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ABSTRACT

This paper presents some improvements to the matrix-sign-function algorithm for
the algebraic Riccati equation. A simple reorganization changes nonsymmetric matrix
inversions into symimetric matrix inversions. Scaling accelerates convergence of the
basic iteration and yields a new quadratic formula for certain 2-by-2 algebraic Riccati
equations. Numerical experience suggests the algorithm be supplemented with a
refinement strategy similar to iterative refinement for systems of linear equations.
Refinement also produces an error estimate. The resulting procedure is numerically
stable. Tt compares favorably with current Schur vector-based algorithms.

1. INTRODUCTION

This paper presents a modification of matrix sign-function based al-
gorithms for solving algebraic Riccati equations [1, 3, 7, 25]. Our algorithm
exploits Hamiltonian structure to change full matrix inversions into symmet-
ric matrix inversions. Symmetric matrix inversions require half the work and
storage of full matrix inversions. Scaling by the geometric mean of the
eigenvalues accelerates convergence of the sign iteration. The new algorithm
reduces to the (scalar) quadratic formula for 1-by-1 Riccati equations. It gives
a new quadratic formula for certain 2-by-2 Riccati equations. We also propose
that iterative refinement be used to improve numerical stability. Refinement
also produces an error estimate. With respect to work, storage, and accuracy,
the algorithm compares favorably with the Schur vector-based algorithm of

[17).
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Roberts |24, 23] and Beavers and Denman [7] introduced the matrix sign
function as a means of solving algebraic Riccati equations and Lyapunov
equations. The matrix sign function has since attracted the attention of
control engineers and some applied mathematicians. Yoo and Denman [30]
and Lupas and Popeea [21] extended it to differential Riccati equations.
Barraud [6] and Bierman [8] designed algorithms to solve discrete Riccati
equations. Balzer [4] and Barraud [3] have described strategies for accelerat-
ing convergence. Denman and Beavers [10] and Denman and Layva-Ramos
[11] extended matrix-sign-function algorithms to a list of several invariant-sub-
space-related calculations. Matheys {22] used it for stability analysis. Howland
[14] used the matrix sign function to count eigenvalues in boxes in the
complex plane. Some of the algorithms have been refined and extended by
Attarzadeh [3], Bierman [8], and Byers [9]. Recently, Higham [12] has used
matrix-sign-function techniques to calculate polar decompositions.

2 THE MATRIX SIGN FUNCTION AND ACCELERATION
BY SCALING

Let the n-by-n matrix K have Jordan canonical form
K=MM '=M(D+N)M !
where M is a matrix of eigenvectors and principal vectors, J is a matrix of
Jordan blocks, and D =diag(d,d,,d,....d,) is diagonal. N is nilpotent

and commutes with D. Let Re(z) denote the real part of the complex
number z. The matrix sign function of K is defined by

Sign( K) = MSM !

where S = diag(s, 5. 85,..., 8,,) is a diagonal matrix whose diagonal entries
are given by

1 if Re(d,)>0,
s, =

"l =1 if Re(d;)<0.

If one of the eigenvalues of K lies on the imaginary axis, then Sign(K) is
undefined.
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If Sign( K) is defined, then the Newton iteration for the square root of the
identity watrix,

W= K,

W _wik) ! (1)
wo+h —wto -
2 b

converges to Sign(K) [12, 25]. We prefer the above formulation to W+ =
(WH Wk =1y /9 because it confines rounding errors to the eventually
small correction (W —W®) "y /9 1f Sign(K) is undefined, then either the
iteration does not converge or one of the W**)’s is singular. The iteration (1)
is a practical procedure for calculating Sign(K).

Although (1) ultimately converges quadratically, initially progress may be
slow 9, 12]. For example, let I, be the n-by-n identity matrix, and suppose
W= K =50001,. The first twelve iterations of (1) differ insignificantly
from WK e W 29 At O(n?) floating-point operations per iteration, this
is an expensive way to divide by 2.

