View metadata, citation and similar papers at core.ac.uk brought to you by

provided by Elsevier - Publisher Connector

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 292 (2003) 653-665

www.elsevier.com/locate/tcs

DNA computing by blocking

G. Rozenberg®® *, H. Spaink®

2 Leiden Institute of Advanced Computer Science (LIACS) and Leiden Center for Natural Computing
(LCNC), Leiden University, P.O. Box 9512, Niels Bohrweg 1, 2300 RA Leiden, Netherlands
b Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA
¢Clusius Laboratory, Institute of Molecular Plant Sciences (IMP) and Leiden Center for Natural
Computing (LCNC), Leiden University, Wassenaarseweq 64, 2333 AL Leiden, Netherlands

Received December 2000; received in revised form February 2001; accepted March 2001
Communicated by A. Salomaa

Abstract

We present a method for molecular computing which relies on blocking (inactivating) this part
of the total library of molecules that does not contribute to (finding) a solution—this happens
essentially in one biostep (after the input has been read). The method is explained by presenting a
DNA based algorithm for solving (albeit in the theoretical sense only!) the satisfiability problem.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Molecular computing; DNA computing; Filtering methods; Satisfiability problem;
PCR

1. Introduction

DNA computing (or, more generally, molecular computing) is a modern and very
active research area investigating the use of biomolecules for the purpose of computing
(see, e.g., [1,3,9]). It is a genuinely interdisciplinary research area, where molecular
biologists and computer scientists cooperate to achieve an exciting goal: to develop
biomolecular computers which in the future may replace, or complement, silicon based
computers.

Roughly speaking, one can distinguish two major lines of research in DNA com-
puting: the theoretical line concerned with models, algorithms and paradigms for DNA

* Corresponding author. Leiden Institute of Advanced Computer Science (LIACS) and Leiden Center
for Natural Computing (LCNC), Leiden University, P.O. Box 9512, Niels Bohrweg 1, 2300 RA Leiden,
Netherlands. Tel.: +31-71-277-063; fax: +31-71-276-985.

E-mail address: rozenber@wi.leidenuniv.nl (G. Rozenberg).

0304-3975/03/$ - see front matter (©) 2002 Elsevier Science B.V. All rights reserved.
PII: S0304-3975(01)00194-3


https://core.ac.uk/display/82395969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

654 G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665

computing, and the experimental line concerned with the design of laboratory experi-
ments testing the biochemical feasibility of theoretical ideas.

A lot of theoretical research considers some basic properties of biomolecules and
some basic biomolecular operations, formulates (the essence of) them as formal prop-
erties and operations, and then investigates models, algorithms, and paradigms based on
these formal properties and operations. Our paper falls into this line of research: we use
the basic properties of DNA molecules (such as the Watson—Crick complementarity,
see, €.g., [2,9]), and the basic laboratory operations (such as the polymerase chain re-
action, see, e.g., [2,9]) to formulate the paradigm of blocking and the algorithms based
on it. In doing this, we are not concerned here with either the biochemical feasibility
of our algorithms or their performance (such as the time or the volume complexity).
In this sense this paper is purely theoretical. However, we address many “practical
issues” in the companion paper [11].

We have taken an effort to write this paper in the interdisciplinary spirit, so that it
is accessible to both researchers in (theoretical) computer science and researchers in
molecular biology—of course providing that they are sufficiently interested in (learning
about) DNA computing.

2. DNA molecules: structure, notation and basic operations

DNA molecules are polymers that are built from “simple” monomers called nu-
cleotides (DNA stands for “deoxyribonucleic acid”). Each nucleotide consists of three
basic components: sugar, phosphate, and base. The sugar molecule has five attachment
points (carbon atoms) which are labeled 1’ through 5’: the phosphate molecule is at-
tached to 5/, and the base is attached to 1’. There are four possible bases, denoted by
A,C, G, and T. Since nucleotides may differ only in their bases, we identify nucleotides
with their bases—thus there are only four types of nucleotides, also denoted by 4, C, G,
and 7.

