
Theoretical Computer Science 131 (1994) 29994

Elsevier

29

Fundamental Study

Term graph rewriting and garbage
collection using opfibrations

R. Banach
Computer Science Department, University of Manchester, Manchester, Ml3 9pL, UK

Communicated by M. Nivat

Received January 1992

Revised June 1993

Abstract

Banach, R., Term graph rewriting and garbage collection using opfibrations, Theoretical Computer

Science 131 (1994) 29-94.

The categorical semantics of (an abstract version of) the general term graph rewriting language

DACTL is investigated. The operational semantics is reformulated in order to reveal its universal

properties. The technical dissonance between the matchings of left-hand sides of rules to redexes, and

the properties of rewrite rules themselves, is taken as the impetus for expressing the core of the model

as a Grothendieck opfibration of a category of general rewrites over a base of general rewrite rules.

Garbage collection is examined in this framework in order to reconcile the treatment with earlier

approaches. It is shown that term rewriting has particularly good garbage-theoretic properties that

do not generahse to all cases of graph rewriting and that this has been a stumbling block for aspects

of some earlier models for graph rewriting.

1.

2.

3.

Introduction
A brief introduction to DACTL rewriting

DACTL abstracted

3.1. The DACTL rewriting model.

3.2. Two examples.
3.3. Review and comparison with other models.

.........

.........

.........

............. 30

............. 33

............. 35

............. 36

............. 39

............. 41

Correspondence to: R. Banach, Computer Science Department, University of Manchester, Manchester,
Ml3 9PL, UK. Email: banach@;cs.man.ac.uk.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(93)E0132-N

30 R. Banach

4. Universal properties of DACTL rewriting
4.1. Introduction
4.2. The D rewriting construction.
4.3. Universality of D rewriting
4.4. Examples.
4.5. Mapping DACTL rules to D rules.
4.6. Operational aspects of DACTL and D rewriting ...

5. Intermezzo: local and global universality, and the categor!

5.1. Local and global universality.
5.2. The category .@

6. Graph rewriting as opfibration
6.1. The P rewriting construction
6.2. Local universality of the P rewriting model

6.3. Examples.
6.4. Opfibrations and the Grothendieck construction ...
6.5. The MY rewriting construction and global universality

6.6 Operational aspects of .Y rewriting.
7. Describing real systems

7.1. Ontheroleof4inaQrewrite(4,6).
7.2. Other categories for rewriting
7.3. Categories for specific rewrite systems. ...
7.4. Good granularity.

8. Abstract garbage collection.
8.1. Notions of garbage.
8.2. Notions of garbage and rewriting
8.3. Factoring out garbage; reduction strategies

8.4. Example: rooted rewriting.
9. Term rewriting using opfibrations.

9.1. Term rewriting with garbage retention
9.2. Notions of garbage for term rewriting.
9.3. Towards conventional term rewriting.
9.4. Conventional term rewriting
9.5. Relating the different styles of term rewriting

9.6. Discussion
10. Conclusions

Appendix. Proof of Theorem 6.11
Acknowledgment
References

Xh.

44

44

46

49

51

55

57

58

58

59

61

61

62

64

65

66

69

70

70
71

73

74

76

76

77

80

82

84

84

86

87

88

88

89

90

91

93

93

1. Introduction

Since Wadsworth’s [32] work, the manipulation of graphs has been seen as one

source of efficient implementations of functional programming languages. More

recently, there have been efforts to put this often pragmatic work onto a more sound

mathematical basis. Thus, in [4, 18, 19,21, 23, 28-311, various formulations of term

graph rewriting appear. Also, in [12, 13, 141 an experimental language for general

term graph manipulation, DACTL, is described.

In the work of Raoult and Kennaway in particular, rewrites are viewed as pushouts

in a category where objects are graphs and arrows are partial morphisms. By contrast,

in the work of Plump and coauthors, rewrites are viewed as double pushouts, after the

Term graph rewriting and garbage collection 31

algebraic graph grammar tradition of Ehrig and coworkers (see e.g. [9, 10,271).

Kennaway [23] has given a general framework of hypergraphs and partial morphisms

in which both of these approaches may be placed. More recently, Lowe and Ehrig

[25] and van den Broek [7] have offered formulations of graph rewriting that can be

compared to that of Kennaway [23].

On the other hand, work of Barendregt et al. [4], and its expression in the concrete

general term graph rewriting language DACTL, has taken a much more operational

view of the semantics of a graph rewrite. This operational view coincides with the

more abstract algebraic view in sufficiently benign cases, but it is fair to say that none

of the categorical approaches has thus far given the semantics of all DACTL rewrites

in an entirely satisfactory way. The communal graveyard of these approaches has

been the I combinator I [x]=sx, when applied to the circular graph a: I [a]. DACTL

quite clearly states that the rewrite is to be a null operation, which seems quite natural

in a graph-oriented world, whereas the other constructions either fail to give a mean-

ing to the rewrite or declare its result to be an unlabelled node.

The purpose of the present paper is to give a categorical semantics for DACTL

rewrites including a treatment of the troublesome example above. Why bother doing

this at all? For the author, an elegant universal formulation helps clarify the meaning

of a concrete definition, particularly a complicated one, by using the associative

nature of categorical constructions to bring out clearly the compositionality of

potentially diverse aspects of a rather “flat” operational construction. By abstracting

away from irrelevant detail (in the case of graph rewriting, much irrelevant detail

arises from specific models of disjoint union), a simpler and more convincing picture

usually emerges.

To achieve our aim we have to depart from the earlier paradigms. The problems

with these seem to lie in two areas. The first problem concerns the placing of both the

rules and the graphs that they act on within the same category. This leads naturally to

the view that a rewrite should be some kind of pushout, but the fact that it becomes

necessary to impose different conditions on the two arms of the pushout to establish

its existence is a clue that all is perhaps not well. What one does when one places both

the rules and the graphs that they act on in the same category is to blur the distinction

between syntax and semantics. More explicitly, rules are intrinsically syntactic objects
_ they give us instructions about what to do during an execution of the system.

Graphs, conversely, are intrinsically semantic objects - they are the objects that are

transformed by the rules. While treating them as the same kind of thing is tempting,

considering the term rewriting origins of much of the work on graph rewriting, it is

liable to lead to the kind of difficulties known since Tarski’s investigations in the

1920s.

The second problem area that causes trouble in the coventional paradigms is

garbage collection. In the purely term world, where the objects being manipulated are

trees, it is clear, for topological reasons, precisely what garbage is created when

a rewrite is performed, and this is implicitly incorporated into the operational

semantics of term rewriting. When genuine graphs are the computational objects

32 R. Banach

involved, and sharing of subgraphs can occur in an essentially arbitrary manner, the

same is no longer the case. At least two attitudes to this situation are permissible

depending on the level of defensiveness of the model in question. The most defensive

attitude is not to discard anything from the computation, even things that are

obviously garbage, such as nodes that are rewritten by a rule. This is the position for

the DACTL model which thus features garbage retention rather than garbage collec-

tion; in DACTL, collection of genuine garbage is left to the implementation.

A less defensive attitude removes those nodes which are definitely garbage, more

specifically the rewritten nodes. This is the position of the categorical models above.

In principle, static analysis of a rule system might reveal other parts of graphs which

are garbage and which thus may be safely removed by the action of the rule, but to the

author’s knowledge no system goes this far.

Surprisingly, the garbage retention feature of DACTL turns out to be an inspired

design decision as far as the categorical semantics of this paper is concerned. As will

become apparent in Section 6, the semantics would have been considerably more

awkward to describe had any garbage collection been incorporated in the structure of

a rule. It is garbage retention more than anything else that allows the smooth

treatment of the circular I example, both in (the operational semantics of) DACTL

itself and in the categorical description below.

In outline, the rest of this paper is as follows. Section 2 gives a brief and informal

introduction to DACTL for purposes of orientation, while Section 3 defines the

“traditional” operational semantics of a DACTL rewrite more formally. Strictly

speaking, we define an abstracted version of the semantics, leaving out the control

markings and pattern operators that are used to influence reduction strategy and rule

selection in real DACTL. Some examples are given and their reformulation according

to different rewriting models is discussed. Section 4 reformulates and generalises this

semantics so that a rewrite appears as the universal completion of a commuting

square, just as for a pushout. However, this square does not consist of objects and

arrows from a single category. Section 5 explains why not, showing that the obvious

category built on the redirection couple idea from Section 4 gives rise to an inappro-

priate pushout-based rewriting model.

Now some of the operational aspects of DACTL, in particular the priority mechan-

ism for determining the targets of redirections, prevent the extension of the universal-

ity of Section 4 to a truly categorical treatment. But when these aspects are suitably

circumscribed, a categorical treatment results in which rewrite rules appear as arrows

in the base category of an opfibration, and rewrites themselves appear as arrows in the

associated Grothendieck category. The universal properties of the pushouts of earlier

treatments are replaced by the universal properties of the split opfibration inherent in

the Grothendieck construction. This is described in Section 6.

Section 7 explains how one can easily pass from the world of “all conceivable

rewrites” to those belonging to a given system of interest. To allow a fair comparison

with preceding formulations, the problem of garbage has to be faced, and a categorical

treatment of garbage is given within the confines of the Grothendieck construction in

Term graph rewriting and garbage collection 33

Section 8. Section 9 contains a relatively brief treatment of term rewriting using the

preceding methods, pointing out especially that the strong topological properties of

terms lead to a particularly clean treatment of garbage that fails for graphs in the

general case. Term rewriting is thus best done “without garbage”, while graph

rewriting is best done “with garbage”. Section 10 is a conclusion and also contains

a mild “manifesto” statement to the effect that all computational models have features

that enable similar constructions to be made.

2. A brief introduction to DACTL rewriting

DACTL grew out of a desire to place many of the low-level operational features

found in implementations of declarative languages onto a more formal basis. This

inevitably means dealing with graphs rather than terms, since these implementations

often feature a sharing of subexpressions, and so term rewriting becomes superseded

by graph rewriting. The desire to keep as close as possible to reality meant that the

nodes of the graph look as much like parts of a term as is reasonable. So term graphs,

as they were called, have nodes which are labelled with a symbol, and have a sequence

of out-arcs to other nodes in the graph.

The dynamic feature of term rewriting, substitution, is handled by the elegant

notion of arc redirection, whereby all the in-arcs pointing to a node may be redirected

to point at some other node. Of course, for this to make sense, the other node has to be

in the graph already, and so when substitution by a completely new subgraph is

desired, redirection has to be preceded by formally incorporating the new material

into the existing graph: contracturn building. It is the universal properties of this

two-phase construction that we will study in depth for most of this paper.

Redirection turns out to be a versatile concept, and can be applied to any node of

the graph, not just roots of redexes. This generalises the term graph rewriting model,

allowing many ideas from imperative programming to be smoothly expressed in the

same formalism as is used for the declarative side. All in all a flexible methodology for

describing computation results.

Let us now examine a couple of examples. Since our concern in this paper is with

semantics, we eschew discussion of the concrete syntax of DACTL, and draw term

graphs directly. Nevertheless, some conventions from DACTL’s syntax creep in to our

pictures.

Figure l(a) illustrates the non-base-case rule for factorial. The shaded part is the

left-hand side, which is pattern-matched to the graph being evaluated. The nonshaded

part is the contracturn, a copy of which is glued to the redex when a match is found.

The broken arrow represents the single redirection of this rule, which stipulates that,

in the redirection phase, in-arcs of Fat are to be redirected to the new Mul node. The

markings (#, “, *) are DACTL’s mechanism for controlling evaluation strategy.

Briefly, a node marked with a number of #‘s must wait for that number of “notifica-

tions” to arrive from those of its children to which it is connected along out-arcs

34 R. Banach

3 . . . =a *Mul[* *120 * 120

5 24

(b)

Fig. 1. (a) Rule for Fac[n] - # Mul[n A # Fac[“*Sub[nl]]]; (b) an evaluation of Fac[S].

marked with “. Each time such a notification arrives, the A on the arc in question is

deleted, and the number of #‘s on the parent is decremented. When the latter reaches

zero, the parent is marked with *, becoming active.

DACTL stipulates that only active nodes may be roots of redexes, and that

selection of which active node to reduce next is nondeterministic. When an active

node is selected for rewriting, one of two things happens. If there is a rule, the root of

whose LHS will match at the given active node, the active marking is removed from

the root of the redex and rule execution proceeds as indicated above. If there is no

such rule, the active marking is removed as in the other case, and notifications are sent

up along all * -marked in-arcs of the node. Normally, the parents of these nodes at the

tails of such in-arcs are waiting for these notifications by being #-marked.

Note that the metaphor of sleeping while waiting for a subcomputation to com-

plete, before being woken and continuing, is fairly universal in computing, being

found in implementations of declarative languages, in the procedure call/return

mechanism of imperative languages, and at higher levels of abstraction too. This at

least partly explains DACTL’s suitability for a wide variety of applications.

Term graph rewriting and garbage collection 35

Figure l(b) illustrates some of the stages of the evaluation of Fac[5], where, for

clarity, garbage is collected “as we go”. In reality, DACTL does not say anything at all

about garbage, a fact we will draw out much further later on. Despite this seemingly

glaring shortcoming, DACTL is a “real language” in that it provides mechanisms for

things like rule selection, inbuilt operators for common data types such as integers

and booleans, a module discipline, interfacing between modules and to the outside

world, and so on. Discussing these matters would, however, take us far from the point

of this paper.

Figure 2 shows some basic rules for semaphore handling. Among other things, it

illustrates the utility of nonroot redirection, particularly in imperative programming.

Figure 2(a) shows how a free semaphore is claimed, and how the success of the

operation is communicated to the waiting parent. (It is assumed that symbol SUC-

ceeded has no rules.) In Fig. 2(b), if the semaphore is Busy, the suspension mechan-

ism using # and A markings achieves the required semantics. In Fig. 2(c), the active

Free symbol (also assumed to have no rules) will, when it rewrites, notify any

suspended GetSemaphores, which will then have an opportunity to claim the re-

source required.

3. DACTL abstracted

In this section we restate the definition of a DACTL rewrite more formally. As

mentioned before, we concentrate exclusively on the two-phase construction that

GetSemaphore[]

I

. ..__................ *,. *Succeeded

Free ._____ ___..____ _ ________.. +. Busy

(b)

Fig. 2. (a) Rule for obtaining a free semaphore; (b) rule for waiting for a busy semaphore

36 R. Banach

GetSemapbre[

I
]__...._._.....__. \\-

Busy ..__........__..____.....,~.

*Succeeded

*Free

(4

Fig. 2. (c) Rule for releasing a semaphore.

generates the new graph structure from the old. Readers already familiar with

DACTL might find the terminology used slightly unconventional. This is in order to

conform with the usage of later sections.

3.1. The DACTL rewriting model

Suppose an alphabet of node symbols .Y = {S, T.. .} is given.

Definition 3.1. A term graph (or just graph) G is a triple (N, cr, cc), where

(1) N is a set of nodes,

(2) 0 : N +Y is a map which labels each node,

(3) c(: N+N* maps each node to its sequence of successors (or children).

We write A(x), the arity of a node x, for the domain of r(x). Note that .4(x) is a set of

consecutive natural numbers starting at 1, or is empty. When dealing with more than

one graph (or pattern ~ see below), we subscript the objects defined in cases (l)-(3)

above with the name of the graph in question, to avoid ambiguity. Also, we allow

ourselves to write XEG instead of xeN(G) or XEN~, etc. Each successor node

determines an arc of the graph, and we will refer to arcs using the notation (pk, c) to

indicate that c is the kth child of p, i.e. that c=~(p)[k] for some kcA(p).

Let there be a symbol Any, not normally considered to be in Y. We will assume that

the following invariant holds subsequently:

(ANY) o(x)=Any a A(x)=@,

i.e. x has no successors.

A node labelled with Any is called implicit and a node labelled with a member of 9 is

called explicit.

Definition 3.2. A pattern is a term graph containing zero or more implicit nodes.

(Thus, every graph is a pattern if we choose to regard it as such, but not vice versa.)

Term graph rewriting and garbage collection 37

Patterns have a natural notion of homomorphism.

Definition 3.3. Let P, Q be patterns. A node map h: P-Q is a homomorphism iff for

all explicit nodes

(1) a(x) = a(h(x)), i.e. h is label-preserving,

(2) A(x)=A(h(x)), i.e. h is arity-preserving,

(3) for all kEA(x), h(cr(x)[k])=cn(h(x))[k], i.e. h is order-preserving.

In addition, a homomorphism is strict iff the image of every implicit node is implicit.

Note that Definition 3.3 serves just as well for graphs as it does for patterns since

graphs just have all their nodes explicit. Homomorphisms are also called matchings.

Equipped with homomorphisms as arrows, patterns form a category ~9, but this

will be of marginal importance for the time being.

Definition 3.4. A rule D is a triple (P, root, Red), where:

(1) P is a pattern, called the full pattern of the rule.

(2) root is an explicit node of P called the root. If a(root) = F then D is called a rule

for F. The subpattern L of P, consisting of nodes and arcs accessible from (and

including) root, is called the left subpattern of (the full pattern P of) the rule D. All

implicit nodes of P must be nodes of L. Nodes in P-L are called contracturn nodes.

(3) Red is a set of pairs (called redirections) of nodes of P. These satisfy the

invariants (RED-l), (RED-2) and (RED-3) below.

(RED-l) Red is the graph (in the set-theoretic sense) of a partial function on the

nodes of P.
(RED-2) (I’. r’)ERed s 1’ is an explicit node of L.
(RED-3) (Ii, r,), (I,, rz)ERed and 3 a pattern 2 and a homomorphism h: L+Z

such that h(l,)= h(12) =z- rl =r2.
The three invariants (RED-I)-(RED-3) assure the existence of rewrites as described

below. In practice, the technically rather involved (but nevertheless decidable)

(RED-3) may be replaced by the slightly stronger but more readable (RED-3’):

(RED-3’) (Ii, ri>, (12, rZ)ERed and 1, Z& + CJ(~,)+CJ(~~).

Below we will make much use of disjoint unions when making explicit construc-

tions of graphs, and to be completely unambiguous about this, each element of the

union will be tagged with the flag 1 or 2 to indicate its origin. Elements of disjoint

unions are thus pairs (1, -) or (2, -). When speaking more informally, we will be less

pedantic.

