∀t ∈ [t0, t̄], ∀j with λj = λk.

Therefore, α(t) ≡ α(t0) and ‖α(t)‖ = 1, ∀t ∈ [t0, t̄]. This process can be repeated
until t̄ → +∞. Therefore, α(t) ≡ α(t0), ∀t � t0. Thus, x(t) ≡ x0, ∀t � t0.

(ii) Since x0 ∈ �, Theorem 3.2 ensures that x(t) ∈ �, ∀t � t0.
Since � is a closed convex set, from inequality (4) in [5], we have

[y − P�(y)]T[x − P�(y)] � 0, ∀x ∈ �, ∀y ∈ Rn. (3.19)
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Taking y = x − ∇f (x) in (3.19), we have

[e(x) − ∇f (x)]Te(x) � 0. (3.20)

From (3.1)–(3.3) and (3.20), we have

df (x)

dt
= −[∇f (x)]Te(x) � −‖e(x)‖2 � 0, ∀t � t0. (3.21)

From the LaSalle invariant set theorem (Theorem 3.4 in [11]) and (3.21), we know

lim
t→+∞ e(x(t)) = 0.

This completes the proof. �

Theorem 3.4 is a little bit short of proving the convergence of x(t) which is much
more desirable. This result is summarized in the following theorem.

Theorem 3.5. For any x0 ∈ �, let x(t) be the solution of (3.2) with x(t = t0) = x0.
Then x(t) is convergent, i.e. there exists an x∗ ∈ � such that limt→+∞ x(t) = x∗. In
addition, if x0 /= 0, limt→+∞ x(t)TAx(t) = λk, where k = min

{
i | xT

0 ui /= 0, i =
1, . . . , n

}
.

Proof. Obviously, if x0 = 0, then x(t) ≡ 0, ∀t � t0 from the proof of Theorem 3.4.
Therefore x(t) is convergent. So we assume x0 /= 0 in the rest of proof.

From the proof of Theorem 3.2, we know x(t) ∈ � for all t’s. The boundedness of
� implies that there exists at least one limit point for {x(t)}. Let x̄ be any limit point
of {x(t)}. Then e(x̄) = 0 from (ii) of Theorem 3.4 and x̄ /= 0 from x0 /= 0 and (3.21).
From Lemma 3.1, we know that x̄ is an eigenvector of A with ‖x̄‖ = 1. Therefore,
we have limt→∞ ‖x(t)‖ = 1.

From x ∈ � ⇐⇒ α ∈ � and ‖x(t)‖ = ‖α(t)‖, there exists a t∗ > t0 such that if
t > t∗, ‖α(t)‖ > 1

2 . Thus if t > t∗, we have

‖α(t) − ∇g(α)‖2 =
n∑

i=1

α2
i (t)[1 + 2(c − λi)]2 � 9‖α(t)‖2 > 1.

This and (3.14)–(3.16) imply that for any i = 1, . . . , n, if t > t∗, then

dαi(t)

dt
= −αi(t) + αi(t) − 2αi(t)(λi − c)

‖α(t) − ∇g(α)‖
= αi(t)[1 + 2(c − λi) − ‖α(t) − ∇g(α(t))‖]

‖α(t) − ∇g(α(t))‖ . (3.22)

From x ∈ � ⇐⇒ α ∈ �, we have

‖α(t) − ∇g(α(t))‖2 =
n∑

i=1

α2
i (t)[1 + 2(c − λi)]2
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�
n∑

i=1

α2
i (t)[1 + 2(c − λ1)]2

� [1 + 2(c − λ1)]2. (3.23)

Obviously, from (3.16), we have

dαi(t)

dt
= 2αi(c − λi), if ‖α(t) − ∇g(α)‖ � 1. (3.24)

Eqs. (3.22)–(3.24) indicate that there exists an M > 0 such that∣∣∣∣dαi(t)

dt

∣∣∣∣ � M|αi(t)|, ∀t � t0. (3.25)

From the definition of k and Lemma 3.3, we know xi(t) = αi(t) = 0, i = 1, . . . , k −
1, ∀t � t0. Therefore, (3.23) becomes

‖α(t) − ∇g(α(t))‖2 =
n∑

i=k

α2
i (t)[1 + 2(c − λi)]2 � [1 + 2(c − λk)]2.