Nucleotides can form single stranded DNA molecules: two consecutive nucleotides
in such a strand bind through a strong (covalent) bond between the (hydroxyl group
on the) 3’-attachment point of one nucleotide and the (phosphate group on the) 5'-
attachment point of the other nucleotide; this bond is called the phosphodiester bond. In
the so formed single stranded DNA molecule one of its ends (nucleotides) has the 5'-
attachment point available for binding with yet another nucleotide, while the other end
has the 3’-attachment point available for binding. Since chemically the 5’-attachment
point can be easily distinguished from the 3’-attachment point, a single stranded DNA
molecule has easy to establish polarity (orientation): its nucleotide sequence can be
read either from its 5’-end to its 3’-end, or the other way around (it turns out that
5'-3’ polarity is favoured by nature: the biological information is encoded in the 5'-3’
orientation).

The basic feature of the four bases {4, C, G, T} is the pairwise affinity, 4 with 7', and
C with G: we say that bases 4 and T are complementary, and so are C and G. This



G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665 655

complementarity (called the Watson—Crick complementarity) underlies the formation
of double stranded DNA molecules from the single stranded ones. Two single stranded
DNA molecules can bind elementwise through their bases forming weak (hydrogen)
bonds. These bonds can form only between complementary bases, hence between A
and 7, and between C and G. Moreover, two single stranded DNA molecules can form
a double stranded DNA molecule only if the two strands are of opposite orientation
(meaning that the first nucleotide at the 5'-end of one strand binds to the first nucleotide
at the 3’-end of the other strand; the second nucleotide from the 5’-end of the first
strand binds to the second nucleotide from the 3’-end of the second strand, etc.).

Since each nucleotide can be identified by one of the four letters from the alphabet
A"={4,C,G,T}, a single stranded DNA molecule can be denoted by a string over
A", where the left-to-right orientation of a string corresponds to the 5'-3’ polarity of
the strand. Thus, e.g., TCTAG denotes the single stranded DNA molecule with a T-
nucleotide at its 5’-end, a C-nucleotide bonded to it, then another T-nucleotide bonded
to this C-nucleotide, etc. This single stranded DNA molecule could also be denoted
by the more explicit notation 5'-TCTAG-3'.

To denote double stranded DNA molecules we will use “double strings”. Thus, e.g.,

5'—CGAATG-3’

3'~GCTTAC-5'
denotes the double stranded DNA molecule with one of the single strands being
CGAATG and the other one being CATTCG (both read in the 5'-3’ direction). The
usual convention is that the upper string (read left-to-right) represents one of the
strands in the 5-3’ orientation, while the lower string (read left-to-right) represents

the other strand in the 3’-5’ orientation. Using this convention, the double stranded
DNA molecule given above is represented by the double string

CGAATG
GCTTAC

as well as by the double string

CATTCG
GTAAGC.

The double string

TCGT
ACAGCA

represents a double stranded DNA molecule that is not a perfect duplex, i.e., some
nucleotides in one strand do not have the corresponding complementary nucleotides in
the other strand.



656 G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665

We need to stress here that our presentation of the basic structure of DNA molecules
is very simplified, although adequate for the purpose of this paper. In particular, the
reader should be aware that double stranded molecules form a quite sophisticated spatial
structure—the famous double helix discovered by Watson and Crick [12].

One can separate the two strands of a double stranded DNA molecule by, e.g.,
heating the solution containing the molecule. Since the hydrogen bonds between the
two strands are much weaker than the phosphodiester bonds between the consecutive
nucleotides within a single strand, such a separation will not break the single strands.
By cooling down the solution, the separated strands will fuse together forming the
original double strand.

The fusing process is called annealing or hybridization, and the separation process
is called melting or denaturation. Once again we stress that our presentation of basic
molecular biology is very simplified. Thus, e.g., the cooling down for the purpose of
annealing must proceed slowly enough, so that the corresponding complementary bases
have enough time to find each other.