In brief, a rewrite of a graph G according to a rule D=(P,root, Red) proceeds

through three stages. (Note: G could just as easily be a pattern.) Firstly, a homomor-

phism of the left subpattern L of P into G is located. This is the redex. Then copies of

the other nodes and arcs of P are added to G in order to extend the domain of the

homomorphism to the whole of P. This is contracturn building. Finally, arcs whose

38 R. Banach

destination is the image of the LHS of a redirection pair (I, r) ERed are swung over to

arrive instead at the image of the corresponding RHS. This is redirection.

Now we come to the precise specification of DACTL rewriting. The definitions

below are the formal counterparts of our intuitive description in Section 2.

Definition 3.5 (Redex). Let D= (P, root, Red) be a rule. Let G be a graph. Let

L be the left subpattern of P. We will use the alternative notation

D = (incl: L-P, root, Red) below whenever convenient, where incl is the inclusion of

L into P. Let m : L+G be a matching. Then m(L) is a redex in G and m(root) is the root

of the redex. The homomorphism m is called a matching of L to G at m(root).

The next definition may be more easily assimilated by noting that it is just a version

of the pushout construction in the category J? mentioned above.

Definition 3.6 (Contractum building). Assume the notation of Definition 3.5. Let the

graph G’ be given by:

(1) N,,=(N,ti,N,)/z, where ti is disjoint union and z is the smallest equivalence

relation such that (1, x) z (2, n) whenever m(n) = x.

(2) %~({(l, x>})=o,(x)>
flcs({<2, n>>)=aAn),
oGz({ (1, x>, (2, n,> . . . (2, n,>})=go(x).

Thus, G’ acquires symbols in such a way as to agree with both G and P. The last case

ensures that the representative in G’ of an implicit node nEP acquires a symbol

according to its image under m. Any explicit nodes in the same equivalence class will

be labelled with the same symbol because m is a homomorphism.

(3) %(i(l> x>})Ckl={(l,~c(x)Ckl> . ..I>
rG,({(2,n)))Ckl={(2,~p(n)Ckl>...),
~G~({(1,~),(2,n1)...(2,n,)})C~l={(l,~~(x)C~l>...}.

Thus, G’ acquires arcs so as to agree with both G and P. The ellipses on the RHSs of

these cases indicate that the equivalence classes concerned need not be singletons.

That this is consistent is again assured by the fact that m is a homomorphism.

Definition 3.7 (Extended matching). The homomorphism m’: P-+G’ that exists by

virtue of Definition 3.6 being a pushout is called the extended matching.

The redirection phase of a DACTL rewrite, defined next, does not have such a tidy

formulation categorically. That is the point of this paper.

Definition 3.8 (Redirection). Assume the notation of Definitions 3.5-3.7. Let H be the

graph given by

(1) NH=NG,,
(2) OH=frc’.

Term graph rewriting and garbage collection 39

The essence of redirection is the next clause. It says that, if a node x of G’ is the image

under the extended matching of the LHS of a redirection pair (u, y)~Red, then all its

in-arcs are to be redirected to the image of y.

1

((2,~) . ..} if (u,y)ERed for some YEP

(3) %({(l, x>I)Wl= and uEm’-’ (~,({(l, x>))Ckl),
c+,({ (1, x)})[k] otherwise,

j(2,y) . ..} if (u,y)~Red for some YEP

a,(IG’>n)jPl= and =m’-‘@d(<2, n>))Ckl),
(~~‘(((2, n)))[k] otherwise,

~~({(1,~),(2,nl)...(2,n,)})Ckl=

1
{ (2, y) . ..} if (u, y)cRed for some YEF’

and uEm’-l (~({(l,x> . ..J)Ckl).
ctGs({ (1, x), (2, n,) . . . (2, n,)})[k] otherwise.

This construction is consistent by (RED-l) and (RED-3). (RED-l) ensures that for any

u there is at most one y such that (u, y)~Red. (RED-3) ensures that if there are several

distinct (2, u)‘s in m’-‘(. ..) then their corresponding (2, y)‘s are identical. (RED-3’)

ensures the same thing by precluding more than one (2, u) from membership of any

m’-‘(...).

Definition 3.9. Let G be a graph, D a rule and m a matching of the left subpattern L of

D to G. The graph H constructed via Definitions 3.5-3.8 is the result of the rewrite of

G at the redex m(L) according to D.

Remark. It is worth mentioning here that the model of DACTL rewriting just

presented differs from the DACTL of the final specification [13] in minor details. In

particular, the final specification has moved from DACTL’s original position, parti-

cularly in the area of which combinations of redirections are permissible, partly at

least, as a result of the influence of the categorical semantics of papers already cited.

Since our objective is a categorical semantics for as “pure” a form of DACTL

rewriting as is possible, our starting model is closer in spirit to slightly earlier versions

of DACTL. The reader unacquainted with these subtle nuances will not find this an

obstacle to understanding the rest of this paper. In Section 4 we show in what sense

the DACTL model is universal.

3.2. Two examples

We present a couple of examples of DACTL rewriting. In the sequel, the notation

z : A [. .] refers to a node z with label A and successors enclosed in brackets.

40 R. Banach

a : Any ---- .- -------

L P

Fig. 3. A rule (inch: L-P, roof, Red)

x : Root[]

/
y : Inc[]

1
2 :Count[]

i
t:3

G

x:Rooy] y’:hTl

y : Inc[

i

] 2’ : Count’[]

J
p’ : Plus]

z :Count[]

//I I’ : 1
t:3

G’

x : Root[

\

y:Inc[\ z~~~~il I

J
p’ : Plus

z :Count[]

\i

]

\,
I’ : 1

t:3

H

Fig. 4. A rewrite of a graph G to H, via the intermediate form G’.

Term graph rewriting and garbage collection 41

root : I[] . .
:

i ::
/

a : Any
0 x:I[]

L=P G=G’=H

Fig. 5. The rule for I, I [a] 3 a and the circular I rewrite

Example 3.10. In Figs. 3 and 4 we illustrate a rule D and its action on a graph G.

The names of the patterns and graphs illustrated there are intended to conform to

our notation above. Thus, Fig. 3 illustrates the rule, with the inclusion incl: L+P

shown explicitly and with the redirection pairs Rell indicated by dashed arrows

in P. Figure 4 shows the two stages of rewriting: first the intermediate graph

G’, the obvious pushout of P and G, and then the final result after redirec-

tion, H.

Example 3.11. As a further example we treat the circular I rewrite mentioned before.

Figure 5 illustrates both the rule and its application. In this rule the left subpattern

of the rule is identical to the full pattern, and there is just one redirection (root, a).

The graph G contains a circular instance of L. Since L= P, there are no nodes

to be added at the contracturn building stage, so G= G’. In performing the re-

direction, we notice that its source and target nodes are the same, so it is a null

action. So G = G’ = H.

3.3. Review and comparison with other models

Let us review how the DACTL construction works. In the category X0 whose

objects are term graphs and whose arrows are graph homomorphisms, pushouts exist.

his follows essentially from the construction of pushouts in 9%. If one admits

patterns as objects of the category (and thus pattern homomorphisms or matchings as

the arrows), pushouts no longer necessarily exist. This is because in the diagram

B+-A+C, an implicit node of A may be mapped to roots of two incompatible

subgraphs of B and C. However, if both arrows are strict, or if the pair is a co-strict

pair (which is defined by the property that at most one of the pair of images in B and

C of any implicit node of A is explicit), then the pushout can be constructed (see [23]

for a more detailed discussion).

We have remarked that the contracturn building phase of a DACTL rewrite is just

such a pushout, and now it is clear why this works: we have imposed sufficient

syntactic constraints on the situation to ensure that the two arrows inch: L--+P and

m : L+ G form a co-strict pair.

42 R. Banach

It is harder, however, to accommodate the redirection phase into the same

framework. The approach hitherto has been to weaken the notion of homo-

morphism to that of partial morphism; in other words, the homomorphic con-

ditions given by Definition 3.3(l))(3) are only required to hold at a selected subset

of nodes.

Note that we are already using such a notion to allow the matching of implicit

nodes to arbitrary nodes, but the desire to accommodate redirections forces us to

allow the homomorphic condition to fail under wider circumstances, and in the

corresponding map p : L+P of a rule, p is no longer a pure injection (and so cannot be

optimised out of the data specifying a rewrite rule as we did in the description of

DACTL rewrite rules above).

Now, the nodes at which p is not homomorphic are places where the graph is being

rewritten. The passage to partial morphisms exaggerates the asymmetry of the

conditions placed on the two arms of any pushout square which is required to

describe the rewriting process. The arm specifying the rule is a strict partial morphism,

while the arm specifying the redex is just a total homomorphism. This is for the

Kennaway [21] model or the Lowe and Ehrig [25] model; similar remarks apply for

the Hoffmann and Plump [19] model. It seems a bit of a strain to regard these

constructions as true pushouts.

Figure 6 gives the rule of Example 3.10 in the framework of Kennaway [21], while

Fig. 7 gives the same example in the framework of Hoffmann and Plump [19];

however, it should be pointed out that, since the rule features subroot redirection,

Fig. 7 cannot be strictly regarded as a jungle rewrite rule. The most significant feature

of the pattern P of Fig. 6 is that the garbage nodes root : I nc [. .] and c : Count [. . .]

of the pattern L are missing.

There is no separate redirection data in the model of Kennaway [21], so the

presence of any such node in that graph would have been a mandate to construct

a copy during the construction of the pushout; similarly for the Hoffmann and Plump

a : Any -S a’: Any I:1

L
P

Fig. 6. The rule of Fig. 4 in the style of Kennaway [21].

Term graph rewriting and garbage collection 43

root’

Inc

t;

C *

Count

‘i’ +--
a’

ryt/ i

Inc’

a”

?I
1

L K P

Fig. 7. The rule of Fig. 4 in the style of Hoffmann and Plump [19].

[19] version of the rule. The garbage hyperedges Inc and Count have disappeared

from the right graph of the rule. Both observations are concomitant with the fact that

a single function gives the relationship between the left- and right-hand sides of a rule.

(This is obvious in Fig. 6, and can be reconstructed in Fig. 7 by inverting the K+L

injection on nodes.)

Now a single function cannot both indicate that a node in the codomain is the

relic of a given node of the domain and indicate that some different node in the

codomain represents the node that the given domain node is to be rewritten to.

Usually this does not matter since only one or the other of these roles is required

of a particular point in the mapping. However, in the circular I example, both roles

are required for the node root of the pattern L of Fig. 5.

DACTL semantics can accommodate this behaviour since the injection and

the redirection data are specified separately. We see that this separation is at the

heart of the success of the DACTL model here. The other models cannot do this.

Note also that garbage retention played a vital role in ensuring by syntactic

means that there was no ambiguity about whether the node x of G in Fig. 5 was

to be deleted as being an image of the rewritten node root, or was to be kept as

being the target of a redirection, namely a; DACTL just keeps everything. These

two clues form the basis of the universal semantics for graph rewriting given in

the following sections.

44 R. Banach

4. Universal properties of DACTL rewriting

In this section we will show how the operational semantics of the previous section

can be recast into a form that has universal properties reminiscent of (but not

equivalent to) pushouts.

4.1. Introduction

To turn the DACTL construction into a universal construction turns out to be

a fairly big job. Before plunging into the details we give some indication of what is to

come, informally.

The essence of the problem is redirection. If we are to make a universal construc-

tion, we need the effects of redirection to be built into the structure of rules in

a “specificational” rather than “operational” manner (we use these words loosely). On

the understanding that the LHS of a rule is a template for possible redexes, in

a universal reformulation, the RHS should naturally be a template for the possible

results of rewrites by the rule; thus, it should incorporate the redirections in some

“after the event” manner. Maybe if we applied the redirections to the full pattern of

a rule, we would get something that could act as a template for the results of rewrites,

given that the full pattern itself acts universally as a template for the intermediate

graph in the operational formulation, via the characterisation of contractum building

as pushout.

This is a sound piece of intuition, but there are a number of obstacles to be

overcome before it can really be made to work properly. Firstly there is the fact that

just redirecting arcs in the full pattern may not be enough. Indeterminate numbers of

arcs whose heads are in the redex, but which are otherwise outside the redex, also get

redirected in the operational definition, so we need to ensure that any universal

reformulation captures this. Secondly, there is a certain amount of ambiguity in the

way that the DACTL operational model specifies redirections, which is resolved only

by reference to individual redexes. In particular, suppose two nodes of the left

subpattern a and b map to the same redex node x. So m(u) = x = m(b). Suppose that a is

redirected by the rule but b is not. Then Definition 3.8(3) states that x should obey the

redirection pertaining to a rather than the unstated identity redirection pertaining to

b, i.e. there is a priority mechanism in force which states that nonidentity redirections

take precedence over identity redirections. (That two nonidentity redirections never

disagree is assured by (RED-3) of Definition 3.4.)

The first problem is not too hard to solve. We specify rules as a pair of functions

(i, r) between the left and right patterns. The i function is a symbol/arity-preserving

injection which identifies how the nodes of the redex (and the tails of their sequences of

out-arcs) are to be found in the result graph. On the other hand, the r function is

a redirection function which specifies how all the in-arcs to a node in the redex are to

be redirected to form the result graph. Suitably handled, this idea can be exploited to

deal with both contractum building and redirection in a unified “specificational” style.

Term graph rewriting and garbage collection 45

The second problem is trickier, and there are two basic approaches to solving

it. The first is to impose sufficient syntactic restrictions so that all the trouble-

some cases simply do not occur. We do this in Section 6, and the outcome is

a construction with strongly universal properties describable using an opfibration.

But one of our goals is to characterise universally the original model of rewriting,

including its darker corners, and this turns out to be possible using a little

technical ingenuity.

The basic idea is to identify those nodes whose redirections are potentially ambigu-

ous, and to fix up the rules so that their redirections are sufficiently flexible to be able

to accommodate all the possibilities. The nodes in question are nodes such as

b discussed above, which ordinarily have an identity redirection, but for which there

are redexes m: L-G such that m(b)=m(a) and a has a nonidentity redirection. Also

we must include all implicit nodes of L, since these can always map to the same redex

node as such an a, if the redex is sufficiently cyclic. How do we then accommodate the

ambiguous redirections?

For every node of L prone to such ambiguity, say b, we introduce a new

implicit node b’ on the RHS of the rule (called the mate of b) and set the redirec-

tion function to send b to b’. Thus, the LHS and RHS versions of b are related

by i(b) = b (using the same names for the injective images of nodes), while r(b) = b’.

All the in-arcs of b on the LHS get redirected to b’ on the RHS, while any redirec-

tion whose intended target was the original node b gets turned into a redirection

to i(b) on the RHS. The fact that the mate r(b) is implicit, and can therefore

match anything, gives us enough flexibility in designing the construction of the

universal square, to enable it to deal with both the identity and nonidentity re-

direction cases.

Of course, it is possible to construct mechanically the universal form of a

DACTL rule from the conventional operational form. Basically, one takes P, finds

all the nodes which need mates and redirects all in-arcs of these nodes to the

mates. One then applies the DACTL redirections to the result, taking care always

to redirect to the nonmate node. The end product is the RHS of the D rule, and

the (i, r) functions can be found easily. Obviously, one needs to show that the

two constructions agree. They do, but it turns out that the universal form is

marginally more expressive than the operational form. This is because of the

latter’s sequential nature; some aspects of contractum building can be undone

by redirection, while the “specificational” flavour of the universal construction

does not suffer from such a shortcoming. All this is covered below, and illustrated

in the examples which follow.

To get some more feeling for how this works, readers could skip ahead to

Example 4.8, which shows a rule exhibiting the mentioned ambiguities. The RHS

of the rule in universal formulation including the mate nodes is presented in

the pattern Q, and a rewrite of a redex using the rule is shown. However, to appreciate

the example fully, one has to absorb the details of the explicit constructions to

which we now turn.

46 R. Banach

4.2. The D rewriting construction

The following definition sets out the structure of our DACTL rules in universal

form, called D rules. This boils down to a relation given by pairs of functions (i, r) on

pairs of patterns (i, r): L-Q, and subject to a long list of restrictions. It is given in this

form in order to facilitate comparison with later definitions, but its main points may

be stated in English as follows.

(INJ) just states that i: L-+Q is a symbol/arity-preserving injection that preserves

the implicit or explicit nature of nodes. It thus provides a component that mimics the

inclusion of the left subpattern into the full pattern of a DACTL rule of the previous

section. (IMP-D) states that all implicit nodes of Q are i or r images of L nodes, as one

would expect (i.e. “no new variables on the RHS”). The redirection function r: L-+Q

mimics the redirection pairs of the DACTL formulation, and the nature of the

condition (RED-D) (which sets out the rules of engagement regarding mate nodes) is

clarified in Lemma 4.2. Finally, (HOM) is perhaps the most crucial condition,

generalising the conventional criterion for a homomorphism to that of a redirection

couple, the more flexible notion at the heart of all our constructions in this paper.

Definition 4.1 (D rule). Let Ypo be the class of patterns (as in Definition 3.2), together

with a binary relation -+ given by a pair of functions (i, r), such that if (i, r) : L-Q then

the following invariants hold:

UNJ) (4 x Z Y * 44 f i(y),

(b) x implicit o i(x) implicit,

(c) a(G)) = c(x),
(d) A(i(x))=A(x).

(IMP-D) y implicit * 3 x such that y= i(x) or y=r(x).

(RED-D) (a) r(x) explicit => x explicit,

(b) x implicit 3 r(x) implicit and r(x) # i(x),

(c) x, y implicit and x#y + r(x)#r(y),

(d) r(x) implicit 5 r(x)Erng(i) or r- ‘(r(x))= (x1,

(e) x, y explicit and 3 a homomorphism h: L+Z such that h(x)=h(y)

a [r(x)=r(y), or r(x)=i(x) and r(y)=i(y), or at least one of r(x), r(y)

is implicit and not in rng(i)].

(HOM) (i, r) is a redirection couple, i.e. [(pk, c) an arc of L o (i(p)k, r(c)) an arc

of Ql.
According to (RED-D) (d) in particular, the nodes y of Q split into two classes: those

which are explicit or in rng(i), called nonmates, and those implicit nodes not in rng(i)

(for which card(r- l(y))= l), called mates (of the unique corresponding node

i(r- l(y))).
We call a -+-related pair (i, r): L-+Q a D rule, and for every XEL, r(x) is the

redirection of x. L and Q are called the left and right patterns of the D rule.