(3.26)

On the other hand, (3.22), (3.26) and our assumption indicate that if t > t∗, we have

dαk(t)

dt

{
� 0, if αk(t) > 0,

� 0, if αk(t) < 0.
(3.27)

Eq. (3.27) is very important. Basically, it tells that when t > t∗
• if αk(t0) > 0, αk(t) will be monotonically nondecreasing in t but always stays in

the interval [αk(t0), 1];
• if αk(t0) < 0, αk(t) will be monotonically nonincreasing in t but always stays in

the interval [−1, αk(t0)].
Therefore, limt→+∞ αk(t) exists and is nonzero since αk(t0) /= 0. Let α∗

k =
limt→+∞ αk(t) /= 0. Similarly we can prove that αi(t) is convergent if λi = λk,

for any i � k + 1. If λn = λk , then our proof is finished. Otherwise, we prove

lim
t→+∞ αi(t) = 0, i = j, . . . , n, (3.28)

where j = min{i | λk < λi, i = k + 1, . . . , n}.
Since j and n are finite and ‖α(t)‖ � 1, then there exists a sequence of tl with tl →

+∞ as l → +∞ such that liml→+∞ αi(tl), i = j, . . . , n exist. Let α∗
i =

liml→+∞ αi(tl), i = j, . . . , n.
Now we show α∗

i = 0, i = j, . . . , n. Suppose not, then there must exist an α∗
i /= 0

for some i = j, . . . , n, without loss of generality, let α∗
j /= 0. Then α(tl) and x(tl) are

convergent as l → +∞. But from our earlier discussion, the limit of {x(tl)}, say x∗
is an eigenvector of A with ‖x∗‖ = 1. Let λ be the corresponding eigenvalue. Then
we have
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x∗ =
n∑

i=1

α∗
i ui and Ax∗ = λx∗, (3.29)

where α∗
k /= 0 and α∗

j /= 0.
From (3.29), we have

n∑
i=1

α∗
i λiui =

n∑
i=1

α∗
i λui .

This implies λ = λk = λj which contradicts with λk < λj . Therefore, (3.28) holds.
Thus x(t) is convergent as t → +∞ and limt→+∞ x(t)TAx(t) = λk . �

It is worth of mentioning that if x∗ /= 0, from Lemma 3.1 and Theorem 3.4, we
know that the x∗ obtained in Theorem 3.5 is an eigenvector of A. Another impor-
tant observation is that if [x(t) − ∇f (x(t)] ∈ �, the dynamical system (3.2) would
become

dx(t)

dt
= −2(A − cI)x.

In this case, the solution x(t) can be viewed as a continuous variant of the power
method whose convergence is well established.

Even though we have proved that for any starting point, the ODE solution would
converge to an eigenvector of the matrix, yet this eigenvector will not correspond
to the minimum eigenvalue if the projection of the initial point in the eigenspace
corresponding to the minimum eigenvalue is zero. In other words, we can’t say that
for any starting point, the limit of the ODE solution is the eigenvector corresponding
to the minimum eigenvalue. From the optimality conditions for problem (2.5) and
Lemma 3.1, we know that the followings are equivalent:

• e(x) = 0 but x /= 0.
• x is an eigenvector of A with ‖x‖2 = 1.
• x satisfies the first-order necessary conditions for problem (2.5).

The last result indicates that it would be quite difficult to move away from x if x is
an eigenvector of A corresponding to some λi with λi > λ1. In this case, one remedy
is to move away from x along a direction d /= 0 satisfying xTd = 0. Then, we can
re-solve the dynamical system (3.2) with this new starting point.