3. Polymerase chain reaction

In genetic engineering one is often faced with a situation when one has to detect
whether a specific molecule is present in “the sea of other molecules” (e.g., among
a trillion of other molecules!). Fortunately, a technique for doing just that has been
devised in 1985 (and it has really revolutionized molecular biology). It is called poly-
merase chain reaction (PCR), and it is based upon the activity of the enzyme called
DNA polymerase (see, e.g., [2,9]). This enzyme turns a single stranded DNA molecule
into a double stranded one by simply adding to each nucleotide in the single strand
its complementary nucleotide in the other strand (and forming the phosphodiester bond
with the previous nucleotide in this strand). However, polymerase can do this only if
there is already a short stretch of nucleotides complementing the 3’-end of the single
stranded molecule. This short stretch (called primer) will be then extended, nucleotide
by nucleotide, in the 5'-3’ direction until the whole single strand is extended to a
double stranded molecule. An example of such an extension is given in Fig. 1, where
the primer is 5'-CACATTGAC.

Let o be the double stranded molecule that we are after. In order to apply PCR
to search for o, we need to know the two 3’-borders of o (i.e., short stretches at
the 3’-ends of the two single stranded molecules of o), say f and 7. Let Z; be the
initial solution (which we want to search for the presence of «), enriched by primers
(complementary to § and y), polymerase and a sufficient supply of nucleotides. The
PCR proceeds by repeating the basic cycle consisting of three steps: denaturation,
priming and extension, beginning with Z;. During the denaturation step, the solution
is heated so that the hydrogen bonds are destroyed, and hence the double stranded
molecules separate into the single stranded molecules (o separates into oy and o
complementary to each other). Then, during the priming step the solution is cooled



G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665 657

5'—CTATACGGTCAATGTG
— CAGTTACAC-5'

5'—~CTATACGGTCAATGTG
— CCAGTTACAC-5'

5'—~CTATACGGTCAATGTG
— GCCAGTTACAC-5

5'—CTATACGGTCAATGTG
ATATGCCAGTTACAC-5'

5'—CTATACGGTCAATGTG
GATATGCCAGTTACAC-5'

Fig. 1. A primer extension process.

down (typically to about 55°C) so that the primers anneal to the complementary borders
of oy and a (forming primed molecules «] and o). These molecules (o and o)
are extended to the double stranded molecules during the extension step when the
temperature of the solution is increased (typically to 72°C), so that polymerase can
extend each of o} and o) to a molecule identical to a. Consequently, during one basic
cycle (denaturation + priming + extension) two copies of o are made, and so, after
n repetitions of the basic cycle, in principle 2" copies of o are made (hence PCR is a
very efficient “copy machine” for DNA molecules).

Thus, PCR dramatically increases the density of o in the solution (if it is there),
and this makes the detection of o much easier. It should be noted that during the
denaturation step the solution is heated to a temperature close to boiling, and so the
polymerase (present in the solution all the time) must survive this high temperature.
Fortunately, polymerases isolated from thermophilic bacteria living in thermal springs
can do that.

Although in the above description of PCR we have assumed that the sought after
molecule is double stranded, the PCR will work also for a single stranded o which
will be made into a double stranded molecule in the extension step of the first cycle.

4. Satisfiability

In this section we briefly recall the satisfiability problem for Boolean expressions,
see, e.g., [5]. Then, in Section 6 we will present a “molecular algorithm” for solving
it, albeit only in theoretical sense. We have chosen to work on this problem, because
it is well known and it plays a central role in the family of computational problems
(see, e.g., [5]), and because it is very well suited for the use of blocking.



658 G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665

Let V' ={p1,..., pn} be a set of Boolean variables—their values may be only 0 and
1 (0 stands for “false” and 1 stands for “true”). A literal is either a variable p; or its
negation —p;, and we say that p;, —p; are literals for p;.

We consider two logical operations: V (“or”) and A (“and”). A clause E is an
expression of the form 7,V --- V£, m>1, where each /; is a literal; for the purpose
of this paper we may assume that for each variable p; there is at most one literal for
pi in E. A Boolean formula (in conjunctive normal form, CNF) is an expression of
the form E; A --- AE; where each E; is a clause.