Note the distinction in nomenclature; while it is possible to identify the left

subpattern of a DACTL rule with the left pattern of a D rule, the same cannot be done

Term graph rewriting and garbage collection 41

with the full pattern of a DACTL rule and the corresponding right pattern of a D rule.

There is, however, a mapping from DACTL rules into D rules which we will give in

Procedure 4.8.

We note that we may replace (RED-D) (e) by the slightly simpler

(RED-D) (e’) x, y explicit and 0(x)=0(y) = r(x)=r(y), or r(x)=i(x) and

r(y) = i(y),

by analogy with the corresponding construction in the previous section.

Lemma 4.2. Let (i, r): L-Q be a D rule. Then
(1) the explicit nodes x of L partition into equivalence classes E(x) such that y&(x)

o 3 a homomorphism h: L-Z for some Z such that h(x)= h(y).
For each equivalence class E, exactly one of (2.1) or (2.2) holds:

(2.1) There is a nonmate yeQ such that for at least one XEE, r(x) = y, r(x) # i(x), and
for any zeE such that r(z)#y, there is an implicit Z’EQ (the mate of i(z)) such that
r(z) = z’.

(2.2) For each XEE, either r(x)= i(x), or r(x)=x’, where x’ is the mate of i(x).

For each implicit ~EQ, exactly one of(3.1) or (3.2) holds:
(3.1) y = i(x) some unique implicit x (and there may be some ZEL such that y = r(z)).
(3.2) y#rng(i) but y=r(x)for some unique XEL. (These are the mate nodes.)

Proof. We can establish (1) on the basis of the existence of pushouts of strict pairs of

arrows in the category of patterns and pattern homomorphisms. The rest is an easy

exercise in naive set theory. 0

Informally, Q contains all the nodes of L, plus perhaps some explicit new nodes

(which we can call contractum nodes by analogy with the DACTL situation), plus

perhaps some new implicit mate nodes for some of the nodes of Q.

We can see the role of the mate nodes much more clearly when we consider the

D rewriting construction itself, which is given next. As in DACTL rewriting, the graph

G below could just as easily be taken to be a pattern.

Definition 4.3 (D rewrite). Let (i, r): L+Q be a D rule. Let g : L+G be a matching to

a graph G. Let N2;” be the set of nonmate nodes of Q. Let the graph H be given by

(1) NH=(NGtiN;m)/z, where ti is disjoint union and z is the smallest equiva-

lence relation such that (1, x) z (2, n) whenever there is a PEL such that g(p) = x and

i(p) = n.

(2) arf({<l, x>>)=ac(x),

an({<2, n>>)=oa(n),

au({<l, x>, (2, nI> . . . (2, n,>})=ao(x).

48 R. Banach

Before defining c+, we pause to define (j, s) : G-H and h : Q-H:

j(x)={(l,x) . ..I.

s(x)=

{(2, r(p)> . ..} if 3 PEL such that g(p)=x and r(p)~N$~;“,

((1, x) . ..> otherwise,

h(n)=
((2, n) . ..$ if nENZ;“,

s(g(p)) if IZ is the mate of i(p).

(3) %f({(l, x>I)C~1=4%wC~1)>

a~(((2,n)))C11=h(ccc!(n)C11),

~H({(1,X),(2,nl)...(2,n,)})C~l=s(a,(x)C~l).

Theorem 4.4. Dejinition 4.3 is consistent. Furthermore,

(a) j is a symbollarity-preserving injection,

(b) (j, s) is a redirection couple, i.e. [(xl, y) an arc of G o (j(x),, s(y)) an arc ofH],

(c) h is a homomorphism.

Proof. Clearly NH exists since Definition 4.3(l) is a pushout in Yet and %t has all

pushouts. Similarly, cH is well defined; in particular, no nonsingleton node of H can

contain more than one (1, x) element from G.

Thus, j is a symbol-preserving injection. We also see that s is well defined, and

coincides with j, except when the first case in its definition applies (and sometimes also

even then). Suppose then x is such that there is a MEL such that g(p)=x and r(p) is not

a mate. There may be several such p, but Lemma 4.2 tells us that they all belong to an

equivalence class satisfying Lemma 4.2(2.1) or 4.2(2.2). If Lemma 4.2(2.1) is satisfied

then all the r(p) are equal, while if Lemma 4.2(2.2) is satisfied then all the g(p) are the

same, whence all possible { (2, r(p)) . ..} = { (2, i(p)) . ..} = ((1, g(p)) .} are the

same and the first clause of s is unambiguous. Thus, s and, clearly, h are well defined,

and so is IX”, whence j also preserves arities. That (j, s) is a redirection couple is

immediate from the definition of CI~.

We have to check that h is a homomorphism. Suppose n is explicit in Q. Then

h(n)={(2, n) . ..} and a(h(n))=o({(2,n) . ..}). which is either a(n) if {(2, n) . ..} is

a singleton, or g(x) if not. In the latter case, the definitions of homomorphism and of

z ensure that a(x)= a(n). Also, A(h(n))=A(n) by the definition of czH.

Suppose now that (nl, m) is an arc of Q. We must show that

a,(h(n))[l] = h(a,(n)[I]). There are a number of cases depending on whether h(n) is

a singleton or not, and whether h(m) is a singleton, a nonsingleton or a mate.

If h(n) is a singleton, then the second clause of the definition of c(~ is what is

required.

Suppose then that h(n) is a nonsingleton { (1, x), (2, n) . ..}. with MEL such that

g(p)=x, i(p)=n. Let (p[, q) be the unique arc of L such that (i(p)[, r(q))=(n,, m), which

exists by Theorem 4.4(a) and (b). Then (g(p)[, g(q)) is an arc of G, and

Term graph rewriting and garbage collection 49

(jogs, sag(q)) is an arc of H. Nowjog(p (1, x), (2, n) . ..}. We must show that

so g(4) = h(m).
Suppose h(m) is a singleton ((2, mn)}. Then m$rng(i). So m is either a mate or not.

If m is not a mate then h(m) = { (2, m) . . . } = { (2, m)} by definition. Also, if m is not

a mate, then the first clause of the definition of s applies to g(q), and so s(g(q))=

{ (2, r(q)) .} = { (2, m) . . . >. But this is just h(m). If m is a mate, then h(m)=s(g(q)) by

definition. Either way we have what we need.

Finally, suppose h(m) is a nonsingleton ((1, y), (2, rn-) . . . }. Since m is certainly

not a mate, h(m) = { (2, m) . } by definition. So we may take m” = m for convenience.

As before, since m is not a mate, the first clause of the definition of s applies to g(q), and

h(m)=s(g(q)). We are done. 0

We gave the above proof in full detail to illustrate the techniques typically needed

for proving the results of this paper. One should particularly note the interplay that

often arises between the conditions arising from redirection couples, where arcs are

mapped using two functions, and those arising from homomorphisms, where only one

function is needed. Aside from this, the proof amounts to fairly unexciting diagram

chasing and case analysis. In future, we will, for the most part, only sketch the main

points of a proof, omitting the boring details. For the enthusiastic reader, these can be

found in [Z].

4.3. Universality of D rewriting

Theorem 4.5. In the notation of Dejinition 4.3 and Theorem 4.4, jog= h 0 i and

s 0 g = h 0 r, i.e. the squares of Fig. 8 commute.

Proof. Straightforward. 0

The next result is the main property of D rewriting.

G
j

L
i

)Q

s
G-H

R

1 1

h

L-Q r

Fig. 8. Commuting squares for the D rewriting construction

50 R. Banach

Theorem 4.6 (Universality of D rewriting). Using the notation of Definition 4.3 and
Theorem 4.5, let H’ be a graph and suppose (j’, s’): G-H’ and h’ : Q-H’ are such that

(1)
(2)
(3)
(4)
(5)
(6)

Then

1;;

j’ is a symbollarity-preserving node map,
(j’, s’) is a redirection couple, i.e. [(xl, y) an arc of G o (j’(x),, s’(y)) an arc ofH’],
h’ is a homomorphism,
j’ogch’oi and s’og=h’or,

W=W and r(q)=@) and g@)=g(b) * s’(g(p))=s’(g(d),
r(p)=i(a) andfor a// qEg_l(g(a)), r(q) is a mate * s’(g(p))=s’(g(q)) for any
such q.
there is a unique pair of maps (t3, p): H+H’ such that
0 is a symbollarity-preserving node map,
(0, p) is a redirection couple, i.e. [(pt, c) an arc ofH o (g(p)t, p(c)) an arc ofH’],
8, p extend to a homomorphism on h(Q),
j’=eoj,

d = p 0 s,
h’=goh=poh,
p=g on H-(s(G)uh(Q)),

i.e. Fig. 9 commutes.

Proof. The key thing is to define (0, p) as follows:

@j(x)) =j’(x),

&h(n)) = h’(n) for neN2;“,

p(s(x))=s’(x),

p(h(n))=h’(n) for nENZ;“,

p(j(x)) = g(j(x)) whenever j(x)$s(G) u h(Q).

(i, r)

Fig. 9. Universality of D rewriting.

Term graph rewriting and garbage collection 51

Now most of the properties needed for 0 arise because NH is a pushout in 9%. The

harder part is to show that p is well defined and behaves appropriately.

To show p is well defined on s(G), if x #y in G and s(x) = s(y), we need to show that

s’(x)=s’(y). It turns out that both x and y must be in y(L), so there are p, qEL with

x=g(p) and y=g(q).
If r(p) = r(q), then s’(x) = s’(y) easily. If not, we must examine the cases for s(x) and

s(y). If both fall into the first case for s, Theorem 4.6(5) is needed to show that

s’(x) =s’(y). If only one is in the first case, then Theorem 4.6(6) is needed. Thus,

p comes to be well defined on s(G).

Showing that p is well defined on the rest of H is straightforward, and showing that

(0, p) have the required properties is now an easy diagram chase. 0

The significance of the above result comes with the following key theorem.

Theorem 4.7. With the notation of Definition 4.3 and Theorems 4.4-4.6, let
(j*, s*): G-+H* and h*: Q+H* satisfy conditions (l)-(6) of Theorem 4.6. Suppose
further that, for any (j’, s’): G+H’ and h’ : Q+H’ that also satisfy those conditions,
there is a unique (e*, p*): H*+H’ satisfying Theorem 4.6(a)-(d). Then H and H* are
isomorphic.

Proof. Routine. Cl

We thus see that, up to graph isomorphism, the D rewriting construction is

universal as a way of completing the squares of Fig. 8 among redirection couples and

homomorphisms satisfying the qualifying criteria given by Theorem 4.6(l)-(6).

4.4. Examples

We look at an example where the mate nodes play a role.

Example 4.8. Figure 10 gives an illustration of most of the points discussed above.

The notation for graphs and patterns is as previously described, except that we

suppress node names for brevity, other than for implicit nodes, whose labels we

suppress instead. As usual, the patterns and graphs are named according to their

standard roles. So L and P form a DACTL rule as before (the obvious injection is

suppressed), while L and Q form the corresponding D rule, manufactured as per

Section 4.5.

There is an obvious redex for the rule in the graph G. Following the DACTL

construction, contracturn building gives G’, and applying the redirections yields the

graph H.
To see how the D rewriting construction handles this situation, we claim that the

pattern Q is the appropriate RHS in the D formulation. First of all, all the implicit

nodes of P have acquired primed mates, and these have had all in-arcs from their

52 R. Banach

‘. .._.___.. ..

;
:
:

Term graph rewriting and garbage collection 53

G' G

H

Fig. 10. A DACTL rule and its corresponding D rule, and a rewrite governed by these rules.

unprimed companions redirected to them, ready to model the various possible

redirections that such arcs could undergo in a specific redex. The same applies to the

right B node, which also has a potentially ambiguous redirection, as it could match

the same redex node as the left B. Applying the redirections of the DACTL rule to this

intermediate form, taking care always to redirect to the nonmate node, completes the

picture. The (i, Y) functions are now clear, and only the Y function is illustrated.

Considering the redex g: L+G, the maps (j, s): G-H are now obvious, as is the

homomorphism h : Q-H, once we realise that both a and a’ map to X, b and c map to

54 R. Banach

H’

Fig. 11. A modified form of the rule and rewrite of Fig. 10

B, and b’, c’ and d map to T. The two rewriting constructions agree, as they are

supposed to.

Example 4.9. Let us consider a slight modification to the D rule of Example 4.8,

namely introducing an extra arc into the pattern Q from S to the nonmate c.

Figure 11 illustrates the new pattern Q’. Keeping the (i, Y) functions as before gives us

a perfectly serviceable D rule (i, r) : L-+Q'. The graph H’ produced by rewriting is also

shown in Fig. 11. However, the new D rule is not the counterpart of any DACTL rule,

and the rewrite it produces cannot be emulated by any DACTL rewrite. The reason is

Term graph rewriting and garbage collection 55

that, in DACTL, redirection follows contracturn building. The extra in-arc of c from

S, if introduced during contracturn building in a DACTL rewrite of the given redex,

would be redirected to T, because c is matched to B in the redex, and all in-arcs of

B get redirected. In DACTL we cannot build a new in-arc to a node of the redex that is

subject to redirection, without that arc being itself redirected. The D construction, by

simultaneously specifying contracturn building and redirection in a universal con-

struction, is able to accomplish this.

Example 4.10. For purposes of illustration, we re-examine the I combinator in the

D framework. Figure 12 shows the rule. In fact, it turns out that, when this is applied

to the circular instance G = x : I [xl, the resulting H = G is universal among all ways of

completing the square GtL+Q, which satisfy the universality conditions given by

Theorem 4.6(l)-(4). A moment’s thought shows that Theorem 4.6(5) and (6) can safely

be ignored for this redex since all LHS nodes map to the same image node in G. There

will be more on the I combinator in Section 6.

4.5. Mapping DACTL rules to D rules

We now give the formal definition of the mapping from DACTL to D rules

advertised earlier.

Procedure 4.11.

Input: A DACTL rule (incl: L+P, root, Red).

Output: A D rule (i, r): L-+Q.

(1) Let X be the subset of nodes of L such that XEX iff

(a) x is implicit, or

(b) there is no (x, y)E Red, but there is some homomorphism g : L-G such that, for

some U, VEP, g(x)=g(u) and (u, v)~Red.

X is the set of nodes of L requiring mates. For each XEX add an isolated implicit mate

node x’ to P, yielding a fresh pattern P’.

(2) For all XEX, insert (x, x’) into Red, yielding a fresh set of redirections Red’.

(3) Apply the redirections in Red’ to P’, yielding a pattern Q.

‘I’ ~-~-.-.%... %,, ;[‘I
g .._ _____.____,...___..___ __ ,..._._.. 9, a’

Fig. 12. The D rewriting version of the I combinator rule.

56 R. Banach

(4) For all XEL, let (i, Y): L-Q be defined as follows:

i(x) = x,

whenever there is a pair (x, y) l Red’,

otherwise.

Lemma 4.12. The construction of Procedure 4.11 is consistent.

Proof. We have to check that, given a DACTL rule (incl: L+P, root, Red) which

satisfies the invariants of Section 3, the construction of Procedure 4.11 is unambigu-

ous and generates a D rule (i, r): L-Q satisfying the invariants of Definition 4.1. The

details of this are too unexciting to include here. We note in passing that the root node

of the DACTL rule plays no part whatsoever in Procedure 4.11. 0

The main fact about the construction of Procedure 4.11 comes next.

Theorem 4.13. Let (incl: L+P, root, Red) be a DACTL rule, and let (i, r): L-Q be the

corresponding D rule constructed by Procedure 4.11. Let g : L+ G be a redex. Let H 1 be

the graph constructed from G by applying the DACTL rule and the rewriting construc-

tion, and let H2 be the graph constructed by applying the D rule and the D rewriting

construction. Then Hl = H2. (Note that we mean actual equality of graphs rather than

mere isomorphism.)

Proof. First of all, the two constructions give the same set of nodes for Hl and H2, as

may be verified by consulting Definitions 3.6(l), 3.8(l) and 4.3(l), and noting that

Nim= Np. By Definitions 3.6(2), 3.8(2) and 4.3(2), these nodes are similarly labelled. It

remains to verify that czH1 = aH2. To do this we have to track an arbitrary arc of G, or

an arbitrary contractum arc, through the two constructions, and check that it ends up

in the same place either way. This involves a lot of case analysis, depending on where

the head and tail of the arc lie, whether mates are involved or not, etc. All the cases are

straightforward and we omit the details. Hl = H2 indeed. 0

Theorem 4.14. The function defined by Procedure 4.11 which maps any DACTL rule to

an equivalent D rule has no inverse.

Proof. It is sufficient to show that a D rule with the following properties is not the

counterpart of any DACTL rule. Let (i, r): L+Q be the rule and let it satisfy the

following:

(a) Neither L nor Q has any implicit nodes.

(b) x, YEL and x#y * o(x)#~(y).
(c) There is a node CEL such that

(c.1) i(c) has an in-arc which is not the (i, r) image of any arc of L,

(c.2) r(c) # i(c),
(c.3) for all CZXEL, r(x)#i(c).

Term graph rewriting and garbage collection 51

Given such a rule, it is easy enough to make a rigorous (and simpler) version of the

argument presented in Example 4.9, whereby the image of c in a redex needs to

acquire a new in-arc during the rewrite, but would be prevented from doing so in any

putative DACTL counterpart of the rewrite, because the redirection phase would

sweep it away. 0

The D rewriting construction is thus strictly more general than the

DACTL rewriting construction. The author’s attitude to this is that the D con-

struction is more natural and comprehensive than its sequentially specified

predecessor. The lack of expressivity described is after all just a consequence of

the temporal order of the two phases, and a different approach to this can overcome

it, as shown in Section 4.6.

4.6. Operational aspects of DACTL and D rewriting

We can better understand the motives behind the introduction of the DACTL

rewriting construction and its relationship to the D model by examining how prospect-

ive implementations might actually work. The DACTL construction might be imple-

mented by the steps [DACTL-l]-[DACTL-31:

[DACTL-l] Identify the redex m: L+G of rule (inch: L+P, root, Red) in graph G.