3.2. A continuous method for interior eigenvalue problem

Now we focus on problem (2.15). Following the same procedure as the previous
subsection, we have our continuous method for problem (2.15):

Merit function:

f (x) = xT(A − aIn)(A − bIn)x − cxTx. (3.30)
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Dynamical system:

dx(t)

dt
= −[x − P�(x − ∇f (x))], (3.31)

where � = {x ∈ Rn | xTx � 1} and P�(·) is the projection onto �. To simplify the
following discussion, we define

e(x) = x − P�(x − ∇f (x)). (3.32)

Since our merit function (3.30) and dynamical system (3.31) are almost identical
to the corresponding ones in the previous subsection, we can easily establish the
following results.

Lemma 3.6. e(x) = 0 with x /= 0 ⇐⇒ x is an eigenvector of (A − aIn)(A − bIn)

with ‖x‖ = 1.

Proof. See the proof of Lemma 3.1. �

Theorem 3.7. For any x0 ∈ Rn, there exists a unique solution x(t) of the dynamical
system (3.31) with x(t = t0) = x0 in [t0, +∞).

Proof. See the proof of Theorem 3.2. �

Theorem 3.8. For any x0 ∈ �, let x(t) be the solution of (3.31) with x(t = t0) = x0.
Then (i) if e(x0) = 0, x(t) ≡ x0, ∀t � t0; (ii) if e(x0) /= 0, then limt→+∞
e(x(t)) = 0.

Proof. See the proof of Theorem 3.8. �

Theorem 3.9. For any x0 ∈ �, let x(t) be the solution of (3.31) with x(t = t0) = x0.
Then x(t) is convergent, i.e. there exists an x∗ ∈ � such that limt→+∞ x(t) = x∗.
In addition, if x0 /= 0, limt→+∞ x(t)T(A − aIn)(A − bIn)x(t) = µl, where µi , i =
1, . . . , n are eigenvalues of (A − aIn)(A − bIn) in the increasing order and l =
min

{
i | xT

0 ui /= 0, i = 1, . . . , n
}
.

Proof. See the proof of Theorem 3.9. �

From Theorems 3.8, 3.9, and Lemma 3.6, we know

(x∗)T(A − aIn)(A − bIn)x
∗ = µl and ‖x∗‖ = 1. (3.33)

From (2.2), we let α∗ be the corresponding vector to x∗. Then (3.33) is equivalent to
n∑

i=1

(α∗
i )2(λi − a)(λi − b) = µl and ‖α∗‖ = 1. (3.34)
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But the proof of Theorem 3.5 indicates that

α∗
i = 0, ∀i ∈ {

j | (λj − a)(λj − b) /= µl, j = 1, . . . , n
}

and αl /= 0.

(3.35)

Eq. (3.34) and (3.35) imply that

(λl − a)(λl − b) = µl. (3.36)

If µl > 0, then the λl defined in (3.36) is not in the interval [a, b]. If µl � 0, there
are two λl’s available from (3.36). By checking ‖Ax∗ − λlx

∗‖, we can determine
whichλl is an eigenvalue ofA in the desired interval. We summarize the computational
steps in the following.

Computational steps
(i) For given x0, obtain x∗ and ul as defined in Theorem 3.9. If ul > 0, then there

is no eigenvalue of A in the interval [a, b]. Otherwise, go to (ii).
(ii) Find at most two λl’s from (3.36).

(iii) If one of ‖Ax∗ − λlx
∗‖’s is very small, stop. An eigenvalue of A in [a, b] is

found. Otherwise, a new starting point has to be selected.

Our final note of this section is on the selection of c in (2.15). From (2.11), we
have

κ � max
1�i�n

(|λi | + |a|)(|λi | + |b|) � (‖A‖1 + |a|)(‖A‖1 + |b|).
Therefore, we can choose

c = (‖A‖1 + |a|)(‖A‖1 + |b|) + 1.

We will adopt this formula for c as the default value in our numerical simulation.