An assignment is a function ¢ on V which for each p; has the value either 0 or
1. To compute the value of a literal (for a given assignment @) we use the rule:
—0=1 and —-1=0. To compute the value of a clause we use the rule: 0V0=0
and 0V1=1v0=1V1=1. To compute the value of a formula we use the rule:
OAN0O=0A1=1A0=0and 1A1=1.

We say that an assignment ¢ satisfies a formula @ if the value @(®) of @ under ¢
is 1; otherwise ¢ falsifies @ (and ¢ is a falsifier of @). Note that ¢ falsifies @ if and
only if ¢ falsifies at least one clause of @. We say that @ is satisfiable if there is an
assignment satisfying &.

Example 4.1. Let V ={py, ps, p3} be a set of variables, and let ®=FE; AF, AE; be
a Boolean formula over V' such that £y = p;V-py, Ex=p1V paV—p;s, and Ez =
“p1Vops.

Let ¢, be the following assignment: p; =0, p» =1, p3=0. Then ¢(£)=0Vv0=0,
@1(E2)=0VvV1V1=1 and ¢i(E3)=1V1=1. Thus ¢;(®)=0A1A1=0. Let ¢, be
the assignment: p; =0, p» =0, p3 =0. Then @(E)=0V1=1, @(E)=0VO0VI1=1,
and @2(E3)=1V1=1. Thus p2(®)=1A1A1=1. Hence ¢, falsifies @, ¢, satisfies
@, and @ is satisfiable.

The Satisfiability Problem (SAT) is to determine whether or not an arbitrary Boolean
formula @ is satisfiable.

In the sequel, we assume that we have an infinite sequence of variables p1, ps, ps,...
and whenever we consider the case of n variables, the variables are pi, p»,..., p,.

5. Blockers

In this section we introduce the basic idea of blocking. It is based on the Watson—
Crick complementarity, and the specific form of blocking is dependent on the way that
the assignments of variables are coded by DNA molecules.

To start with, we need to code for each (Boolean) variable p; its two possible values
pi=1and p;=0. Let qgl) be a sequence of nucleotides in a single strand coding the
value p;=1, and let ql(-o) be a sequence of nucleotides in a single strand coding the
value p; =0.



G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665 659

Example 5.1. The coding ¢'"

1

variable. The value 1 is always coded by 4 and the value 0 is always coded by C.

=4 and qgo):C for all 1<i<n is independent of a

Now, we can code each assignment of variables by a single strand. To this aim, for
a given number of variables n, an n-strand is a strand of the form f f>,..., f, where
each f; is either qgl) or q§°).

The set of all n-strands is denoted by S,; thus S, represents (codes) all possible

assignments.

Example 5.2. For n =3 and the coding of values of single variables as in Example 5.1,
AAC is a 3-strand coding the assignment ¢ such that ¢(p;)=¢(p2)=1 and ¢(p3)=0.

For an n-strand s, we use asg(s) to denote the corresponding assignment ¢, and for
an assignment ¢ we use str(¢) to denote the corresponding n-strand.

A blocker of an n-strand s is its complement, denoted by b(s). Now, given a Boolean
formula ®=E ANE, A --- ANE,, over n variables, for each clause E; a blocker of E; is
a blocker of an n-strand s such that asg(s) is a falsifier of E;. The set of all blockers
for E; is denoted by B(E;). Then the set of all blockers for @, denoted by B(®), is
the union of B(E;) for all clauses E; of @; thus B(®)=B(E)U --- UB(Ey).

Example 5.3. Let n=3 and let ®=F; AE;, where £, =—p,V p3 and E; =—-p; V- p,
V = p;. The falsifiers for £ are ¢, and ¢,, where ¢1(p1)=1, ¢1(p2)=¢1(p3)=0,
and @2(p1)=@2(p2)=1,02(p3)=0. The falsifier for £, is ¢3 such that @3;(p;)=
@3(p2)=o3(p3)=1.