[DACTL-21 Add copies of nodes and arcs of P - L to G in order to make graph G’.

[DACTL-31 Redirect arcs of G’ according to the specifications in Red to make

graph H.
The D construction might proceed by [D-l]-[D-4]:

[D-l] Identify the redex g : L+ G of rule (i r) : L+Q in graph G.

[D-2] Add copies of nonmate nodes of Q - i(L) to G to make graph Gi Determine

the maps (j, s): G+G,.

[D-3] Redirect arcs of G1 making graph G2 so that [(pl, c) an arc of G1 o

(j(ph, s(c)) an arc of GA.
[D-4] Add copies of arcs of Q -i(L) to G2 to make H.
The DACTL construction is clearly operationally much simpler, and the inter-

mediate object G’ that it creates is a bona fide graph as per Definition 3.2. In

the D construction, the intermediate objects G1 and G2 are not really graphs since

they have “missing arcs”; i.e., in the D model, contractum building must be inter-

leaved with redirection to avoid the pitfalls mentioned in Example 4.9 and

Theorem 4.14. In the D model, the RHS of a rule comes with its arcs “already

redirected”.

One can thus understand why a term graph rewriting model designed with opera-

tional issues in mind might turn out looking like the DACTL model rather than the

D model. Nevertheless, the full expressiveness of the D model is available opera-

tionally at a small price.

58 R. Banach

5. Intermezzo: local and global universality, and the category BYh

5.1. Local and global universality

We remark how like a pushout Theorem 4.6 seems in some ways, and how

unlike one in others. The unique factorisation property of pushouts is character-

istically preserved. However, the objects and arrows in Fig. 9 do not come from

a category. The objects at the lower level of Fig. 9 are patterns, while the objects at

the upper level are graphs. More seriously, the vertical arrows are homo-

morphisms, while the horizontal arrows are redirection couples obeying a variety

of restrictions; the diagonal arrow that factors them is some sort of compromise

between the two.

It is thus not obvious how Theorem 4.6 can be placed in a categorical setting. One

of the reasons for this is that there is a fundamental asymmetry between the left and

right patterns of a D rule. The right pattern almost always has more implicit nodes

than the left pattern, and these extra mate nodes make it impossible to define identity

arrows in the natural way. For example, Fig. 13 illustrates how one would envisage

the identity arrow for the left pattern of the I combinator; it is hardly an identity in any

useful sense of the word. This feature prevents the D rules from forming the arrows of

a category that arises naturally via Procedure 4.11.

A further consequence of the asymmetry between the left and right patterns of

a D rule is that it is not easy to glue the universal commuting squares together

horizontally to get commuting rectangles of the same kind. This is mainly due to the

way in which mates are used; they mix up properties of the “objects” and “arrows” of

the construction in such a way that a properly associative law of composition fails to

hold. This is all disregarding the problem of how one avoids the profusion of (useless)

mates as one attempts to compose D rules.

However, the ability to compose squares horizontally is a standard property of

pushouts (and of the opfibrations used in the next section), so it seems that we are

implicitly dealing with more than one notion of universality. To this end, by local

universality we will mean the universality possessed by the D rewriting construction,

namely the ability to complete a single square in a universal manner. By global

1

‘I
a ._ ______________ ;~.~~.~...~ ________ _?, a’

L Q

Fig. 13. The identity arrow for the I combinator in a prospective category built out of D rules.

Term graph rewriting and garbage collection 59

universality we will mean the stronger property of being able to compose such squares

horizontally, as for pushouts and opfibrations.

Despite the fact that Theorem 4.6 is not categorical, we should not imagine that its

usefulness is diminished thereby. Once we acknowledge the asymmetry between the

left and right sides of Fig. 9, we can throw off our inhibitions even further and enhance

Theorem 4.6 to accommodate the DACTL markings which are truly asymmetrical in

the two sides of a rewrite. It may even be possible to accommodate the pattern

calculus of DACTL within this framework, although the author is not clear about this

at the time of writing. However, the most useful property of Theorem 4.6 is the

economy it brings to reasoning about DACTL systems. Such reasoning usually

reduces to induction over the structure of execution sequences. The inductive step in

such proofs consists of showing that rewrites arising from some system preserve some

property or other. Formerly, it was necessary to trace explicitly this preservation

through the various phases of a rewrite, a rather laborious process. The universal

characterisation of rewrites available through Theorem 4.6 cuts this detail down very

substantially. Thus, Theorem 4.6 raises the level of abstraction at which it is possible

to think about DACTL rewrites.

5.2. The category Bh

The thoughts of Section 5.1 suggest an alternative direction to take in looking for

a categorical semantics for DACTL-style rewriting, which we explore briefly here.

There is nothing to prevent us from associatively composing redirection couples, so let

us make the following definition.

Definition 5.1. The category of pure redirections gh has as objects all patterns, and as

arrows all (h, r) function pairs such that if (h, r) : L+R is an arrow then:

(INJ-gh) h is a symbol/arity-preserving node function on the explicit nodes of L.

(HOM) (h,r) is a redirection couple, i.e. [(p[, c) an arc of L 5 (ids, r(c)) an arc

of R, and (h(p’),, r(c’)) an arc of R =z- 3(p,, c) an arc of L such that

(h(p)l> +3)=(0’)l, 4c’))l.
9iTh has a subcategory .%Yi wherein (INJ-gh) is replaced by

(INJ-gi) h is a symbol/arity-preserving injection on the nodes of L.

Figure 14 shows two isomorphic objects in 9’. Note that these are not isomorphic

graphs in the usual sense of the word. In fact, using DACTL redirection notation, the

redirections ((x, y), (y,x)} are a square root of the identity on both graphs. Thus,

although the arrows of BYh potentially give us scope for a pushout-based graph

rewriting formalism by reference to Section 4, the notion of isomorphism we end up

with is not useful. This is in contrast to the category 2 of patterns with normal

homomorphisms as arrows, where the notion of isomorphism is the right one, but the

notion of pushout is too weak to describe rewriting usefully. Therefore, we can see the

60 R. Banach

A[1 B[1

I i
x:x y:Y

A[B x
x:x Y

1

Y

Fig. 14. Two isomorphic graphs in Z-f*

problem of looking for an appropriate categorical formulation of DACTL-style graph

rewriting as the search for a compromise between these two extremes.

Let us finish this section with a brief sketch of how pushout-based rewriting looks in

9”. Both normal graph homomorphisms and the arrows of gi are special cases of

arrows of 2’. So we would envisage a rewrite in Bh as being the pushout of

a homomorphism (the redex) and an arrow of 92” (the rule).

To understand these pushouts most simply, it is best to look at gh from a different

angle. 9?e is a retract of Bh. Here 9?e is a category defined as follows. The objects of ge

are pairs (T, H). Here T is a set of (pl, cr(p)) items corresponding to the tails of arcs of

a pattern, i.e. p is a node of the pattern, lea is an index in p’s arity and o(p) is p’s

label. H is just a partition of T, and a set in H represents the set of heads of arcs of the

pattern that are incident on some particular node. Because of the nature of isomor-

phisms in Bh, it does not much matter which node any particular set of arcs is incident

on; in fact, the retraction functor is just the functor that forgets this information.

If A=(TA,HA) and B=(T,,H,) are objects of ge, an arrow (k,r):A+B is

a symbol/arity-preserving map k : T,+ Ts, together with a redirection function

r: HA+HB such that

{k(h dp))) I (PL, ~P))EXEHA 1 ~r(X)EHB,

i.e. if a set of arcs were incident on the same node to start with, then they would remain

incident on some other same node after redirection.

We can argue that pushouts exist in 9!Ze as follows. Let (kA,rA): X+A and

(kB, rB): X+B be two arrows. Their pushout is then (jA,sA): A+ Y, (js,ss): B+ Y,

with Y= (Ty, Hy).

Here Ty is the obvious pushout in (suitably labelled) 9% as per our previous

rewriting constructions and j, and j, are obvious. The partitions HA and Hs induce

partitions HA’ and Hi of Ty, and HY is defined as their join in the lattice of partitions of

T,, i.e. the finest partition at least as coarse as HI and Hi. The maps sA and sg are now

also obvious.

From the existence of pushouts in 5?!e and the nature of the retraction functor, we

deduce their existence in Wh, and, since pushouts are only fixed up to isomorphism, we

deduce the unsuitability of Wh as a vehicle for graph rewriting from our previous

remarks, Note how the local universality of Section 4, unconstrained by the need to fit

any particular categorical straightjacket, can be engineered to provide just the right

Term gruph rewriting and garbage collection 61

notion of isomorphism, and just the right notion of rewrite too. Readers may care to

examine the universality theorem (Theorem 4.6) to see which parts of the hypotheses

are responsible for each of these aspects of the conclusions. In the next section, we will

see how a crafty compromise can be struck between X-type behaviour and Bh-type

behaviour in a well-chosen opfibration.

6. Graph rewriting as opfibration

This section starts off much like Section 4. We define a slightly different rewriting

model, the P rewriting model, and show that it has properties of the same sort as the

D rewriting model. However, the minor differences in definition make a big difference

in terms of universality properties, and the categorical version of the model, the

9 model, fits within an opfibration which we explore in the later parts of this section.

6.1. The P rewriting construction

The next few definitions and theorems parallel those of Section 4 quite closely. On

the assumption that the reader has survived Section 4 unscathed, we mostly state

them without comment.

Definition 6.1 (P rule). Let Yc be the category whose objects are patterns and whose

arrows are rules (called P rules) depicted by pairs of functions (i, r) : L-t R satisfying the

invariants (INJ), (IMP), (RED) and (HOM) below. (Note the slightly simpler form of

(RED) due to the absence of mates. In fact, (RED)(b) is redundant because of

(RED)(a) and the modified form of (IMP), but it is left in to aid comparison with the

conditions of Definition 4.1.)

(INJ)

(IMP)
(RED)

(a) X#Y = W#~(Y),
(b) x implicit * i(x) implicit,

(c) a(G))= c(x),
(d) A(i(x))=A(x).

y implicit 3 3 implicit x such that y = i(x).

(a) T(X) # i(x) * x explicit,

(b) x implicit * Y(X) = i(x),

(c) x,y explicit and 3 a homomorphism h: L+Z such that h(x) = h(y)

=F- [r(x)=r(y), or r(x)=i(x) and r(y)=i(y)].

(i,r) is a redirection couple, i.e. [(pL,c) an arc of L - (i(p)k,r(~)) an arc

of R].

As previously, we can replace (RED)(c) with the stronger but more transparent

(RED) (c’) x, y explicit and a(x) = a(y) * [r(x)=r(y) or r(x)=i(x) and r(y)=i(y)].

It is easy to check that componentwise composition of arrows makes 9’c into

a category, actually a subcategory of Bi.

62 R. Banach

Definition 6.2 (Rigid homomorphism). Let L be a pattern and q: L-G a homomor-

phism. Then q is called rigid, or a rigid matching, iff [x explicit and y implicit =

g(x)#g(y)]. If g : L+G is a redex, it is called a rigid redex.

Definition 6.3 (P rewriting construction). Let 6 = (i, r) : L+ R be an arrow of 9”c, and let

q: L-+G be a rigid homomorphism of L into a graph G. Let the graph H be given by

(1) ~.Y=(NG~~R)/=: where w is disjoint union and zz is the smallest equivalence

relation such that (1, x) z (2, n) whenever there is a peL such that g(p)= x and

i(p)=n.

(2) aIf({<l?x>l)=%(x)>

gA{<2,n)J)=o,(n),

aH({(1,x>,(2,n,)...(2,n,)})=a,(x).

Before defining czH, we pause to define (j, s) : G+H and h : R+H:

j(x)=j<l,x)...),

s(x) =
i

{(2,r(p))...} if 3 PEL such that g(p)=x,

{(1,x)...} otherwise,

h(n) = { (2, n) . . . }.

(3) ~H(((1,X)})C~l=s(ac(x)C~l)~

CIH(((2,n)})C11=h(a,(n)C11),

C(H(((1,x),(2,n,)...(2,n,)))C11=s(cc,(x)C11).

The reader will observe that this is a simplified form of Definition 4.3.

Lemma 6.4. Dejinition 6.3 is consistent. Furthermore,

(a) j is a symbollarity-preserving injection,

(b) (j,s) is a redirection couple, i.e. [(xl, y) an arc ofG o (j(x),,s(y)) an arc of H],

(c) h is a rigid homomorphism.

6.2. Local universality of the P rewriting model

Theorem 6.5. In the notation of Dejinition 6.3 and Lemma 6.4, j 0 g = h 0 i and s 0 q = h 0 r,

i.e. the squares of Fig. 8 (with Q replaced by R) commute.

Since the P rewriting construction is a simplified form of D rewriting, it comes as no

surprise to discover that it has universal properties by analogy with Theorem 4.6.

Theorem 6.6 (Local universality of P rewriting). Using the notation of Definition 6.3,

Lemma 6.4 and Theorem 6.5, let H’ be a graph and suppose (j’,s’): G-H’ and

h’: R-H’ are such that

Term graph rewriting and garbage collection 63

(1) j’ is a symbollarity-preserving node map,
(2) (j’, s’) is a redirection couple, i.e. [(xl, y) an arc ofG 0 (j’(x),, s’(y)) an arc ofH’].
(3) h’ is a homomorphism,
(4) j’og=h’oi and s’og=h’or,

(5) r(p)=i(a) and r(q)=i(b) and g(a)=g(b) * s’(g(p))=s’(g(q)).
Then there is a unique pair of maps (0, p): H-+H’ such that

(a) 8 is a symbollarity-preserving node map,
(b) (0, p) is a redirection couple, i.e. [(pt, c) an arc ofH o (O(p)t, p(c)) an arc ofH’],
(c) 0,~ extend to a homomorphism on h(R).
(d) j’ = 0 oj,

s’ = p 0 s,
h’=Ooh=poh,
p=8 on H-(s(G)uh(R)),

i.e. Fig. 15 commutes.

Proof. We confirm that the factorising redirection couple (8,~) is given by

Q(j(x))=j’(x),

d(O)) = h’(n),

P(S(X)) = s’(x),

,Mn))=h’(n),

p(j(x))=@ j(x)) whenever j(x)$s(G)uh(R).

Aside from this we have a slightly simpler version of the D construction’s Theorem

4.6. 0

Theorem 6.7. Using the notation of Definition 6.3, Lemma 6.4 and Theorem 6.5 and 6.6,
let (j*, s*): G+H * and h* : R-tH * satisfy conditions (l)-(5) of Theorem 6.6. Suppose,

further, thatfor any (j’, s’): G-H’ and h’ : R+H’ that also satisfy those conditions, there

L) R’

(i, r)

Fig. 15. Local universality of P rewriting.

64 R. Banach

a : Any_.................. “......““................,,,. a : Any I : 1

Fig. 16. The rule of Fig. 3 in P rule form.

is a unique (O*, p *) : H*+H’ satisfying Theorem 6.6(a)-(d). Then H and H * are

isomorphic.

6.3. Examples

We do not need to look far to see the P rewriting construction in action. Example

3.10 furnishes most of what we need. We have a P rule for this rewrite in Fig. 16. The

map i is the obvious injection and the map Y is illustrated in Fig. 16. Figure 4 provides

the graphs G and H, and the way in which they tie in to the P rewriting construction is

clear.

A further example of a P rule is provided by the I combinator. Here the patterns

L and R are both equal to the pattern P of Fig. 5. The injection i is obvious and the

map r is given by {root-a, a +a}. The circular instance of this rule in the graph G of

Fig. 5 is instructive, since the matching that defines this instance is clearly nonrigid.

Nevertheless, the construction of Definition 6.3 goes through without difficulty, and

the graph H of Fig. 5 is universal among ways of completing the square GcL-+R that

satisfy Theorem 6.6(l)-(4). (As in Section 4, Theorem 6.6(5) is irrelevant.)

This state of affairs arises because the condition of rigidity is stronger than what is

strictly necessary to assure the consistency of the Definition 6.3 construction, and we

could have succeeded with the weaker invariant

(W-RIG) a implicit, p explicit, and g(a)=g(p) * [r(p)=i(p) or r(p)=i(a)].

Theorem 6.4 holds under these broader conditions, the only alteration to the proof

being the addition of a third case to check in the well-definedness of s (in reality, two

subcases corresponding to the disjunction in (W-RIG)). It is immediate that the circular

I redex satisfies (W-RIG). The reason we did not use (W-RIG) before was that it only

leads to a form of local universality, and we want global universality in this section.

Term graph rewriting and garbage collection 65

6.4. Opjibrations and the Grothendieck construction

Suppose we have a (small) functor W: B-+%7&. Then we can construct the category

Y(&?‘, W) as follows. The objects are pairs (x, b), where b is an object of 93 and x is an

object of W(b). The arrows are also pairs (+,/I) : (x, b)+(x’, b’), with p: b-b
an arrow of 98 and 4: W(b)() x +x’ an arrow of W(b’). The composition of

(4, fi) : (x, b)-+(x’, b’) and ($, y) : (x’, b’)+(x”, b”) is given by

This is the famous Grothendieck construction. There is an obvious projection functor

F:Y(g, W)-+a given by F((x,b))=b and F((&fi))=/S, and Grothendieck recog-

nised that projection functors F :fZ+g correspond to functors W:B+%?& with

X z %(%3, W), precisely when F is a split opfibration.

A split opfibration F : X+.%4 is a functor with the following universal property. For

every arrow fi: b+b’ of 9? and every object x in X with F(x)= b, there is an arrow

K(/I, x) of X such that if F (LI : x+z) = 6 0 p then CI factors as 0 0 IC(/I, x) for some unique

0 : cod(rc(8, x))+z; see Fig. 17. Furthermore,

rc(idFtx), x)-id,

and

4~ cod(U 4)) 0 4B, x) = 4~ 0 B, x).

Arrows such as K(/?, x) which satisfy the factorisation property are called opcartesian,

and if they satisfy the extra two conditions, they form a split cleavage for F; see
[16,171, or [lS] for the most comprehensive treatment in English, or [S] for a very

accessible introduction.

Fibrations (one possible dual of opfibrations) find wide usage in category theory

and mathematics in general. For example, Benabou [6] advocates them as capturing

b P b’ 6

Fig. 17. The universal factorisation property of an opcartesian arrow.