4. Numerical results

In this section, we test our continuous methods on two examples. Since the focus of
this paper is to introduce the new continuous method, therefore, we will not compare
the numerical results of our methods with the existing ones. However, we will perform
many tests to explore various properties of our continuous methods. Our simulation
will stop whenever the following condition is satisfied:

‖e(x(t))‖∞ � δ,

where δ is a preset value. We use δ = 10−6 in all our test. All of our tests are run in
Matlab platform on a PC with 2 Intel Xeon Processors at 2.8 GHz. But only one CPU
is used in all runs. The ODE solver used is ODE45 which is a nonstiff medium order
method. We set RelTol = 10−6 and AbsTol = 10−9 in all our runs.
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Our examples are constructed in the following ways.

Example 1. We construct the example in the following steps:
1. Select � = diag(−1e − 4, −1e − 4, 0, 0, 1, . . . , 1) ∈ Rn×n.
2. Let B = rand(n, n) and [Q, R] = qr(B).
3. Define A = QT�Q.

Example 2. This example is similar to Example 1 except � = diag(−1, −1, 0, 0,

1, . . . , 1) ∈ Rn×n. It is worth of mentioning that the eigenvalues of A in both examples
are clustered into 3 groups. In Example 1, the minimum eigenvalue −10−4 is relatively
close to the nearby eigenvalue 0. While in this example, the minimum eigenvalue−1is
not close to the nearby eigenvalue 0. The time of constructing the matrix A is not
included in the following CPU times.

The two starting points used are x0 = (1, . . . , 1)T and −x0.

4.1. Extreme eigenvalue model

Our numerical tests are aimed at the following three targets.

4.1.1. Target one: sensitivity to the initial point
In this group of tests, we fix n = 5000 and c as defined in Section 3 (default

values). In fact, c = 5.32 for Example 1 and c = 8.04 for Example 2. Our results are
summarized in Table 1.

The results in Table 1 indicate that (i) our continuous method for extreme eigen-
value problems is not very sensitive to the initial point; and (ii) for any starting point
x, it is normally more attractive to use P�(x) as the initial starting point than x.
Therefore, in the remaining numerical tests, we will adopt this policy.

4.1.2. Target two: sensitivity to c

In this group of tests, we fix n = 5000 and compare the effect of c on the conver-
gence. The default values of c (as defined in Section 3) are 5.32 and 8.04 for Examples
1 and 2, respectively.

Table 1
Numerical results for extreme eigenvalue problems—I

Example 1 Example 2

CPU (s) λa + 10−4 CPU (s) λa + 1

x0 469.1 3.0 × 10−5 475.6 −6.5 × 10−6

P�(x0) 298.6 3.0 × 10−5 306.3 −5.8 × 10−6

−x0 469.0 3.0 × 10−5 474.9 −6.5 × 10−6

P�(−x0) 301.3 3.0 × 10−5 305.6 −5.8 × 10−6

a λ = (x∗)TAx∗ is the computed eigenvalue.
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Table 2
Numerical results for extreme eigenvalue problems—II

Example 1 Example 2

CPU (s) λa + 10−4 CPU (s) λa + 1

P�(x0) c = 10 423.5 3.0 × 10−5 361.8 3.8 × 10−7

c = default 298.6 3.0 × 10−5 306.3 −5.8 × 10−6

c = 2 253.5 3.0 × 10−5 258.3 −4.0 × 10−9

P�(−x0) c = 10 422.4 3.0 × 10−5 362.0 3.8 × 10−7

c = default 301.3 3.0 × 10−5 305.6 −5.8 × 10−6

c = 2 252.6 3.0 × 10−5 258.7 −4.0 × 10−9

a λ = (x∗)TAx∗ is the computed eigenvalue.

The results in Table 2 clearly demonstrate that the smaller value of c, the faster
convergence. Even the default value always works in computation, yet it would be
more attractive to use a smaller value.

4.1.3. Target three: computational cost
In this group of tests, we fix the value of c at 2 (Table 3) and default value (Table

4) to see the change of CPU times versus the problem size n.
It should be mentioned that the slow convergence in Table 3 for Example 1 with

n � 2500 is entirely due to the ODE solver (oscillation was observed). It is beyond
the scope of this paper to investigate the proper ODE solver and/or the corresponding
tolerance values.