If ¢€ R is positive, then Sign(K)=Sign(¢K). Convergence can be
accelerated by scaling W) at each iteration to have eigenvalues as close to
+ 1 as possible. Let A(W) denote the eigenvalues of W. Define the distance
function D(W') by

D(W)= ¥ (Ap”.

AEAXWN)

This is a measure of the distance of A(W) from the unit circle, so it is a
partial measure of how much A(W) differs from { £ 1}. D(W )= 0 iff \(W)
lies on the unit circle in the complex plane. It is an increasing function of
T — A}l for cach A € M(W). As the iteration (1) converges, D(W ') goes to
7er0.

Some elementary calculus shows D(cW) is minimized by ¢ =
[det(W)|~'/", ie., the reciprocal of the geometric mean of the eigenvalues
of W. Incorporating this scaling into (1) gives

WO:=K,
7R = Whl det( W) | o (2)
Zh -z
w7y
2

It is convenient to calculate the determinant from the same triangular factors
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of W that are used to caleulate W™ ' See the Linpack matrix inversion
subroutines pceEm and psior [20] for details.

Trivial cases are handled trivially by (2). If K is a real 1-by-1 matrix, then
W det{ W) | = W' = Sign(K ). So (2) produces Sign( W ) in one iteration.
If W is 2-hy-2 with real eigenvalues, then W' has two eigenvalues of
equal magnitude, and W = Sign(K). If K is 3-by-3 or 4by-4 with real
cigenvalues, it appears that Sign(K) is produced in a finite number of
iterations, but we have not been able to prove anything.

The above iteration is scale invariant in the sense that multiplying W™
by a positive constant does not change the subsequent W*'’s. For the
example W= K =50001, W = Sign(K).

Balzer [4] gives other acceleration strategies that are not scale invariant.
Barraud |3} suggests scaling by the geometric mean of the largest and
smallest eigenvalue, but usually these eigenvalues are not available.

Recently, in independent work, Higham [12] has suggested using iteration
(@) scaling by [WS 1w /WO w14 instead of
‘det(W‘k’)|7Un. Here |||, and ||-||. represent the and !, and [ operator
norms, respectively. Higham’s iteration is also scale invariant, and initially it
also accelerates convergence. However, it destroys the ultimate quadratic
convergence. Higham wisely suggests switching to the unscaled iteration (1)
once W™ gets “close” to convergence. The iteration (2) does not slow
quadratic convergence. Also, Higham’s iteration does not give two-step
convergence for 2-by-2 matrixes with real eigenvalues as (2) does.

3. SOLVING THE ALGEBRAIC RICCATI EQUATION WITH THE
MATRIX SIGN FUNCTION

The algebraic Riccati equation
G+A'X+XA-XFX =0 (3)

arises in stochastic and optimal control. A, G, and F are known n-by-n
matrices. (¢ and F are symmetric and positive semidefinite. The desired
solation, X, is symmetric positive semidefinite and stabilizing in the sense
that all eigenvalues of A — FX have negative real part. Under mild condi-
tions. such a solution exists and is unique. We will assume the desired solution
exists and is unique. A discussion of the algebraic Riccati equation and its role
in control theory can be found in many textbooks. See for example [16] or
[29].



SOLVING THE RICCATI EQUATION 271

The algebraic Riccati equation (3) is equivalent to the 2n-dimensional
inatrix equation [23]

AP G
K =
| F -A

X -1 [ -(A-FY) ~F X —1,]"! )
_ ; N
I, o0, 0, (A-FO)' |1, o, (

I, indicates the n-by-n identity matrix, and 0, indicates an n-by-n matrix of
zeros. Since the eigenvalues of A — FX have negative real part, the matrix
sign function is defined. Applying the matrix sign function to (4) gives

Wy Wy
Wy Wy

x -1, 7z 1[x -1 .
- III ()N ()H - Ill III ()Il . (' )

Since K and Sign(K) commute, Z satisfies the Lyapunov equation

Sign(K) = l

(A—FX)Z+Z(A—FX) =2F.