Hence if we use the coding from Example 5.1, then the blockers for E; are GGT
and GTT (recall that, unless indicated otherwise, we write DNA sequences in the 5'-3’
direction), because str(¢;)=ACC and str(¢p;)=AAC. The blocker for E, is TTT
because str(@3) = AAA. Hence the set of blockers for @ is B(®)={GGT,GTT,TTT}.

The molecular computing method that we will present in Sections 6 and 7 consists
of blocking a part of the library of molecules (S, ), and then amplifying the remaining
part (if any) using PCR. Thus our representation of n-strands and blockers is very
simplified. Since one needs to prime strands to be amplified by PCR, all the n-strands
will have special prefixes and suffixes that are needed for a PCR. The blockers are
then modified accordingly.

Recall that, PCR consists of iterating the basic cycle, which begins with denatura-
tion that unblocks the initially blocked molecules. These molecules can be then primed,
and copied during the iteration process—and this should not be done (we do not want
blocked assignments to be multiplied). This problem can be solved by using PNA
rather than DNA molecules for blocking. PNA molecules (see, e.g., [10]), are single
stranded chemically synthesized DNA analogues which anneal sequence—selectively
to complementary DNA molecules (PNA stands for “peptide nucleic acid”). However,
PNA molecules anneal to the complementary DNA molecules with higher affinity than



660 G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665

the corresponding DNA molecules. This means that if we use PNA rather than DNA
blockers, then when the PCR solution is cooled down after the denaturation (to facilitate
priming) the PNA blockers will anneal to their complementary DNA molecules before
(hence at a higher temperature than) DNA primers can anneal (to the complemen-
tary 3’-ends of DNA molecules). This means that PNA molecules win this “annealing
competion” with primers, and consequently the molecules blocked by PNA cannot be
primed. Thus, the problem of preventing the blocked molecules to be also multiplied
by PCR can be solved in this way.

As stated already, our presentation of basic notions and techniques of molecular
biology is very simplified, and in our algorithms we use formal abstractions of these
simplified concepts. Now, for a given library S, of all n-strands, if we add a set
of PNA blockers B to (a solution containing) S,, then all the n-strands which are
complementary to the strands in B become “inactivated”, and one can proceed then to
process the remaining strands, e.g., by PCR. This is the main idea behind the use of
blocking for solving problems such as SAT.

6. An algorithm for SAT

We are ready now to present a molecular algorithm based on the blocking principle
for solving SAT (albeit in the theoretical sense only!). Thus, assume that we are given
a Boolean formula @ over n variables.

We begin with an initial solution Z; that contains the set S, of all n-strands. To
know S,, we need to know only the number of variables n (without knowing @).
Thus, we assume that such a solution is prepared in advance—it is a “ready product
on a shelf”.

Here is an algorithm (.7 ) for solving SAT.

Algorithm .o7;.
Input: A Boolean formula @ of n variables.
0. Prepare B(®)
1. Add B(®)
2. PCR
3. PCR Successful?
If so, goto 5
If not, go to 4.
4. Output “NO” and Stop.
5. Output “YES”
6. Stop

Once we know the input formula @, we prepare B(®), and in Step 1 we add it to
Z, obtaining Z;. The intention of Step 1 is to “block” (by annealing) all the n-strands
which represent assignments that falsify @.



G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665 661

In Step 2, Z; is PCR’ed and Z, is obtained. Here the only n-strands that can be
successfully multiplied by PCR are the n-strands that have not been blocked in Step
l—these are the strands that PCR is searching for. But these are precisely the n-strands
s such that the assignment asg(s) satisfies @. Thus, the PCR here is successful if and
only if there exists an assignment satisfying @.

In Step 3 we check whether or not the PCR from Step 2 was successful. This is the
case if Z, contains “clearly more” DNA molecules than Z;.

If the PCR was not successful, then we proceed to Step 4, print “NO”, and stop.

If the PCR was successful, then we proceed to Step 5, print “YES”, and stop
in Step 6 (the reason for having this stop instruction in a separate step will be clear
in Section 7, where .o/ will be extended to the algorithm .o7,).