It is very interesting to observe from Tables 3 and 4 that excluding those slow
convergence cases, the CPU time grows at a rate of n2+ε where ε > 0. In addition,
this rate seems to be independent of the choice of c value.

Table 3
Numerical results for extreme eigenvalue problems—III

c = 2 Example 1 Example 2

CPU (s) λa + 10−4 CPU (s) λa + 1

n = 1000 P�(x0) 13,253 7.4 × 10−6 12.4 −1.8 × 10−9

P�(−x0) 13,290 7.4 × 10−6 12.3 −1.8 × 10−9

n = 2500 P�(x0) 10,694 1.7 × 10−5 68.4 1.7 × 10−9

P�(−x0) 10,729 1.7 × 10−5 69.3 1.7 × 10−9

n = 5000 P�(x0) 253.5 3.0 × 10−5 258.3 −4.0 × 10−9

P�(−x0) 252.6 3.0 × 10−5 258.7 −4.0 × 10−9

n = 7500 P�(x0) 857.5 7.1 × 10−5 951.5 6.7 × 10−9

P�(−x0) 861.8 7.1 × 10−5 953.8 6.7 × 10−9

a λ = (x∗)TAx∗ is the computed eigenvalue.
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Table 4
Numerical results for extreme eigenvalue problems—IV

c = default Example 1 Example 2

CPU (s) λa + 10−4 CPU (s) λa + 1

n = 1000 P�(x0) 13.8 7.3 × 10−5 15.6 −4.2 × 10−6

P�(−x0) 13.6 7.3 × 10−5 15.5 −4.2 × 10−6

n = 2500 P�(x0) 85.3 3.1 × 10−5 88.6 1.1 × 10−6

P�(−x0) 85.6 3.1 × 10−5 88.9 1.1 × 10−6

n = 5000 P�(x0) 298.6 3.0 × 10−5 306.3 −5.8 × 10−6

P�(−x0) 301.3 3.0 × 10−5 305.6 −5.8 × 10−6

n = 7500 P�(x0) 1127 7.1 × 10−5 1208 −4.9 × 10−6

P�(−x0) 1136 7.1 × 10−5 1209 −4.9 × 10−6

a λ = (x∗)TAx∗ is the computed eigenvalue.

4.2. Interior eigenvalue model

Since our continuous model for interior eigenvalue problems is mainly based on
the continuous model for extreme eigenvalue problems. To avoid the repeated tests,
our numerical experiment will focus on the following three targets with n = 5000 in
all tests.

4.2.1. Target one: no eigenvalue in the defined interval
We select [a, b] = [−3 × 10−4, −2 × 10−4]. Our numerical results are summa-

rized in Table 5.

Table 5
Numerical results for interior eigenvalue problems—I

P�(x0) P�(−x0)

c = default c = 2 c = default c = 2

Example 1
CPU (s) 280.6 105.2 279.5 107.7
λ = (x∗)TAx∗ −6.9 × 10−5 −7.0 × 10−5 −6.9 × 10−5 −7.0 × 10−5

‖Ax∗ − λx∗‖∞ 2.0 × 10−5 4.0 × 10−6 2.0 × 10−5 4.0 × 10−6

µl 1.4 × 10−6 5.1 × 10−8 1.4 × 10−6 5.1 × 10−8

Example 2
CPU (s) 538.3 111.0 534.4 106.0
λ = (x∗)TAx∗ 1.2 × 10−5 1.9 × 10−8 1.2 × 10−5 1.9 × 10−8

‖Ax∗ − λx∗‖∞ 5.9 × 10−5 2.4 × 10−6 5.9 × 10−5 2.4 × 10−6

µl 1.2 × 10−5 7.9 × 10−8 1.2 × 10−5 7.9 × 10−8



G.H. Golub, L.-Z. Liao / Linear Algebra and its Applications 415 (2006) 31–51 49

Table 6
Numerical results for interior eigenvalue problems—II

P�(x0) P�(−x0)

c = default c = 2 c = default c = 2

Example 1
CPU (s) 85.5 45.6 105.6 30.6
λ = (x∗)TAx∗ 1 − 1 × 10−6 1 + 4×10−9 1 − 1 × 10−6 1 + 4×10−9