Let M € R*"*" be the first n columns and let N € R?"*" be the last n
columns of W — I,,,. Equation (5) determines X by

MX = — A\ (6)

Since

n>

(-1, X]M=]-1, X}[‘zf‘zxz]zzl

(6) is a fullrank, consistent system of 2n® equations in the n®> unknown
entries of X. Using the normal equations to solve for X squares the condition
number of M; it is safer to use a QR factorization. See Chapter 11 of [18].

The scaled sign iteration (2) also handles trivial Riccati equations trivially.
For real scalar quadratic equations, K in (5) is a 2-by-2 matrix with real
eigenvalues of equal magnitude and opposite sign. So K /(|det(K)|"/?)=
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Sign(K). Thus (2) produces Sign(K) in one iteration. Substituting this
expression for Woin (3) and simplifying turns (6) into the usual scalar
quadratic formula. The discriminant of the scalar guadratic equation is
det(K). For 2-by-2 algebraic Riccati equations, K in (5) is a 4-by-<4 matrix
with two pairs of eigenvalues of equal magnitude and opposite sign. If these
are real cigenvalues, then in (2) W™ has two double eigenvalues of equal
magnitude and opposite sign, and W2 = Sign(K ). So (2), (5), and (6) form a
guadratic formula for 2-by-2 Riccati equations with real eigenvalues.

This relationship with the quadratic formula is not shared by the accelera-
tion of [4] nor by the scaling strategy of [12].

Define J € R*"72" to be
()Il I”
] - - [“ ()H '

A matrix H € R?""?" is said to be Hamiltonian if JH is symmetric. The
matrix K in (5) is Hamiltonian. Matrix inversion, scalar multiplication, and
matrix addition preserve Hamiltonian matrices, so throughout the iteration
(2), W is Hamiltonian. The full 2n-by-2n matrix inversions can be changed
to symmetric 2n-by-2n matrix inversions by organizing Z*) ' as (JZ(5)) 1]
[8, 9]. Incorporating this change into (2) gives

W= K

1/7(2m)

7R = W det( W) |

1

20 -2y
2

Wk b= gtk

Of course it is unnecessary to actually perform matrix multiplication by J. It
suffices to rearrange the components of W, changing signs where necessary.
Using symmetry cuts work and storage requirements almost in half. See the
LINPACK Synnuetric inversion subroutines psico and psipr [18].

4. COMPUTATIONAL DETAILS

Ordinarily. rounding errors and stopping (7) after a finite number of
iterations corrupt the results. It is difficult to analyze the effect these errors
have on the computed solution L. It is prudent to refine X and estimate the
error X — X,
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It is known that the desired solution is symmetric. So some small
nnpl()\ement can be made by replacing the calculated solution X by
(X + X7)/2, the Frobenius projection of X onto the space of symmetric
matrices.

Let R=R(X)=G+A'X+XA-XFX. If PeR"”™ P=P' and P

satisfies the algebraic Riccati equation [8]
R+(A—F)'P+P(A~-FX)-PrP =0, (8)

then X=X+ P satisfies the original algebraic Riccati equation (3). So an
approximate solutlon X can be refined by solving (8) for P and replacing X
by X + P. Since X is an approximate solution of the original algebraic Riccati
equation, the correction P is small. The refinement step is well suited to
Newton’s method starting with the initial guess P =0 [13, 15]. The matrix
sign function can be regarded simply as a way to obtain a good initial guess
for Newton’s method. The eigenvalues of A — FX are a by-product of some
implementations of Newton’s method [13]. Bierman has observed that almost
any algebraic Riccati solver can be used to solve (8)—even the matrix sign
function itself [8].