66 R. Banach

the features needed in a categorical account of foundations. They are also increasingly

used in categorical treatments of topics in computing science, e.g. [l, 8,20,26].

For us, opfibrations solve the problem of casting a diagram like Fig. 15 into

a categorical framework. Note how the vertical and horizontal arrows of Fig. 17 are

different kinds of entities as we require, and that if we set 6 to an identity, Figs. 15 and

17 look quite alike (no matter that the vertical arrows go in opposite directions in the

two figures). The fact that in an opfibration 6 is not restricted to identities is a precise

statement of global universality.

6.5. The 9 rewriting construction and global universality

We continue to develop the properties of the P rewriting construction.

Definition 6.8. For each object P of Yc, we construct a category 9:. The objects of

3: are pairs (G,g). Here G is a graph and g : P+G is a rigid matching, so an object of

3: is a redex for any rule with LHS P. The arrows 4 : (G,g)+(G’,g’) of 3: are

graph homomorphisms C$: G-G’ such that

g’=4og and 4_l(g’(P))=g(P).

We call such arrows rigid redex morphisms. In the sequel, the context will always

make clear which notion of rigidity is at issue: the former for redexes and the latter for

morphisms of redexes.

Lemma 6.9. Let 6 = (i, r) : L+R be an arrow of PC and let g : L+G be a rigid matching.

Let 4: G+G’ be a rigid redex morphism. Let H and H’ be the graphs obtained by

rewriting the rigid redexes g : L-+G and g’: L-G’ using 6, and let h : R-H and

h’: R-+H’ be the rigid matchings produced by these rewrites. Then there is a rigid redex

morphism $: H-H’ in 9: such that Fig. 18 commutes.

(i, r)

Fig. 18. Preservation of rigid redex morphism property by P rewriting.

Term graph rewriting and garbage collection 61

Proof. Referring to Fig. 18, set j’ = i*’ 0 4, s’ = r*’ 0 4. A short diagram chase estab-

lishes that (j’, s’) : G+ H’ and h’ : R+ H’ satisfy the hypotheses of the local universality

theorem (Theorem 6.6). Thence, we get a unique (0,~): H+H’ satisfying Theorem

6.6(a))(d).

For this to be useful, we have to verify that f3 and p define the same homomorphism

on H. This is a short diagram chase. Whereupon, we can set II/ = 0 = p. Checking that

Cc, is a rigid redex morphism is now easy. 0

The reader will notice how the two vertical sides of Fig. 18 are symmetrical. This

allows the extension of the rigid redex morphism preservation property to a functor

on 9:.

Theorem 6.10. Let d=(i, r): L+R be an arrow of gc. Then there is a functor
Rew$: F?&??[such that

Rew%<G,g))=<H,h),

Rewf.(@:(G,g)+(G’,g’))=$:(H,h)+(H’,h’).

Proof. Routine. 0

Remark. We permit ourselves to write RewfJG) when we are principally interested in

the effect of Rewc on graphs, and the redex preservation is to be understood from the

context.

Section 6.4 will have prepared the reader for the next step: the gluing together of the

individual functors Rewg to make a combined functor Rewc: Pc+QY~t. However,

before doing this, we need to address a minor technical detail.

Doing one rewrite and then following it with another is not the same thing as doing

a single rewrite using a suitably more elaborate rule; the results are merely isomorphic

as graphs. This is because concrete models in set theory of the disjoint union

operation are not strictly associative. They are only associative up to isomorphism.

This blocks the construction of the functor that we require, since composition fails to

work “on the nose”. Rather than explore the more convoluted “Australian” version of

the resulting theory, we resort to taking representatives of isomorphism classes of

graphs and patterns, so-called abstract graphs and patterns, and working only with

them. We get categories Y,%L, etc., skeletons of 9,-,96, and so on. They will be

uniformly denoted by dropping the subscript “C” from our previous categories of

concrete graphs and patterns. For precision, we will call the rewriting construction

that automatically chooses the right representative of the isomorphism class of the

result of the rewrite the 9 rewriting construction, distinct from the P rewriting

construction. Of course, all the results established previously in this section remain

true for 9 rewriting, although “up to isomorphism” results like those of Theorem 6.7

become a little vacuous. Now we proceed to the main theorem.

68 R. Banach

Theorem 6.11. There is a functor Rew:P+%?d such that

Rew(P)+%‘,

Rew(d: L-R)= Rew’ : ieL+gR.

Proof. See the appendix. 0

The existence of Rew :P+%?d leads immediately to the construction of the

Grothendieck category %(P, Rew). The objects of Y(P, Rew) are pairs ((G, g), L),

where L is an object of B and (G, g) is an object of Rew(L). We can write such objects

as (g:L+G). The arrows of g(Y,Rew) are pairs ($,d):(g:L+G)+(h:R+H),

where 6=(i,r): L+R is an arrow of 9 and 4: Rew’(G)+H is an arrow of YR.

In slightly less combinatorial terms, an arrow (4, S) of Y(P, Rew) can be viewed as

a 9 rewrite of a redex (g:L+G) by a rule d=(i,r):L-+R giving Rew’((G,g)),

composed with a homomorphism 4. Thus, it can be given by a pair (j, s): G+H, where
j=q$oj*, s=4cs* and (j*,s*): G+Rew’(G) represents the effect of Rew6 on G.

Clearly, (j,s) is a redirection couple. Such a pair (j, s) is, strictly speaking, a different

thing from (4, S), but we will not be fussy about this below.

Note that, compared to the 9 rewriting construction, the arrows of +Y(P, Rew) have

an extra homomorphism “tacked onto the end”. The significance of these extra

homomorphisms will be discussed in Section 7 when we talk about real systems. The

arrows of 3(P, Rew) will be called 2? rewrites, and the (Grothendieck) construction

that associates one or another arrow (4, S) to each rule 6 and redex (g : L+G) will

be called the 3 rewriting construction. Of course, from a categorical viewpoint, we

might justifiably prefer ?? rewrites to be called corewrites or oprewrites.

The composition of arrows ($,S):(g:L+G)+(h:M-+H) and (~,a):

(h:M+H)+(k:N-+K) is given by

as per the general theory above, and the situation is illustrated in Fig. 19.

One can now read off various properties of the 3 rewriting construction from

standard results in the theory of opfibrations. For example, the projection functor

F:Y(P’, Rew)+Y is obvious, as are the fibres F-‘(P)=??’ for P in 9. Of more

interest is the fact that the split opcartesian arrows ~((i, I-): L+R, (g: L+G)) can be

precisely identified with 9 rewrites of (g: L-G) by (i,r): L-tR.

Note the pleasing way in which the Grothendieck construction has separated

syntax and semantics while nevertheless maintaining the required level of interplay

between them. The syntactic objects, patterns, and rules between patterns, live in the

base category. The semantic objects, graphs, and the rewrites between them, live in the

Grothendieck category above. The fact that we use two distinct but related categories,

rather than one, gives us just the technical elbow room we need. This segregation of

syntax and semantics was the main reason why we chose to work with 9’ fibres rather

Term graph rewriting and garbage collection 69

F.._ Rew@)B

G W Rew’(Rew’(G))

6 = (i, r)
L wh4

E = Cj, s)
WN

Fig. 19. Compositionofarrows(~,6):(g:L_tC)-r(h:M~H)and(X,&):(h:M~H)~(k:N~K)in
??(a, Rew).

than 9” fibres (where 9’ is the category of images of P within patterns). The latter,

although slightly more general in a purely technical sense, perhaps offer the tempta-

tion of not keeping the distinction clean enough. This separation also fits in well with

the conventional attitude in rewriting theory, where the objects from which rules are

built are allowed to make use of the appropriate notion of variable ~ in our context,

implicit nodes ~ whereas the objects that the rules manipulate generally do not do so
_ in our context, graphs rather than patterns.

6.6. Operational aspects ?f 9 rewriting

The results of the later part of Section 4, relating DACTL and D, have analogues in

the framework of 9’ rewriting for a suitable subset of DACTL rules.

Definition 6.12. We define DACTL” as the subset of DACTL rules (incl: L-+P,

root, Red) such that

(RED-3”) x,y explicit and 3 a homomorphism h: L-t2 such that h(x)=h(y)

5 [(x,t)ERed o (y,t)ERed].

The condition (RED-3”) precludes the possibility that g(x)=g(y) in some redex,

but a nontrivial redirection of x overrides the unstated identity redirection of y.

Assured of this, no explicit nodes of a full pattern need acquire mates in the translation

to 9 rewriting. Rigidity of redexes ((W-RIG)-idity is enough) likewise makes mates for

implicit nodes unnecessary. We give the following results on translation without

proofs.

70 R. Banach

Procedure 6.13.

Input: A DACTL” rule (incl: L-P, root, Red >.

Output: A 9 rule (i, r): L+R (up to isomorphism).

(1) Apply the DACTL” rule to the redex incl: L-L to obtain a pattern R.

(2) Define (i, r) : L+R in the obvious way.

Lemma 6.14. The construction of Procedure 6.13 is consistent.

Theorem 6.15. On rigid redexes, the DACTL” and 9’ rewriting constructions give

isomorphic results.

The fact that 9 rewrites can be composed along arrows of 9 gives us an alternative

way of getting Theorem 6.15. A DACTL” rewrite may be decomposed into two

DACTL? rewrites, one having nontrivial contractum building but trivial redirections,

and the other having trivial contractum building but nontrivial redirections. Mapping

each of these to a corresponding 9 rewrite is easy. Using the functoriality of Rew then

gives Theorem 6.15.

As previously, the function defined by Procedure 6.13, which maps any DACTL”

rule to an equivalent 9 rule, has no inverse.

Also from an implementation point of view, we could follow [D-l]-[D-4] of

Section 4 exactly, except that there are no mate nodes to worry about.

7. Describing real systems

The deliberations of the previous section belong to the world of “all conceivable

9 rewrites”. Real systems typically make use of a small selection from the class of all

possibilities. In this section we show how to construct categories to describe such

situations. This will demonstrate the conceptual usefulness of the global universality

of the Grothendieck construction.

7.1. On the role of 4 in a 9 rewrite (4, S)

Arrows in 9(9”, Rew) consist of pairs (4,6). Here 6 is an arrow of 9 and 4 is a rigid

redex morphism. The role of such 4’s may appear controversial. The first thing to note

is that the 4’s may be dispensed with altogether. All we need to do is use the discrete

subcategory 29; of Yp, as fibre over P, for all P in 9. In %‘z, which is just a set of

objects, all arrows are identity homomorphisms, obviously rigid. The Grothendieck

construction then restricts itself to its simpler variant given by a functor

Rewid : P-Yet. The arrows of the associated Grothendieck category 9 (9, Rewid) are

now just (id, S) or, in the alternative notation, (i*, r*): G+H, where (i*, r*) represents

the effect of a 9 rewrite of the appropriate redex of G according to 6.

Term graph rewriting and garbage collection 71

Nevertheless, the 4’s are useful. In [l&19], and also in [21], the desirability of

identifying isomorphic subgraphs of a graph is explained. The motives include the

applicability of nonlinear rewrite rules and the desire to avoid duplicating work

wherever possible by sharing identical subgraphs.

Some of this can easily be accommodated within 9 rewriting. We merely need to

follow each 9 rewrite according to a rule 6 say, with a suitable homomorphism 4, and

the 3 arrow (4, S) will do the job we need. Of course, the fibres 9’ are too general to

do just this since their arrows are arbitrary rigid redex morphisms, but if we use

instead the subcategories of 3’, CC?:“,, or Y~axonto as fibres, we get what we require.

Here gLtor %,axonto have the same objects as Yp but, apart from identities, have only

onto rigid redex morphisms and maximal onto rigid redex morphisms, respectively, as

arrows. A maximal onto rigid redex morphism is one whose codomain can serve as

the domain for only the identity onto rigid redex morphism (up to isomorphism).

By these means we obtain the Grothendieck categories 9(P,Rew,,,,) and

Y(S, Rew) where Rew,,,, and Rew,,,,,,, maxOntO 1 are the obvious functors. Thus, the

Grothendieck construction not only shows us how rigid redex morphisms fit well with

rewriting ideas, but gives us merge operations that identify (some, although not all)

identical subgraphs for free. Previously, these have been treated as special-purpose

extensions of the normal rewriting mechanism. Figure 20 shows a small example

where a maximal onto rigid redex morphism identifies two subgraphs. Note that the

third child of F cannot be identified with the other two because of rigidity.

7.2. Other categories for rewriting

Let us write Rew, for any of Rew,Rewid,Rew,,to,Rewmaxonto, thus using * as

a metavariable. We can easily move from the category %(p, Rew,) to categories that

more conveniently describe rewriting. Firstly, we define the category 3*, a category of

graphs and rewrite sequences, by moving information around in the Grothendieck

category. Its objects are graphs G. Its arrows are generated by arrows

(q5,,(i,r):(g:L-+G)+(h:M-+H)):G+H,

which for notational purposes can be abbreviated as

($*,(i,r):L+M,g,h):G+H.

12 12

Fig. 20. A 9 rewrite (&6) with nontrivial maximal onto 4.

12 R. Banach

Here 6 =(i, Y) : L-M is a rule of 9, g : L+G, k : M -+H are rigid redexes, and H is

given by +* : Rew’(G)+H, where 4, is an arrow in the fibre 3:. Such an arrow of ??*

is thus given by the ingredients of a 9 rewrite. To make CC?* into a category we have to

define composition of arrows. We therefore formally compose

(6)-(&,(i,r):L+M1,g,kl):G+H

with

(.z)=(t,b.+,(j,s):Mz+N,kZ,k):H+K

according to the formula

r

(&O~)=(~*ORew’(~*),(jOi,SOr):L~N,g,k):G~K

(&)0(d)=
if M,=M2 and k,=k2,

(E;~)-(IC/*,(~,S):M~~N,~~,~;~,,(~,~):L~M~,~,~~):G~K

otherwise.

We call the composition E 0 6 internal in the first case above. More generally, if

(&...):B+H and (...;.z):H+C, with 6,~ given as above are arrows of ge,, their

composition is defined by

<&)o(d....):B+C=
(...;Eo&...):B+C if M,=M, and kl=k2,

(...; E; 6; . .) : B+C otherwise.

Thus, the arrows of +?* are identities and all possible rewriting sequences between

two graphs, where rewrites directly composable in 29(9, Rew) are combined internally.

The choice of composing E and 6 internally, rather than by formal concatenation

whenever this is possible, leads to a functor T* : 3(9’, Rew,)-+%* given by

T,((g:L+G))=G,

T,((&.,(i,r):L+R):(g:L+G)+(k:R+H))

=(&,(i,r):L+R,g,k):G+H,

which would not exist if composition of S and E were done by formal concatenation in

every case.

By forgetting various subsets of the information contained in the arrows of ??*, we

obtain categories that describe graph rewriting at various levels of abstraction.

Firstly, we can construct the category 3; whose objects are graphs and which has

an arrow

(...;&,(i,r):L+R,g;...):B+C

whenever Z?* has an arrow

(...;4,,(i,r):L+R,g,k;...):B+C.

Term graph rewriting and garbage collection 13

Since the homomorphism h in an arrow of 9, can always be reconstructed from

+*, (i, r): L+R and g, the obvious forgetful functor “u& : 9*-%~ is in fact an iso-

morphism.

Further, we can construct categories Yg, Yi’, %i”, 92 whose objects are graphs and

whose arrows are, respectively,

(...;$,,(i,r):L-+R;...):B+C,

(...;(i,r):L+R;...):B+C,

(...;&;...):B+C,

():B+C,

whenever there is an arrow

(...;#,,(i,r):L+R,g,h;...):B-+C

in Y*. The obvious forgetful functors 422 : FZe, -Ffi, . . . , @z : ?Y* -32 are full.

The variously primed Y* categories are functorial images of Y(P, Rew,) only by

virtue of the fact that composition of arrows of 9* is done internally wherever

possible. For Pz, a preorder whose arrows record simply that a rewriting sequence

exists between the source and the target, a functor T,” : Y(P, Rew,)+?J$ exists regard-

less of internal composition. The functor is given by

T,o(g: L+G))=G,

T~((~,,(i,r):L+R):(g:L+G)-+(h:R-+H))=():G+H.

If we do not care about rewriting categories being functorial images of Y(P, Rew,),

we can construct alternative ?S;...’ categories (call them @k..‘), whose composition of

arrows is always concatenation. However, the composition actually used turns out to

be fairly natural when we consider specific systems rather than the world of “all

conceivable rewrites” which we are still concerned with.

7.3. Categories for specific rewrite systems

A specific system is given by a set of rules BY which is a subset of the arrows of 9.

Consider 2?$, the largest subcategory of 99, for which each member of the sequence

(. . .; c$*, (i, r) : L+ R, g, h; . . .) that constitutes an arrow of %* has (i, r) : L+ R in 9. This

is well defined provided no two rules of 9 can be composed in P. For convenience, we

will assume that no two rules of 99 can be composed in P until further notice.

When considering a specific system $2, one is normally not interested in all

rewritings that can be generated using 9, but in those that can be generated from

a particular starting point. For example, by convention, DACTL systems are assumed

to start rewriting from the so-called initial graph whose only node is labelled with the

symbol Initial with empty arity. Obviously, to make progress, a system $9 must

possess a rule whose left (sub)pattern matches Initial.

14 R. Banach

We will take a similar position with 3 rewriting. Let I, therefore, be some graph we

decree to be initial. Let 3$’ be the largest subcategory of 9: such that, for every

object G, there is some arrow (.) : I--+G. Thus, 3* &’ describes all rewritings gener-

ated from 92 starting with I, and I is by definition a weak initial object for %p.

The categories 3: and 9:’ generate variously primed images under the suitably

restricted forgetful functors %;““, and these describe rewriting according to a specific

system at various levels of abstraction.

For practical purposes, the categories 9:’ are of more interest than the Y$ because,

in the world of general graphs, it is all too easy to construct counterexamples to

properties which we might consider useful or desirable. Thus, 3: will possess few

interesting properties. On the other hand, in Yp, any property that holds for I, and is

preserved by all members of { $J* 0 Rew’I 6=(&r): L-+ReB’, q5,~92), will be pos-

sessed by every object of Yp by induction.