‖Ax∗ − λx∗‖∞ 2.9 × 10−5 2.4 × 10−6 2.9 × 10−5 2.4 × 10−6

µl −0.01 −0.01 −0.01 −0.01

Example 2
CPU (s) 147.0 65.7 142.4 66.3
λ = (x∗)TAx∗ 1 − 2 × 10−6 1 + 6 × 10−8 1 − 2 × 10−6 1 + 6 × 10−8

‖Ax∗ − λx∗‖∞ 6.4 × 10−5 2.3 × 10−6 6.4 × 10−5 2.3 × 10−6

µl −0.01 −0.01 −0.01 −0.01

Since for every case in Table 5, ul > 0, our results in Section 3.2 guarantee that
there is no eigenvalue of A in the defined interval [a, b]. However since some µl’s
are very small, to be safe, we need to check if a or b is an eigenvalue of A. This case
can be ruled out by checking if a or b is an eigenvalue.

4.2.2. Target two: one eigenvalue in the defined interval
We select [a, b] = [0.9, 1.1]. Our numerical results are summarized in Table 6.
From the results in Table 6, we can see that ul < 0 in all cases. The theory in

Section 3.2 ensures that there exists at least one eigenvalue of A in the interval [a, b].
The computed eigenvalues are all very close to the true one λ∗ = 1 in all cases.

Table 7
Numerical results for interior eigenvalue problems—III

P�(x0) P�(−x0)

c = default c = 2 c = default c = 2

Example 1
CPU (s) 135.9 37.3 133.7 39.5
λ = (x∗)TAx∗ 1 − 1 × 10−6 1 + 1 × 10−8 1 − 1 × 10−6 1 + 1 × 10−8

‖Ax∗ − λx∗‖∞ 2.9 × 10−5 2.7 × 10−6 2.9 × 10−5 2.7 × 10−5

µl −1 −1 −1 −1

Example 2
CPU (s) 192.3 63.0 195.0 65.7
λ = (x∗)TAx∗ 1 − 2 × 10−6 1 + 2 × 10−8 1 − 2 × 10−6 1 + 2 × 10−8

‖Ax∗ − λx∗‖∞ 6.4 × 10−5 3.1 × 10−6 6.4 × 10−5 3.1 × 10−6

µl −1 −1 −1 −1
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4.2.3. Target three: two eigenvalues in the defined interval
We select [a, b] = [0, 2]. Our numerical results are summarized in Table 7.
Once again, since µl < 0 in all cases, there exists at least one eigenvalue of A in

the interval [a, b]. From Table 7, we can see that the computed eigenvalues are very
close to the true one λ∗ = 1 in all cases.

5. Conclusions

In this paper, two new continuous methods are proposed for symmetric eigenvalue
problems, one for extreme eigenvalue and one for interior eigenvalue problems. Our
approach is different from the existing ones in that a continuous path (or trajectory)
of the targeted eigenvalue is achieved. This is represented by a dynamical system (or
ODE) for each eigenvalue problem. Strong convergence results of our two continuous
methods are obtained. Our simulation results clearly indicate that our new methods
are very effective and attractive.

Currently, the authors are applying the same approach for other linear algebra
problems. Since there are many issues need to be solved and clarified, in addition,
the convergence speed of our continuous methods is pretty much dependent on the
ODE solver used, at this moment, the investigation on the continuous method is still
not enough for a side-by-side comparison with the existing numerical linear algebra
methods. The authors will continue to explore the continuous method before a full
comparison is conducted.

Our final remark is on dynamical systems (3.2) and (3.31) since the success of our
methods relies on the solutions of these systems. Notice that both (3.2) and (3.31)
are autonomous systems and their right-hand-sides are relatively simple. Therefore,
it is anticipated that by using some matrix-free ODE solvers, (3.2) and (3.31) could
be solved for large-scale systems.
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