It must be clear by now that this algorithm prints “YES” (and stops) if and only if
@ is satisfiable.

We would like to comment here that using PCR to check the existence of a solution
(an unblocked molecule) is a very “elegant” and effective detection method: just by
visual inspection when combined with making molecules visible, e.g., by using DNA-
specific dyes. The detection of (the existence of) a solution is often a major problem
in molecular computing.

Example 6.1. We continue Example 5.3. Here =3 and S;={CCC,CCA,CAC,
CAA,ACC,ACA,AAC, AAA}. Since strands from B(®) will anneal to their comple-
ments in S (in Zy), the set of single strands in Z;, denoted ss(Z;), equals S3 — B(®),
where B(®) is the set of Watson—Crick complements of molecules in B(®). Hence
s8(Zy)= {CCC,CCA,CAC,CAA,ACA}. 1t is easily seen that indeed asg(ss(Z;)) is
the set of all assignments satisfying &. Since this set is non-empty, the PCR from
Step 2 will be successful, and so the algorithm will output “YES” and stop.

We feel that the following comments concerning the above algorithm are needed
here, even though the basic laboratory implementation problems are discussed in [11].

(1) We may construct B(®) by reading & from left to right, clause by clause, as
follows. Let E be a clause of @, and we assume that literals in £ are ordered according
to the order py,..., p, of variables. Let, e.g., E= p; V p» V = ps, where n =4. Reading
E from left to right we can spell out the falsifiers of £: p; =0, p, =0, p3= “any
value”, ps=1. Thus if a variable p; is present in E, then we set p; =0, and if —p;
is present in E, then we set p; =1. If neither p; nor - p; is present in E, then we set
“any value” which means that p; can be either 0 or 1.

The set of blockers of E is then the set of complements of the n-strands that code
the falsifiers. Let, e.g., E be as given above, and let the coding be the one given in
Example 5.1. Then, reading E (or falsifiers of E) from right to left we can spell out
the blockers of E: “first 77, “then either G or 77, “then G”, “then G”. In this way
we get 2 blockers: 7TGGG and TTGG. Spelling out the blockers while reading £ from
left to right may be considered as giving instructions (to a “robot”) for synthesizing
the set of blockers for the clause considered. The reason for reading now E from left



662 G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665

to right is that the chemical synthesis of DNA proceeds in the 3’5" direction. Hence
for £ as above the synthesis would go as follows:

o first G: take a solution R; with “enough G” (each G nucleotide is hooked to a solid
support at its 3’-end);

e then G: attach G to all the free 5’-ends of molecules in R; getting in this way R»;

e then either G or T: divide R, into two solutions R, ,R,, of equal volume, attach
G to all the free 5'-ends of molecules in R, getting Ry g, attach 7 to all the free
5’-ends of molecules in R, getting Ry, 7, then mix R, ;¢ with Rypr getting Rs;

e then 7: attach T to all the free 5’-ends of molecules in R; getting in this
way Rs—<clearly R, contains “enough” (and “equal amounts™) of all the blockers
of E.

If neither p; nor —p; is present in a clause, then the initial mixture R; will have
“enough G” and “enough 7 hooked to a solid support, and the synthesis proceeds
as outlined above. (Brown [2] is a good reference on the chemical synthesis of DNA
strands.)

From a purely theoretical point of view one can also imagine a storage system
(library of molecules) such that spelling out a blocker gives the address of the blocker
in the storage system. Once the address has been spelled out, the blocker molecules
from this storage address (“enough” of them) are dropped into Z;.

(2) An innocent phrase “add B(®) to Z;” requires some calculation to ensure that all
strands from Z; to be blocked will indeed be blocked. This is a part of the laboratory
procedure.