7.4. Good granularity

We assumed above that, for a real system R, no two rules for 3’ are composable in

9. We return to this here, but first we need some concepts about roots of graphs,

which will prove useful now and subsequently.

Definition 7.1. A root of a pattern or graph is always one of its nodes. If, in addition, it

is an orphan node, we call it an o-root. If, furthermore, it is the unique o-root from

which all other nodes are accessible, we call it a u-root.

Two arrows of 9’,6 and E are composable iff the right pattern of 6 is the left pattern

of E. Usually, we are interested in systems such that the left pattern of each rule is

u-rooted, although 9 rewriting happily describes much more general situations. This

is because DACTL rules impose such a condition, and practice shows it to be

convenient (particularly in allowing the redexes in a system to be coded up by just

referring to their u-roots).

So if 6 and E are to be composable, then the right pattern of 6 must be u-rooted.

Usually this is not true for rules that we are interested in, since we frequently wish to

redirect the root of the left pattern to a fresh value, and this value and (the copy in the

right pattern of) the left root are mutually inaccessible. Thus, for collections of such

rules, all the right patterns are disjoint from all the left patterns. This is not to say that

one cannot construct rules which introduce new values and arrange the redirections in

such a way that the right pattern is u-rooted, but such rules are rather bizzare and of

no great interest for practical computations.

This leaves the class of rules for which no new nodes are introduced in the right

pattern. We call these generalised selector rules since their sole effect is to rearrange

the accessibility relation in a graph via redirection (such rules are also called collaps-

ing rules in the literature). If the root redirection is the only nontrivial redirection of

Term graph rewriting and garbage collection 75

the rule, the left and right patterns will actually be identical, and we call such rules true

selector rules. In this case we have the following important property.

Proposition 7.2. Application of a true selector rule to a redex is idempotent.

Proof. If the source and the target of the redirection in a given redex are different, then

the first application of the rule leaves the root of the redex without in-arcs, and so

subsequent applications will be null. On the other hand, if the source and target are

the same, then the first as well as all other applications will be null. 0

A moment’s thought shows that this idempotence holds even under purely locally

universal rewriting.

True selector rules are important computationally, the I and K combinators and

obvious rules for IF being important examples; so it is good to see that they are well

behaved under composition. More general selector rules will have different left and

right patterns since nonroot redirection will redirect arcs internal to the redex and this

will show up as nonisomorphism between left and right patterns. Such rules are

generally of much less interest computationally.

The likelihood that systems of real computational interest will have a composable

pair of distinct rules is thus remote, most particularly since rules for different purposes

will normally have left patterns whose roots are labelled with distinct symbols

signalling their function. In the unlikely event of two or more rules being composable,

it is worth considering the effects of “compiling” the rule set into a form where this no

longer holds, by replacing composable sets of rules with their compositions. It may be

that the resulting system exhibits different behaviour from the original system though.

In any event we make the following definition.

Definition 7.3. A system of rules 9 has good granularity iff no two distinct rules of

B are composable in 9, and all rules composable with themselves are true selector

rules.

Our thesis is that useful systems have good granularity. The name refers to the fact

that, for such systems, an automaton rewriting a graph according to the rules of the

system in units of a single rewrite agrees with the functor T* : Y(P, Rew,)+%* as to

what the indivisible steps of the computation are, where, for CC?*, an indivisible step in

a rewriting sequence is an element of the sequence that makes up an arrow. The only

possible exceptions to this agreement are for identity rewrites, which we can live with,

and rewrites using a selector rule where several applications of the same rule to the

same redex would show up as distinct individual steps in the automaton’s view of the

rewriting history, but which would all be absorbed into a single element of an arrow of

F?* because of the internal composition of composable steps in arrows of 9.+.

However, it is a fairly safe assumption that a sensible automaton will “know” which of

the rules of the system are selector rules, and thus will not repeatedly use the same rule

16 R. Banach

on the same redex if the result is guaranteed to be a null action. So, in practice, we

expect this exception not to arise.

8. Abstract garbage collection

8.1. Notions of garbage

We have noted before that our various rewriting constructions feature garbage

retention, but we have never said explicitly what we mean by garbage. There is a little

more to this than meets the eye. Firstly, notions of garbage are intimately related to

reduction strategies, since if we wish to discard a value we had better be confident that

the reduction strategy will never subsequently cause us to access it again. Secondly,

the graph rewriting paradigms of this paper can serve as the basis for different classes

of graph rewriting, each with its own notions of appropriate reduction strategy, each

thus leading to a notion of garbage natural within its own context. So there is no

unique notion of garbage that fits all occasions. Let us immediately mention two

classes of graph rewriting that require distinct notions.

(1) The first is the class of graph rewriting that is intended to model term rewriting.

Here, each graph has an explicit root and every reduction strategy only ever selects

redexes which are accessible from the root. Thus, a notion of garbage that declares all

nodes accessible from the root as live and all other nodes as garbage is natural.

(2) The full DACTL language decorates the nodes and arcs of computational

graphs as discussed in this paper, with node and arc markings designed to encode

explicitly reduction strategies. Some of the term-oriented reduction strategies of class

(1) are easily coded up using these markings, others less so. In addition, the full

language is general enough to model many other programming styles, e.g. logic and

concurrent logic programming, imperative programming, and communicating pro-

cesses. For these paradigms, the kind of reduction strategies that are most natural can

normally be coded via the markings very conveniently. Also (particularly when

modelling communicating processes), it is often the case that having a single explicit

root in the graph is not the most sensible way of characterising liveness and garbage.

Under these circumstances, the most natural notions of liveness and garbage involve

the markings, and perhaps some additional criteria.

When we apply a notion of garbage to a graph G, we obtain a graph with garbage

(G, Gar(G)), where Gar(G) is a subset of the nodes of G, the garbage set of G. The live

set of G, denoted Live(G), contains all nodes of G not in Gar(G). In practice of course,

Live(G) is got by applying some recursive definition of liveness to G, and Gar(G) arises

as its complement.

From the vantage point of 3 rewriting, notions of garbage fall into two classes:

deterministic notions and nondeterministic notions. A deterministic notion of garbage

unambiguously maps each graph G to (G, Gar(G)), while a non-deterministic notion

may permit several different (G, Gar(G)) objects to correspond to a given G. Deter-

Term graph rewriting and garbage collection 71

ministic notions of liveness thus typically use only the data inherent in a graph G: the

symbols labelling nodes, and topological notions such as accessibility.

Here are some examples. Let Root and Leaf be particular symbols, and let Act be

the accessibility relation, i.e. x Act y iff there is a path (of length 20) from x to y.

(DG-A) Every node labelled with Root is live. If x is live and x Act y then y is live.

(DG-B) Every node labelled with Leaf is live. If y is live and x Act y then x is live.

(DG-C) Every node labelled with Root or Leaf is live. If x is labelled with Root and

x Act y then y is live. If y is labelled with Leaf and x Act y then x is live.

(DG-D) Every node labelled with Root is live. If x is labelled with Root and x Act y

then y is live. If x is labelled with Root, y is labelled with Leaf, x Act y,

z Act y, then (y is live and) z is live.

(DG-A))(DG-D) give four different deterministic notions of liveness. These are just

proof systems. Given a graph G and a particular one of these notions, any node that

can be proved live is in Live(G), and Gar(G) arises as Live(G)‘s complement.

Nondeterministic notions of garbage arise when some element of choice is permit-

ted, e.g.:

(NG-A) Choose a subset of the nodes and let it be Live(G).

(NG-B) Choose a subset of the nodes and let them be live. If x is live and x Accy

then y is live.

(NG-C) Choose a single node and let it be live. If x is live and x Act y then y is live.

From the vantage point of 93 rewriting, nondeterministic notions of garbage usually

arise through the suppression of extra detail. For instance, when term rewriting is

modelled using 3 rewrites, the appropriate notion of garbage is (NG-C). This is

because, in a term rewriting derivation, there is an implicit assumption that the root of

the initial term of the derivation defines the root of the live subgraph of the term

(which will be the whole of the initial term since terms are normally taken to be free of

garbage). Furthermore, the structure of a derivation carries with it a root management

strategy which determines what the root of the new graph will be, given the root of the

old graph. Since these considerations are invisible to the $9 rewriting mechanism, the

choice of the root of a graph that models some term in such a derivation seems

arbitrary. Nevertheless, the choice can hardly be regarded as such, and it is often

possible to model at least the deterministic parts of, say, a term-oriented root

management strategy, within the graph paradigm itself. If one chooses the modelling

carefully, it may be possible to reduce the notion of garbage (NG-C) to a notion like

(DG-A). We will return to this later.

8.2. Notions of garbage and rewriting

Notions of garbage must also fit smoothly with rewriting; the root management

strategy mentioned above is but one specific example.

Let 0 be a notion of garbage. Let P be a pattern. Let ?J& have as objects all

(g: P+(G,Gar(G))), where g is a homomorphism from P to a graph G and

(G, Gar(G)) is a graph with garbage permitted by 0. Arrows of %& are all possible

78 R. Banach

~,:(gl:P’(G1,Gar(G,)))~(g,:P-t(G2,Gar(G2)))wheneverthereisanarrow

I$, : (g1 : P-G1)+(g2 : P-+G2) in the corresponding category 9:. Thus, 3& con-

tains all possible ways of decorating objects of 9: with permissible garbage and all

arrows arising thereby. Proceeding to construct 9& for all P in 9, we end up with the

Grothendieck category %(?J’, Rew,){e) which contains all rewrites of 9(9”, Rew,)

decorated with garbage in all possible ways. Now some of these rewrites will be

sensible in the context of the notion 0, and others will not. We define the subcategory

Y(Y, Rew,)e of 4e(9’, Rew,){o, by giving it all objects but only the valid arrows of

g(9, Rew,)cor.

Definition 8.1. Let

be an arrow of 9?(9, Rew,)io,. Each such arrow gives a pair of functions (j, s) : G-H,

where j=#.+oi*, s=+.+or* and (i *, r*) : G+ Rew’(G) is the concrete representation

in terms of node maps of the opcartesian arrow for (i, r): L+R and

(g : L-+(G, Gar(G))). The arrow 6 is valid with respect to 0 iff (j,s) satisfy (GAR)

below.

(GAR) For all xEGar(G),

(a) j(x)EGar(H),
(b) j is l-l on Gar(G),

(c) s(x) =j (x),
(d) ycG, and s(x)=s(y) Z- x=y,

(e) (p[,j(x)) an arc of H o 3 (tl, x) an arc of G such that j(t)=p.

The implications of (GAR) are fairly obvious. Garbage must be persistent ((a)) and

must not be manipulated by rewrites in a nontrivial way. Thus, (b) guarantees that

garbage is preserved 1-l; (c), (d) and (e), respectively, guarantee that garbage nodes

may not be sources or targets of redirections, and that they may not acquire

additional parents. It is clear that (GAR) is such that %(Y’, Rew,)~ is indeed a

category.

Definition 8.2. Let 6 =(i, r): L-+R be an arrow of 9. The SL set (surely live set) of 6,

written SL(6), consists of nodes of L such that (SL) below holds.

(SL) For all XESL(G), either

(a) r(x) # i(x), or
(b) there is an x#y~L such that r(x)=r(y), or

(c) there is an arc (pl, i(x)) in R such that there is no arc (tl, x) in L with i(t) = p.

Theorem 8.3. Let

be an arrow of’3(9’, Rew,)e, with 6~(i,r): L+R. Then g(SL(G))ELive(G).

Term graph rewriting and garbage collection 19

Proof. Since (4*, S) is an arrow of ‘3(??‘, Rew,)e, it is certainly valid as an arrow of

9(9’, Rew,)Cor. Thus, its concrete representation (j, s): G+H satisfies (GAR). It is now

easy to check that g(SL(G))nGar(G)=@. 0

Lemma 8.4. Let 6 = (i, r) : L+ M and E = (j, s) : M -+ N be two arrows of 9’. Then

where

X,.,={xELljOi(x)=sor(x), and there is no x#y~L such that

sor(x)=sor(y), and [(pl,joi(x)) an arc ofN o 3 (t[,x) an arc of

L such that joi(t)=p]}.

Proof. Call the complement of an SL set a PG set (potentially garbage set). The PG

set of 6 contains all nodes which satisfy the conjunction of the negations of (SL)(a)-(c).

Clearly, PG(G)niK’(PG(s)) also satisfies the conjunction of the negations of

(SL)(a)-(c) for .5013, so SL(G)ui-‘(SL(E)) . IS an upper bound for SL(a 0 6). We must

remove from this set all nodes for which E conspires precisely to undo the effect of 6 in

terms of qualification for membership of SL(.s 0 6). A simple comparison of the three

clauses in (SL) with the three clauses defining XE06 shows that XEm6 is the correct set to

remove. 0

Corollary 8.5. The surely live concept is categorical,

Proof. This comes down to showing that, if 6, = (i,, r,) : M,+ M, + 1, with n = 1,2,3, are

three composable arrows of 9, then

sL(6,~(6,~6,))=sL((6,~6,)~6,)

=(SL(G,)ui;‘(SL(G,))u(i, 0 iI)-’ (SL(G,)))-X,

where

X={xELIi30i20il(x)=rjOr20r1(x), and there is no x#y~L such that

r3~r2~rl(y)=r3~r2~rl(x), and [(pl,ijoizoil(x)) an arc of M4 o

3 (tl, x) an arc of L such that i3 0 i2 0 il (t)= p]},

which is straightforward if tedious. 0

We can therefore embellish the data for an arrow (4,,6) of %(.??,Rew,)~ to

include the SL set of 6. (We do not bother to define a whole new category to express

this, although strictly speaking we should.) Thus,

80 R. Banach

Theorem 8.3 and the remarks that follow it (which make a fairly loose connection

between garbage in semantic objects (graphs) and sure liveness (alternatively, poten-

tial garbage) in syntactic arrows (rules between patterns)) constitute all that can be

said for garbage in the general case. In particular, note that the concept of garbage set

cannot be pulled down into the base category 9. This is most clearly illustrated by the

fact that an SL set, despite being a subcomponent of an object, is nevertheless

a property of an arrow of 9. This mismatch between garbage in the Grothendieck

category being a property of objects, and sure liveness in the base being a property of

arrows, is another case where local universality does not extend to global universality

and prevents the obvious projection F: 3(9, R~w,)~+P from being an opfibration

for an arbitrary notion of garbage 0. The situation is directly comparable to those

discussed in Sections 5.1 and 6.4. Nevertheless, in benign circumstances, the problems

caused by this mismatch can be overcome, and an opfibration can be recovered.

Section 9, on term rewriting, illustrates just such a case.

In general, therefore, there is nothing to force Rew’(G) to be opcartesian for 6 and

G in Y(P, Rew,)@, although it is opcartesian in %(P, Rew,). This is connected with

the fact that the liveness of a node is a property that depends on the global structure of

the graph rather than on just the structure of a redex. In other graph rewriting

paradigms this is not necessarily the case, and a more precise story on garbage can be

told (see e.g. [7], where the opposite view to ours prevails).

With these considerations in place, we can mimic the earlier development of

categories that describe rewriting. Firstly, we define ??*o whose objects are graphs

with garbage (G,Gar(G)) and whose arrows are generated by arrows such as

(~,,(i,r,SL(G)):(g:L~G)~(h:R~H)):(G,Gar(G))~(H,Gar(H)).

In general, arrows of +?*o are sequences, as was the case with g.+. If composition

is done internally whenever appropriate as before, then we get a functor

T,o : Y(P’, Rew*)o+3*o given by

T,0((g:L~(G,Gar(G))))=(G,Gar(G)),

T,o((~,,(i,r,SL(6)):L~R):(g:L~(G,Gar(G)))~(h:R~(H,Gar(H))))

=(4,,(i,r,SL(6)):L+R,g,h):(G,Gar(G))+(H,Gar(H)).

As before, we can construct a wealth of variously primed counterparts of c!?*o. In

addition, the reader will have no trouble imagining what C!Y$ and $fd stand for.

8.3. Factoring out garbage; reduction strategies

As well as being able to construct the usual selection of forgetful functors on

Y(Y, Rew,)@, we have another more interesting possibility, that of identifying graphs

modulo garbage. Indeed, this corresponds to the normal way of viewing computa-

tions, since, if one were to regard computations as carrying all their garbage with

them, the total number of nodes in the computational graph would be always

Term graph rewriting and garbage collection 81

nondecreasing, and recursively enumerable sets would all be recursive. Noting that for

some notions of garbage, e.g. (NG-A) or (DG-B), there may be garbage nodes

accessible from some live nodes, we need the following definitions.

Definition 8.6. Let (G,Gar(G)) be a graph with garbage. The live subgraph of

(G,Gar(G)), LSG((G,Gar(G))), consists of all nodes in Live(G) and all arcs for

which parent and child nodes are both in Live(G).

Definition 8.7. A homomorphism of live subgraphs k: LSG((G, Gar(G)))-+

LSG((H, Gar(H))) is a map on the nodes of Live(G) such that

(a) for all xELive(G),

(i) k(x)ELive(H),

(ii) o(k(x)) = a(x),

(iii) A(k(x))=A(x),

(b) for all (xl, y), an arc of the live subgraph of G, (k(x),, k(y)) is an arc of the live

subgraph of H.

Once we have a notion of homomorphism of live subgraphs, we can define

isomorphism classes of live subgraphs, and then select an abstract representative

from each class. Assume in future that the notation LSG((G,Gar(G))) refers to

this object.

We define the category 3*ta1. Its objects are (the abstract representatives of) the

live subgraphs of the graphs with garbage which are the objects of F?*@. Its arrows are

generated in the by now familiar way from arrows such as

(~,,(i,r,SL(G)):(g:L~(G,Gar(G)))~(k:R~(H,Gar(H)))):

LSG((G, Gar(G)))-+LSG((H, Gar(H))).

We see that the graphs G and H are now an indispensable part of the arrow data

since they are no longer implicit in the source or target data. As usual, we define

composition internally wherever possible, and we need to use the G and H in the

arrow data to decide this since

(6-(. ..+(k. :M,-+(H,,Gar(H,)))); . ..).B+X

and

< .a=(...+(k2:M2+(H2,Gar(HZ))))):X+C ...>

are not composable internally unless Mi = MZ, (H,, Gar(H,)) = (H*,Gar(H,)) and

k, = k2. This follows since it is possible that

LSG((H,,Gar(H,)))=X=LSG((H,,Gar(H,)))

without having HI = Hz. There is an obvious forgetful functor @to1 : 99~o+~~ Lol given

by sending each graph with garbage to its live subgraph.

82 R. Banach

The category 3*te1 describes rewriting where one collects the garbage at the

computational graph level as one goes. Obviously, we can write down the usual large

collection of primed counterparts of 2?.+to1: likewise %$tel and 9!$&.

This is also an appropriate point to bring up the matter of rewriting strategies.

We take a rewriting strategy to be a relation v such that, for each object X,

Xv Yo[X can be rewritten (in zero or more steps) to Y]. We let 9*tolY be the

subcategory of %*tol g enerated by the arrows given by v. This describes rewriting

under the strategy v; likewise the categories 9?~toly and 9f{oly, and their variously

primed derivatives.

8.4. Example: rooted rewriting

Of the rewriting constructions we have discussed, only the DACTL construction

mentions a root. Since the DACTL model is equivalent to the D model, the use of

roots is not strictly needed in the semantics of DACTL. Nevertheless, rooted systems

form an important class of systems. In general, we need only require that the LHS of

a rule has a u-root, and that the notion of liveness in force includes accessibility from

a root of the computational graph, to be within the sphere of rooted systems, and this

is the basis on which most of this section is built. There is an important subclass of this

class, wherein we require also that the LHS u-root is the one and only redirection of

the rule, that all patterns of rules are acyclic, that the RHS pattern contains two

o-roots, one of which is the image of the LHS u-root, and that the redirection redirects

the LHS u-root to the other o-root of the RHS. This class models term rewriting

systems within term graph rewriting, and was the impetus for the development of term

graph rewriting in the first place.

During a rewrite, the roots of the computational graph and the roots of the patterns

in the rule must tie together as follows. If X is the graph being rewritten, with root t,

and the rule is (P, root, Red), then if Yis the result of the rewrite the root of Y depends

on whether the image of root in the matching of the left subpattern of P was t or not. If

it was, then the root of Y is the node that t got redirected to; if not, it is the injective

image of t in Y.

There are various ways of modelling the above using 59 rewriting. The key issue is to

fix on a suitable notion of garbage. Possible candidates are (DG-A) and (NG-C).

However, we will adhere to the notion (ROOT), a notion related to (DG-A), for

reasons that will become clear soon. In this respect we assume that Root is a symbol

that does not occur in any system of interest to us and always occurs with arity {I}.

Root is thus a “special symbol”.

(ROOT) The unique child of any node labelled with Root is live. If x is live and

x Act y then y is live.

With this single choice the model of rewriting we require follows immediately.

Consider the category ?J’. It contains a subcategory 9noot, the largest subcategory of

9 for which no object contains an occurrence of the Root symbol. For P in

9aoot consider the fibre 29;. It consists of all graphs containing an instance of P. Now

Term graph rewriting and garbage collection 83

35 splits into equivalence classes of graphs according to how many Root-labelled

nodes a graph has. We focus on the class whose graphs have precisely one such node

and on the subclass of that class for which the Root-labelled node is an orphan.

Selecting all arrows whose source and target are both in this subclass, we obtain

a subcategory %GIROOt. We regard its objects as graphs with garbage in the usual way.

Now since the criteria that govern V rewriting are quite independent of those

involving Root, we can make a Grothendieck construction with base Paoot and fibres

~i%FlCHJt. We obtain the Grothendieck category Y(.Paoot, Rewidl)IROOT) (where Rewidl
is the obvious functor). From this we generate the category 3(Y’aoot,Rewid1)RooT,

which has only valid rewrites.

We claim that the arrows of Y(9aoot, Rewid,)ROOT do root management in exactly the

way we need. We note that every rewrite cannot but preserve the Root-labelled node of

a graph injectively since the Root-labelled node is never part of a redex and the root of

the live subgraph is its child. If we express rewrites in concrete terms by (j, s) : G+H then

the root of the live subgraph of H is the value of s at the root of the live subgraph of G.

We can now follow the standard construction and manufacture qidlRooT whose

objects are graphs with garbage and whose arrows are rewriting sequences, and then

we can forget the garbage and get ~idl[ROoT,. Restricting ourselves to a specific system

2 and initial graph I, we get, in turn, ~~ltRooT1 and 3$:tRooT1, etc.

On the basis of the preceding considerations, it is clear that the notion (ROOT)

captures DACTL’s root management strategy particularly well when used in the

context of rooted rewriting, regardless of whether or not we are in the special case for

term rewriting, showing, incidentally, that the invariants that describe this situation

are independent of the problems of rootedness or garbage.

The above treatment used (ROOT), a deterministic notion of garbage. We point out

briefly how a treatment using (NG-C) would go. The main difference between

deterministic and non-deterministic notions of garbage is that the former are given by

a function from graphs to graphs with garbage. This function can often be enriched to

a functor for various categories of graphs and this can give us extra structure for free.

Suppose then we were using (NG-C) to model the previous situation. The fibre above

a pattern P would consist of pointed graphs, i.e. graphs with a distinguished node, the

root. We could accomplish what we achieved before, but at every stage we would have

had to enhance every functor or construction by specifying how it acted on the

distinguished node. All of these enhancements would have been fairly obvious, but all

would have meant a slight stepping outside of the framework already constructed.

Using the deterministic notion (ROOT) avoided all this.

It has to be said that, in many ways, the (ROOT) notion is a more honest way of

doing things. In a genuine implementation of rewriting, the automaton doing the

rewriting would indeed have a fixed anchor point such as a Root-labelled node, from

which the live part of the computational graph was accessible.

Counterexample 8.8. This is a good place to substantiate the statement made earlier

that, in general, the projection F: Y(P, Rew,)e-+P is not an opfibration, even for

84 R. Banach

rooted rewriting. Consider Example 3.10 in the ZJ formulation as illustrated in Fig. 16,

using the notion (ROOT). This rule performs two nontrivial redirections, the root

redirection roothroot’ and the subroot redirection c-+c’. Consider factoring this rule

into two in 9’. The first factor 6 performs only the root redirection and its RHS

pattern is the pattern P of Fig. 3. The second factor E performs only the subroot

redirection, its LHS being the pattern P just mentioned and its RHS pattern being

R of Fig. 16. Clearly, E 0 6 is the original rule.

If we rewrite a redex (g : L-G) such that every path from the root of G to g(c)

passes through g(root), then the image in the right-hand redex of c will be garbage

because of the redirection roothroot’. If we do both redirections simultaneously in

the composite form of the rule, no harm is done. However, if we use the factored form

of the rewrite, then the rewrite using E will not be valid since the subroot redirection

redirects a garbage node. Since the rewrite using E is precisely the unique factorisation

arrow of the composite rewrite needed for F: $?Y(Y, R~w,)~+Y to be an opfibration,

we have our claim.

Readers should prove, however, that when we restrict ourselves to the subcase for

describing term rewriting via term graph rewriting, the functor F : 9(9, Rew,)@+g

does indeed turn out to be an opfibration. This is to be expected on the basis of the

contents of Section 9, given the results that relate term rewriting and term graph

rewriting in e.g. [4,11,24].

9. Term rewriting using opfibrations

The previous sections developed general term graph rewriting in an opfibration

framework in fair detail. Since the style of graph rewriting we are most concerned with

in this paper is inspired by and is a generalisation of term rewriting, it is instructive to

examine the development of term rewriting in a similar framework. We do this briefly

below.

9.1. Term rewriting with garbage retention

Suppose we have an alphabet of symbols which is the disjoint union of function

symbols (with nonempty arity), constant symbols and variable symbols (the latter two

with empty arity). A term is a tree-shaped graph, each of whose nodes is labelled with

a symbol from the alphabet. A term is closed if it contains no leaves labelled by

variables. A term is open if it contains zero or more leaves labelled by variables (note

the disparity with conventional usage). A term homomorphism or matching is a graph

homomorphism between terms, such that if a node is labelled with a constant or

function then its image must be labelled by the same symbol (with the same arity).

However, nodes labelled with a variable symbol may match anything, with the

proviso that the subterms rooted at the images of distinct nodes labelled with the same

Term graph rewriting and garbage collection 85

variable must be isomorphic. The concept of term homomorphism extends naturally

to sets and multisets of terms and we will use the extended notion below without

further comment. A term homomorphism is strict iff the image of a node labelled with

a variable is labelled with the same variable.

The base category for the rewriting enterprise is &‘F whose objects are multisets of

open terms and whose arrows are (i, r): L-R. Here (i, Y) satisfy (TR-INJ), (TR-RED)

and (TR-SUB) below.

(TR-INJ) i: L+R is a multiset of strict term homomorphisms and maps roots of

terms of L to roots of terms of R.

(TR-RED) r : L-R is defined only on roots of terms of L and maps them injectively

into roots of terms of R.

(TR-SUB) Every variable symbol of R occurs also in L.

These arrows are generalised term rewrite rules as we will presently see. The fibre

above some P in &!O is a category AFp of multisets of closed terms which are

homomorphic instances of P. More explicitly, each object of dFp is a pair (S, s)

such that s : P+S is a term homomorphism. An arrow 4 : (S, s)+(S’, s’) of &Fp is

a rigid redex morphism, i.e. it is a homomorphism 4 : S+S’, such that s’= 4 0 s and

4-‘(s’(P))=s(P).

A rule 6 -(i, r) : L+R of ,&‘c induces a functor TRew6: Jk’~L+d’~R whose object

map is a form of parallel term rewriting patterned after (an operational version of)

9 rewriting. Thus, let s : L+S be a redex. Add fresh copies of all terms of R-i(L) to

S giving a multiset of (potentially open) terms S’. Redirect each arc of S’ targeted at

s(root(l)), so that it points instead at the copy of r(roos(l)) in S’, where 1 is an open term

of L, root(l) is its root and s is the obvious extension of s: L-+S to s: L-+S’. Call the

resulting multiset S”. Replace each leaf of an open term of S” labelled with a variable

symbol V by a fresh copy of the subterm rooted at s(a), where a is any leaf of an open

term of L labelled with I’. This gives a multiset of (closed) terms T. Then T is in &?‘FR

(because Y is injective) with obvious homomorphism t : R+ T. Clearly, TRew’ extends

to rigid homomorphisms of AFL in the obvious way.

The reader will not doubt that the above construction can be rephrased in a locally

universal manner. We call this (operational) rewriting construction, and also its

locally universal counterpart (which has exactly the same expressive power), the AF

rewriting construction. The local universality extends to a global universality, i.e. the

functors TRew6 merge together to give a functor TRew: A’+%?& and we have

another opfibration. Call the resulting Grothendieck category &F((,tiO, TRew,),

where we can restrict the rigid homomorphisms in the dflFp categories in various

ways as in the previous section, and parametrise the construction using * as before.

When necessary, we can refer to this generalisation of _&‘F rewriting as the &F-,

rewriting construction. In any of these variations on the same theme, a rewrite can be

written in concrete notation as (j,f): S-+T, where S and T are multisets of closed

terms, j is the obvious symbol/arity-preserving node function, f is a redirection

function, and so (j,f) form a redirection couple, i.e. [(xl, y) an arc of S o (j(x),,f(y))

an arc of T].

86 R. Banach

9.2. Notions of garbage for term rewriting

Let us now consider garbage, in particular the notion (ROOT) that we used

previously. As before, we can identify subcategories of the fibres whose objects

have exactly one orphan Root-labelled node, and a subcategory of ~2’0, none

of whose objects contain any Root-labelled nodes. A rewrite of a redex s: L-S

using (i, r) : L+R, yielding (j,f) : S+ T and t : R+ T, is valid iff it satisfies (TR-GAR)

below.

(TR-GAR) (a) j(Gar(S)) 5 Gar(T),

(b) j is l-l on Gar(S),

(c) f=j on Gar(S),

(d) =Gar(S), YES, f(x) =f(y) * x = Y,
(e) VarS(t-‘(Live(T)))cVarS(s-‘(Live(S))),

where VarS(X) is the set of variable symbols labelling leaves of X. In fact, a little

thought shows that (TR-GAR)(a) implies a dual property to (TR-GAR)(e), namely

(TR-GAR) (a’) VarS(s-‘(Gar(S)))&VarS(t-‘(Gar(T))).

Amongst other things, these properties say that garbage is persistent, and that any

variable labelling any node of R matched to a live node of T also labels some node of

L matched to a live node of S (and dually). This latter property is the analogy in the

present context of the idea that “rewrites may not manipulate garbage nodes in

a nontrivial manner”. Note the contrast between (TR-GAR)(e), which uses the

structure of the rule governing the rewrite in an essential way, and the last three

clauses of (GAR) in the previous section which make no reference to the rule used.

This highlights the fact that term rewriting semantics uses the isomorphism of

subterms rooted at images of similarly labelled variable nodes, while graph rewriting

semantics has no such “nonlocal” property. This nonlocality obscures the meaning of

the phrase “rewrites may not manipulate garbage nodes in a nontrivial manner”,

particularly where the left pattern of a rule is not linear and some variable has both

live and garbage instances in some redex. Presumably, instantiating a live variable

node of S” with a subterm obtainable only by inspecting a garbage subterm of

S counts as nontrivial manipulation and is therefore prohibited by (TR-GAR)(e). But

we could go further and replace (TR-GAR)(e) by the stronger (TR-GAR)(e’), or the

still stronger (TR-GAR)(e”) below if we wished, to get alternative notions of validity.

Again we can view the whole construction as being parametrised by the choice of one

or other of these three possibilities.

(TR-GAR)(e’)

VarS(s-‘(Gar(S)))nVarS(t-‘(Live(T)))=@

(TR-GAR)(e”)

VarS(s- ‘(Live(S))) nVarS(s- ’ (Gar(S)))

=VarS(t-‘(Live(T)))nVarS(t-‘(Gar(T)))=@.

Term graph rewriting and garbage collection 87

All of the properties we have written down are composable and associative in the

expected manner. Therefore, we can emulate the treatment of the previous section and

build a large range of derived categories describing our version of term rewriting at

different levels of abstraction.

Instead of doing this, however, we set off in a different direction and exploit the

additional topological properties of tree-structured systems. This will ultimately bring

us to a fairly conventional picture of term rewriting.

9.3. Towards conventional term rewriting

Let us fix one or other notion of validity. Let us fix all fibres to be discrete (and drop

the suffix id on TRew when naming Grothendieck categories), and let us consider the

category MS(Afi, TRew),,,, consisting of valid rewrites. There is a projection

functor A’F: k!‘.T(AO, TRew),,,, +A!O, although it is not an opfibration. Consider

now the subcategory J%‘S(JV~, TRew),&, whose objects are those objects of

_&‘F(_Mc”, TRew),OO, which satisfy

(TR-ONE) (s : L+(S, Gar(S))) is an object of .&‘F(_&“o, TRew)kOoT iff precisely

one open term of L is mapped by s into Live(S).

and whose arrows are all arrows of &%!‘F(_&‘O, TRew),,,, with source and target

within Jz’F(.,Hc, TRew)&,T. It is easy to see that this is a subcategory.

When projected down by A%‘F to MU, the images of the arrows of

&S(J&‘~, TRew)&, are arrows (i, r): L+R such that for at most one term 1 in L

is it true that r(root(l))#i(root(l)). Such arrows of JZ’U do not form a sub-

category. Nevertheless, the projection AF: J~!F(J~!‘O, TRew)&,0T+Af’C5 enjoys

the desirable properties of a split opfibration, i.e. rewrites are opcartesian for their

source and image in M6, and they compose like a splitting, as the reader can check

easily enough.

Note how unlike the general graph rewriting case this is. All of this good behaviour

is entirely attributable to the strong topological properties of terms under the simple

invariant (TR-ONE).

Whenever a functor P:X-+B is such that, for every xgX and arrow f:x-+y~X,

(1) there is an assigned opcartesian arrow 7: x-+j7 with P(f)= P(f), (2) these arrows

are consistently assigned in that P(f: x-y) = P(f :x-y’) +f=fl, (3) they satisfy

P(Arr(y, -)) = P(Arr(y, -)), where Arr(y, -) is the set of arrows with domain y, and (4)

they form a splitting, we have a weak opfibration (see [3]). We can then construct

a category M, a functor F’, : A!+%?ad such that X z G(M, Fdll), the category produced

by the Grothendieck construction from & and P1(, and a projection K : &‘+a, such

that P is the composition of a split opfibration P1(:X+&Z with K. When the category

X arises as a suitable preimage under some functor H: X+g, of a Grothendieck

category Y= G(B’, F,) over g, we call the category M the split opfibration comp-

lement of the functor H: X+% and the split opfibration P,:g+B, and we have

a morphism of split opfibrations (Pd:“Y-+B)-(P,l,: X+.,&‘) given by H and K.

88 R. Banach

Readers can check that the projection AF :A~(.A’O, TRew)&,,,-+Jt’O satisfies

the required criteria. The split opfibration complement whose existence is asserted

above is isomorphic to the category ~2’0&. The objects of &0,&r are pointed

multisets (i.e. multisets with a distinguished element) of open terms, and their arrows

are (i, r): L*+R*, such that, for all nondistinguished terms I of L*, i(root(l))=

r(root(l)), and Y maps the distinguished term of L* to the distinguished term of R*.

Arrows 6 and E are composable, giving E 0 6 iff the distinguished term of the target of

6 is the distinguished term of the source of E.

On the basis of the preceding considerations, it is easy to see that the projection

AF ,&,OT: &it’F(AO, TRew)&r+A!Q&T

that takes (s: L-+(S, Gar(S))) to L* (where L* is just L with, as the distinguished

term, that term of L which is mapped by s into Live(S)), and which takes an arrow

((i, r): L-+R) : (s: L+(S, Gar(S)))-+(r: R+(T, Gar(T)))

to the corresponding (i, r) : L* + R*, is an opfibration. It is clear that the objects of

MO’ ROOT are prelabelled versions of objects in A0 (the prelabelling being the classi-

fication of terms as (preimages of) live or garbage terms for rewriting) and thus that

there is an obvious projection P : ~2’0~~~~ +.h’O, which just forgets which of the terms

of an object is distinguished. Given the simple topological structure of objects of ~%“6

and of fibres AFL, this prelabelling is a sensible thing to do.