The method for the synthesis of blockers described under (1) above inserts both
G and T in a given position (for a given literal), and this doubles the number of
blockers for a given clause whenever such an insertion is made (which may lead
to an exponential number of blockers). However, one can think of other ways for
implementing “any value” occurring in a falsifier. For example, substantial progress
has been made in the chemical synthesis of universal nucleotides that base pair with
arbitrary nucleotides, see, e.g., [4]. Hence, rather than to insert in a given position
both G and T, one could just insert a universal nucleotide there, and so we would
have one blocker per clause. Since some of these universal nucleotides base pair more
efficiently with specific nucleotides, the coding to be used for 0 and 1 could be designed
accordingly.

7. An algorithm for FIND SAT

Note that SAT does not require that one finds a satisfying assignment in case that a
formula @ is satisfiable. The Find Satisfiability Problem (FIND SAT) does have this
requirement. Hence, the Find Satisfiability Problem is: (1) to determine whether or not
an arbitrary Boolean formula @ is satisfiable, and (2) if @ is satisfiable, then give an
assignment satisfying @.



G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665 663

One can naturally “extend” our molecular algorithm .o7; for solving SAT into algo-
rithm .o/, solving FIND SAT.

Algorithm .o7;.
Input: A Boolean formula @ of n variables
Steps 1-5 are as in .o7).
(6) Take a sample n-strand s
(7) Sequence s
(8) Output asg(s)
(9) Stop

If the algorithm .o7| outputs “YES”, then .o/, continues in Step 6 by taking a random
sample strand from the solution Z, which is the “end solution” of .o7;. (It should be
clear now why in ./, we have shifted the stop instruction into a separate Step 6.)

This sample strand is sequenced (i.e., read) in Step 7, the resulting sequence is
outputed in Step 8, and .27, stops in Step 9.

It is easy to see that algorithm .7, either (1) stops and outputs “NO”, or (2) stops
and outputs “YES ¢”. Case (1) holds if and only if @ is not satisfiable, and case (2)
holds if and only if @ is satisfiable and ¢ is an assignment satisfying @.

When we take a sample n-strand in Step 6, then we really intend to pick up a double
stranded DNA molecule, because one of its strands represents an assignment satisfying
®. Because after a successful PCR such molecules are in “overwhelming majority”, the
probability that such a strand is picked up is very high. Moreover, one can make sure
that the molecule to be eventually sequenced is a double stranded DNA molecule (e.g.,
by labeling all the PNA blockers, so that the double stranded PNA-DNA molecules
can easily be recognized).

One could go a step further and ask for an algorithm that given a Boolean formula
@ and a positive integer k, (1) decides whether or not @ is satisfiable, and if it is,
then (2) decides whether or not there are not less than k assignments satisfying @, and
if this is the case, then (3) lists k£ assignments satisfying ®. Again, only blocking and
PCR detection (and sequencing of sample molecules) is needed for such an algorithm.

Alternatively, using the same basic operations, one can ask for an algorithm that,
given a Boolean formula @ and a positive integer k, (1) decides whether or not @ is
satisfiable, and if it is, then (2) decides whether or not there are exactly k assignments
satisfying @, and if this is the case, then (3) lists all k assignments satisfying &.

8. Discussion

Ever since Adleman’s experiment [1] that has initiated by now very active research
in DNA computing, the filtering methodology for DNA computing has been extensively
studied and applied (see, e.g., [3, 6, 7, 9]). It consists of (1) the generation of the library
of molecules representing all candidate solutions of a given computational problem,



664 G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665

and then (2) the elimination, through a sequence of biolab operations, of all these
molecules from the library that do not represent solutions, and (3) testing whether the
set of remaining molecules is non-empty. It is in particular Step 2 of this procedure that
often involves a lot of lab work, and slows very much the whole process of molecular
computing.

We propose in this paper the blocking methodology, where Step 2 above is re-
placed by an inactivation (rather than elimination) of not desired molecules, by a
simple hybridization process. Thus in its pure form, the blocking process is passive—
nothing is eliminated, destroyed or removed, but simply a part of the solution mixture
is inactivated, so that it does not participate in the detection (of a solution) step of
the blocking algorithm. Moreover, after the input is read (and blockers produced, or
addressed, on-line), the blocking is done in one biostep.