9.4. Conventional term rewriting

Consider conventional term rewriting, which is always done without any mention of

garbage. The base category for this is 0, whose objects are individual open terms L, and

whose arrows are L+R where VarS(R) cVarS(L). Above each L in 0, place a fibre .FL,

whose objects are pairs (S, s), with S an individual closed term and s: L+S a matching

of L into S, and whose arrows are just identities. If 6 = L-+R is an arrow of 0, let

TR’ : Y-~+JY’ be the functor which takes a redex s: L-+S to t : R+ T, where T is the

result of applying the term rewrite rule 6 to s : L-S (i.e. replace the instance of L in S by

an instance of R with variables suitably instantiated via s). Predictably, the functors

TR” glue together to give a functor TR: 8+%‘& with TR(L)=Y’ and

TR(6:L+R)=TR”:YL . +FR Conventional term rewriting thus consists of the arrows

of the Grothendieck category F(0, TR), with split opfibration F: F-(8, TR)+8.

9.5. Relating the difSerent styles of term rewriting

The piece de resistance of this section is the morphism of split opfibrations

Live : (A FiOOT : JMF(~HO, TRew)~ooT+~~B~ooT)+(F:~(O, TR)+Cr).

This consists of two suitably related functors: LiveG, which acts on the Grothendieck

categories, and LiveB, which acts on the bases. LiveB:MOiOOT+fi takes each

Term graph rewriting and garbage collection 89

,O
LiveB

Fig. 21. Morphisms of split opfibrations.

pointed multiset L* to its distinguished term L’, and each rule (i, Y): L*-+R* to L,+R’,

where in the latter case no explicit function on roots is necessary.

The functor LiveG : A’Y(AG, TRew) &,T+Y(O, TR) takes each object (s : L+S)

to (s’: L’+S’), the instance of L’ in the subterm rooted at the unique child of the

unique Root-rooted term of S. Thus, S’ = Live(S). On arrows LiveG takes

(id, (i r): L*+R*): (s: L+(S, Gar(S)))-+(t, R+(T, Gar(T)))

to

(id, L’+R’):(s’:L’+S’)+(t’:R’-+T’).

The situation is illustrated in Fig. 21, which also includes the original projection

AfF: Jk’S(MO, TRew)-+A’O.

9.6. Discussion

The above makes plausible the claim at the end of Section 8 that the special case of

rooted rewriting indeed gives rise to an opfibration. We get a similar figure to Fig. 21,

but with a different left-hand square. The two left-hand squares are related by functors

constructible on the basis of results in works such as those by Barendregt et al. [4],

Kennaway et al. [24] and Farmer and Watro [l 11.

At this point, we might reasonably ask whether an enterprise similar to Fig. 21

might not succeed for graph rewriting in general. On the whole, it will not, since the

category of valid rewrites need not have all the necessary split opcartesian arrows.

Nevertheless, there may well be circumstances other than those directly concerning

terms, where the category of valid rewrites is a weak opfibration over the rules. This

explains why graph rewriting in the DACTL style is best done with garbage included,

while term rewriting is best done in a “garbage-free” way.

Finally, we hope readers will be amused by the structural similarity of the problem

of finding the split opfibration complement in Fig. 21 and the problem of finding the

pushout complement in algebraic graph rewriting. Both are connected with garbage,

but describe different phenomena, and at vastly different levels of abstraction.

90 R. Banach

10. Conclusions

In the preceding sections, we have set up a number of notions of graph rewriting,

starting with the purely operational DACTL model, moving through its locally

universal generalisation, the D model, and finishing with the globally universal 9 and

3’ models. In the 3 model, rewriting is described using an opfibration, the base

consisting of patterns and rules, and the fibres being instances. The treatment of term

rewriting from the same viewpoint was also instructive. The more categorical models

show how garbage collection and real systems can be described in a natural manner,

although some of the latter aspects of this exercise were admittedly a little taxonomic

in nature.

It is gratifying to note that most of this was accomplished without real strain; the

only place where we might be accused of having “fait du bricolage”, as the French so

charmingly put it, is in the construction of the D model, where some “handiwork” was

needed to accommodate the full spectrum of DACTL redirection ambiguity.

Occupying an intermediate position between these extremes is the circular I rewrite.

We showed that it can be described using the mechanics of the globally universal

construction, but possesses only local universality, because of the different invariants

involved. Other approaches to this rewrite have been proposed, and are discussed in

[24] as well as in this paper. The author feels that the further clarification of universal

properties possessed by the D model will illuminate this rewrite, and that the issue of

good granularity may well play a part.

In rewriting theory, there are a large number of concepts that are categorical to the

extent that they involve an associative law of composition, but it is not always clear

how these fit together to form an overall description. The present treatment fares quite

well in this respect as a consequence of the richness of the categorical data structures

used in its constructions. To paraphrase MacLane, “there’s lots of room in a Grothen-

dieck construction”.

Graph rewriting is a particularly good place to explore these issues. Unlike term

rewriting, where the topological properties of the objects are so strong that many

things are true “by accident”, in graph rewriting nothing is true unless for a very

good reason. As a consequence, while restricting truths that hold for graph

rewriting to the term rewriting case is normally successful and shows how the

simpler structure of terms strengthens such truths, the opposite approach, of trying

to generalise arbitrary truths that hold for term rewriting to the graph rewriting case,

normally ends in grief.

We leave the reader with the following thought. The various flavours of rewriting

treated above can all be viewed as instances of some very general notion of update, or

destructive assignment, or substitution. All operational models of computation pos-

sess such a component since they proceed (at some level of abstraction) by discrete

stages that modify some computational structure. Therefore, the update or replace-

ment feature of any model of computation can be modelled using a suitably universal

construction. If the invariants of the model are such that properties of objects are

Term graph rewriting and garbage collection 91

E = (i, s)

Fig. 22.

independent of properties of rules and of instances of rules, then we can expect to

make a Grothendieck construction. The more nondeterministic a model of computa-

tion is, the more convincing the description via the opfibration is, in terms of having

captured the essence of computation within the model. Conversely, the more deter-

ministic the model, the less the opfibration captures, since more of the significant

aspects of the model depend on strategy, which is a higher-level notion as far as our

approach is concerned. One could make a manifesto of such a generalisation.

Appendix. Proof of Theorem 6.11

We give this result in fair detail because of its importance. We have to show that

Rew(idp) = Id9p and Rew(E 0 6) = RewEaS = RewEo Rew6 = Rew(c) 0 Rew(S). The way to

do this is to show that Fig. 22, in the world of concrete graphs, commutes. In

particular, we need to show that K1 and K2 are isomorphic as graphs, and that x1 and

x2 are isomorphic as arrows.

We start with K1 and K2. K1 is obtained by rewriting in one step, while K2 is

obtained in two steps. To show that they are isomorphic it is enough to show that

there are unique redirection couples (5, p) : K1 +K2 and ([, 7~): K,+K,, since their

compositions must then be identities.

Now K 1 is universal as a completion of the square G+- L+ N via (ji*, sr*) : G+ K 1

and k, : N+ K 1 because these are a rewrite. (Note that ji* is a name of a function, not

some sort of composition.) We claim that K, completes the same square via

92 R. Banach

(j*oi*, s*or*): H+K2 and k2 : N + K2. To see this, note that the squares LGHM and

MHK2N can be juxtaposed to give a commuting square LGK2N because the arrows

of these squares are built out of functions, and such squares in 9’& can be juxtaposed.

This easily gives us Theorem 6.6(l)-(4). We get Theorem 6.6(5) by noting that s*

satisfies it already because it is the redirection map of a rewrite, so we have our claim.

Theorem 6.6 now gives us a unique redirection couple (<, p): K1+K2.
To get a unique couple (i, rc): K,+K1, we proceed in two stages. Firstly, we define

(j:, ST): H-+K1 as follows, and show that it is well defined:

jT(i*(x))=ji*(x),

sT(i*(x))=jf(i*(x)) for i*(x)EH-(r*(G)uk(M)).

Secondly, we show that (j:, ST): H+K, satisfies the hypotheses of Theorem 6.6,

whence our desired unique redirection couple exists.

Here are the details. The first and fifth clauses are unambiguous since i* is injective.

The middle three might be ambiguous since h and Y* might not be injective. If

there are distinct preimages under h or I* of some node of H, then there are distinct

1, and l2 in L, the preimages of these preimages under i, g, respectively. Chasing 1,

and l2 round the rewrite LGKIN shows that the second and third clauses are

unambiguous. For the fourth clause, we need the invariant (RED)(c) for un-

ambiguity. Finally, to establish the well-definedness of (j;, ST), we examine the

cases where the clauses overlap. These are the first and second, and also the third

and fourth. It is a routine matter to chase a suitable 1 in L round the rewrite

LGK, N to establish consistency in both cases.

Now we must check that the hypotheses of Theorem 6.6 for (j:, sf): H+K, and

kl : N-K1 are satisfied. Condition (1) is obvious since all maps used in the definition

of jT are symbol/arity-preserving. Condition (2) follows by noting first that every arc

of H is either the (i*, r*) image of an arc of G or the h image of an arc of M. In the

former case, the (ji*, ST*) image of the G arc gives (2); in the latter case, the (k, oj, k, 0 s)

image of the M arc gives (2). Agreement on the overlap follows as usual by noting that,

for arcs in the overlap, there is an L arc which we can chase round the rewrite LGKl N

to give consistency. Condition (3) holds by assumption and condition (4) holds by

construction (see the second and fourth clauses for (jy, ST)). To check condition (5)

suppose s(p)=j(a), s(q)=j(b) and k(a)=k(b). We must show that sT(k(p))=sT(k(q)).

Since k(a)= k(b) there must be 1r and i2 in L such that a= i(ll), b= i(/,) and

g(lr)=g(L). Since s(lJ=g(M, sr*(s(M)=sr*(s(M). Now s:(h(p))=kr(s(p))=

k,(j(a))=kl(joi(ll))=sr*(g(l,))=sr*(g(/2))=kl(joi(/2))=kl(j(b))=kl(s(q))=
sr(k(q)), giving (5), and completing the proof for objects.

Term graph rewriting and garbage collection 93

We now turn to the arrows. Our discussion of objects showed that the lower plane

of Fig. 22 commutes. Taking the obvious interpretation of the primed objects in the

upper plane, we assume that it commutes too. Given the rigid redex morphism

4: G-G’, let x1 : K1 +K; be obtained in one step, while x2 : K,-+K$ is obtained in

two steps, via II/ : H+H;. We must show that x1 and x2 are isomorphic as rigid redex

morphisms, i.e. that x2 = [’ 0 x1 0 [, which is enough since 5’ and [are isomorphisms of

objects. We do this by showing that there is a unique (d, t): K,-+K;. For, given such

a (d, t), the commutativity of Fig. 22, which we will have proved, allows us to write

Noting that 7c = [and rc’ = [’ we find d = t, whence x2 = r’ 0 x1 0 i immediately.

It remains to show that (d, t) exists as claimed. This is not too difficult given the

foregoing. K z is universal among completions of H t M + N as noted previously since it is

a rewrite. We claim that (jt 0 $, ST 0 $) : H + K; and k; : N --, K; complete the same square

in a manner that allows the use of Theorem 6.6. To check this we must establish the

hypotheses of Theorem 6.6(l)-(5) again. Conditions (l)-(3) are obvious, and condition (4)

is clear once we note that $0 h=h’ and that MH’K; N is a rewrite. We are left

with (5), which amounts to showing that, if s(p)=j(a), s(q)=j(b) and h(a)= h(b),

then sf’oll/(h(p))=s;‘o $(h(q)). But writing this equality in another way as

s:‘(h’(p))=sf’(h’(q)), we spot the upper plane analogue of condition (5) for ST which we

showed above. So Theorem 6.6 gives us our unique (d, t) : K2 +K\ and we are done. 0

Acknowledgment

It is a pleasure to thank an anonymous referee, who suggested a number of

improvements to the paper.

References

[1] A. Asperti and S. Martini, Categorical models of polymorphism, Inform. and Comput. 99 (1992)
l-79.

[Z] R.H. Banach, Term graph rewriting and garbage collection a la Grothendieck, a previous draft of this

paper, 1992.

[3] R.H. Banach, Weak fibrations, J. Pure Appl. Algebra 86 (1993) 7~22.
[4] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer and

M.R. Sleep, Term graph rewriting, in: J.W. de Bakker and A.J. Nijman, eds., Proc. PARLE-87,
Lecture Notes in Computer Science, Vol. 259 (Springer, Berlin, 1987) 141-158.

[S] M. Barr and C. Wells, Category Theory for Computing Science (Prentice-Hall, Englewood Cliffs, NJ,

1990).

[6] J. Bknabou, Fibered categories and the foundations of naive category theory, J. Symbolic Logic 50

(1985) 10-37.

[7] P.M. van den Broek, Algebraic graph rewriting using a single pushout, in: S. Abramsky and T.S.E.

Maibaum, eds., Proc. CAAP-91, Lecture Notes in Computer Science, Vol. 493 (Springer, Berlin, 1991)
90&102.

94 R. Banach

[S] T. Coquand, C. Gunter and G. Winskel, Domain theoretic models of polymorphism, Inform. and
Comput. 81 (1989) 1233167.

[9] H. Ehrig, Introduction to the algebraic theory of graph grammars (a survey), Lecture Notes in

Computer Science, Vol. 73 (Springer, Berlin, 1979) 1-69.

[lo] H. Ehrig, Tutorial introduction to the algebraic approach of graph grammars, in: Proc. 3rd Int.

Workshop on Graph Grammars, Lecture Notes in Computer Science, Vol. 291 (Springer, Berlin, 1986)

3-14.

[ll] W.M. Farmer and R.J. Watro, Redex capturing in term graph rewriting, Internat. J. Found. Comput.

Sci. 1 (1990) 3699386.

[12] J.R.W. Glauert, K. Hammond, J.R. Kennaway, G.A. Papadapoulos and M.R. Sleep, DACTL: some

introductory papers, Report SYS-C88-08, School of Information Systems, Univ. of East Anglia,
Norwich, UK, 1988.

1131 J.R.W. Glauert, J.R. Kennaway and M.R. Sleep, Final specification of DACTL, Report SYS-C88-11,

School of Information Systems, Univ. of East Anglia, Norwich, UK, 1988.

[14] J.R.W. Glauert, J.R. Kennaway and M.R. Sleep, DACTL: an experimental graph rewriting language,

in: H. Ehrig, H. Kreowski and G. Rozenberg, eds., Graph Grammars and Their Application to Computer

Science, Lecture Notes in Computer Science, Vol. 532 (Springer, Berlin, 1990) 378-395.

1151 J.W. Gray, Fibered and cofibered categories, in: S. Eilenberg et al., eds., Proc. La Jolla Conf on

Categorical Algebra (Springer, Berlin, 1966) 21-83.

1161 A. Grothendieck, Technique de Descente et Theorem&s d’Existence en Geometric Algebrique, I.

Generalites, Descente par Morphismes Fidtlement Plats, Paris, Seminaire Bourbaki 190, 1960.

1171 A. Grothendieck, Cathegories Fibrtes et Descente, Seminaire de Geometric Algtbrique de 1’Institut

des Hautes Etudes Scientifiques Paris; also in Lecture Notes in Mathematics, Vol. 224 (Springer,

Berlin, 1961) 1455194.

[lS] A. Habel, H. Kreowski and D. Plump, Jungle evaluation, in: D. Sannella and A. Tarlecki, eds., Proc.

5th Workshop on Specification of Abstract Data Types, Lecture Notes in Computer Science, Vol. 332

(Springer, Berlin, 1988) 922112.

[19] B. Hoffman and D. Plump, Jungle evaluation for efficient term rewriting, in: Proc. Internat. Workshop

on Algebraic and Logic Programming, Mathematical Research, Vol. 49 (Akademie-Verlag, Berlin,

1988).

[20] J.M.E. Hyland and A. Pitts, The theory of constructions: categorical semantics and Topos-theoretic

models, in: J.W. Gray and A. Scedrov, eds., Categories in Computer Science and Logic, Contemporary

Mathematics, Vol. 92 (Amer. Mathematical Sot., Providence, RI, 1989) 137-199.

1211 J.R. Kennaway, On “On graph rewritings”, Theoret. Comput. Sci. 52 (1987) 37-58.

1221 J.R. Kennaway, Implementing term rewrite languages in DACTL, Theoret. Comput. Sci. 72 (1990)

225-250.

1231 J.R. Kennaway, Graph rewriting in some categories of partial morphisms, in: H. Ehrig, H. Kreowski

and G. Rozenberg, eds., Lecture Notes in Computer Science, Vol. 532 (Springer, Berlin, 1991)

490-504.

[24] J.R. Kennaway, J.W. Klop, M.R. Sleep and F.-J. De Vries, Transfinite reductions in orthogonal term

rewriting systems, CWI Report CS-9041, 1990; Inform. and Comput., to appear.
125) M. Lowe and H. Ehrig, Algebraic approach to graph transformation based on single pushout

derivations, in: R.H. Mohring, ed., Proc. Graph-Theoretic Concepts in Computer Science, Lecture

Notes in Computer Science, Vol. 484 (Springer, Berlin, 1991) 3388353.

[26] E. Moggi, A category-theoretic account of program modules, Math. Struct. Comput. Sci. 1 (1991)

1033139.

1271 F. Parisi-Presicce, H. Ehrig and U. Montanari, Graph rewriting with unification and composition, in:

Proc. 3rd Internat. Workshop on Graph Grammars, Lecture Notes in Computer Science, Vol. 291

(Springer, Berlin, 1986) 496-514.
[28] J.C. Raoult, On graph rewritings, Theoret. Comput. Sci. 32 (1984) 1-24.

1291 J. Staples, Computation on graph-like expressions, Tneoret. Comput. Sci. 10 (1980) 171-185.

[30] J. Staples, Optimal evaluations of graph-like expressions, Theoret. Comput. Sci. 10 (1980) 287-316.

1311 J. Staples, Speeding up subtree replacement systems, Theoret. Comput. Sci. 11 (1980) 39-47.
[32] C.P. Wadsworth, Semantics and pragmatics of the lambda calculus, Ph.D. Thesis, Oxford Univ., 1971.