As a matter of fact, combining the filtering and blocking methodologies may pro-
vide interesting results (at least from the theoretical point of view). Thus, e.g., one
can modify the molecular algorithm for the Hamiltonian Path Problem proposed by
Adleman in [1] as follows (we assume here the familiarity with [1]). After the library
of paths in the input graph G has been generated by self-assembly, one proceeds with
the filtering step that filters out all the paths of length »n, where n is the number of
nodes of G. But then, rather than to test whether (the coding of) each of the nodes
is present exactly once (by iterating affinity separation for each node), we can add to
the solution, in one step, the set of blockers which block all the molecules containing
a code of the same node at least twice. Such blockers are easy to design.

We have illustrated the main principle of blocking by considering a molecular algo-
rithm for the SAT problem. The straightforward use of PCR for the detection problem,
as well as for finding solutions in the FIND SAT problem, are the advantages of the
blocking principle. In a sense our solution to SAT and FIND SAT can be called either
“solving by (iterating) PCR” or “the lazy man methodology”: one throws to the solu-
tion mixture (containing the library, prepared a priori) the set of blockers (synthesized
on-line, or fetched on-line from an accessible library of PNA molecules), presses “the
PCR button”, and watches for a possible increase in the number of DNA molecules,
which can be made visible by using a DNA-specific dye.

It follows directly from the above discussion, that the blocking principle is differ-
ent from the natural use of hybridization for the purpose of protection. Thus, e.g., in
[7] the Mark operation was used to protect single stranded molecules (by hybridizing
them to their complements) during the destruction process by exonucleases of those
single stranded molecules that turn out not to be solutions for a given computational
problem. This is a very active computational procedure involving a number of (iter-
ated) biolab operations, which moreover is quite dual to the blocking principle: one
manipulates (destroys) the molecules that do not represent solutions, and protects
those that do.

Finally, we want to recall that, while the current paper is purely theoretical (in
the sense explained in the Introduction), the companion paper [11] reporting on the
experimental aspects of the blocking principle is in preparation.



G. Rozenberg, H. Spaink | Theoretical Computer Science 292 (2003) 653-665 665
Acknowledgements

The authors are indebted to H. Kusters and P. Savelkoul for the discussions on
blocking already in 1998. They are also grateful to H.J. Hoogeboom, the anonymous
referee, and especially to C. Henkel and K. Schmidt for useful comments on the first
version of this paper. They are also indebted to Marloes van der Nat for the expert
typing of the paper.

References

[1] L.M. Adleman, Molecular computation of solutions to combinatorial problems, Science 226 (1994)
1021-1024.

[2] T.A. Brown, Gene Cloning, Chapman & Hall, London, 1996.

[3] A. Condon, G. Rozenberg (Eds.), Proc. 6th Internat. Meeting on DNA Based Computers, Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, 2001.

[4] F. Hill, D. Loakes, D.M. Brown, Polymerase recognition of synthetic oligodeoxyribonucleotides
incorporating degenerate pyrimidine and purine bases, Proc. Natl. Acad. Sci. USA 95 (1998) 4258-4263.

[5] H.R. Lewis, C.H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Upper Saddle
River, NJ, 1998.

[6] R.J. Lipton, DNA solution to hard computational problems, Science 268 (1995) 542-545.

[7] Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, RM. Corn, L.M. Smith, DNA computing on surfaces,
Nature 403 (2000) 175-179.

[8] V. Manca, C. Martin-Vide, G. Paun, New computing paradigms suggested by DNA computing:
computing by carving, Bio Systems 52 (1999) 47-54.

[9] G. Paun, G. Rozenberg, A. Salomaa, DNA Computing, Springer, Berlin, Heidelberg, 1998.

[10] A. Ray, B. Norden, Peptide nucleic acid (PNA): its medical and biotechnical applications and promise
for the future, FASEB J. 14 (2000) 1041-1060.

[11] H. Spaink, G. Rozenberg, Experimental aspects of DNA computing by blocking, in preparation.

[12] J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic
acid, Nature 171 (1953) 737-738.