In practice, rounding errors corrupt the calculation of P to give a matrix
P. The refinement step may need to be repeated iteratively. If the first few
significant binary digits of the entries of P are correct, then X + P is more
accurate than X. Thus, if the underlying algebraic Riccati equation is not too
ill conditioned, then the accuracy attainable is limited only by the accuracy of
the arithmetic, the condition of the Riccati equation, and the accuracy to
which R = R(X) is calculated [9]. Iterative refinement makes the algorithm
numerically stable.

Note that P gives the error estimate

XN-X=r=p. (9)

Often limiting accuracy is reached after one or two refinements. Even when
there is no improvement, the error estimate (9) is of the correct magnitude.

Sonme of the benefits of refining with Newton’s method have also been
observed in [2].

Admittedly some economy of work and storage of the matrix sign
function is lost in the refining process. In our numerical experiments using
Newton's method the refinements accounted for 25% to 50% of the work.

The iteration (7) needs a stopping criterion. Inverting the JZ*'’s ac-
counts for the most significant rounding errors. Using t-digit base-b arith-
metic, the relative error of the calculated inverse tends to be about
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eb T IJZFNIIZ5Y 1)), Here ||-|| may be any reasonably well-balanced
matrix norm. The number ¢ is a low-degree polynomial in n that depends on
the norm and on the details of the arithmetic [28]. This suggests that the
iteration be stopped when

[z~ gzt |
Iz

Another possible stopping criterion is to stop when the iterates W o
longer change significantly, i.e. when

<nbt Iz lzRy (10)

(AR /AL A I Y R VA (11)

In practice the criterion (10) sometimes stops the iteration too early, and the
criterion (11) sometimes stops it too late. Rounding errors may prevent (11)
from ever being satisfied. We use the observations of [3] to choose a
compromise between them.

The following algorithm summarizes the preceding discussion.

ALCORITHM SGNREF
Inver: AGFERT C=Gl F=F"
Output: X € R"“" approximately satisfying (3) and such that all eigenval-
wes of A — FX have negative real part: error estimate P € R" "
a >
I W= [A‘ G ]; DONE = FALSE
- A
2. vor j=1,2,3,... UNTIL (DONE = TRUE)

2.1.  Use rineack subroutines psico and psipr to calculate

ke=Iwllorwy 1)
d=|det(JW)|"*"
Ye=d(Jw) '

7 =W/d

s =7 Y]
W=7 —(Z~Y])/2

1iv(s < bt || Z])) THEN DONE := TRUE

1H(8 < j anp s < nb' 'K||Y|)) THEN DONE = TRUE

o 1o

1010110 1
U

[onlN
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Wi Wy,
Wy Wy

4. Use ninpack routines poRDC and DORSL to solve for X in

Wu - In - le
X =
Wa I, — Wy

3. Partition W = [

5 N=(X\+\X")2

6. Solve (8) for P by Newton's method [13] with initial guess P = 0 or some
other means [8].

. Xs=X=+P

The solution can be further refined by iterating steps 6 and 7.

It is unnecessary to perform the matrix multiplications by J in step 2. It
suffices to rearrange the components of W and Z, changing signs where
necessary. W is conveniently represented as the lower triangle of the
symmetric matrix JW. It can be stored in the lower triangle of a 2n-by-2n
array. The upper triangle can be used by psico and psini to calculate
det( JW ) and (JW) L,

The above algorithm uses approximately 6n? storage locations. The full
matrix A requires n? locations. The symmetric matrices G and F require
n{n +1)/2 locations each. A 2n-by-2n workspace array is used in step 2 to
caleulate Sign(W). The same workspace may be used to form X in steps 4
and 3 and to set up and solve (8) for P. Our implementation of Newton's
method [9] also requires 6n” storage locations. The Schur vector-based
algorithm [17] uses 8n” storage locations.

5. EXAMPLES

Algorithim s¢NREF was programmed in ForTRaN with Newton’s method
for the refining step. The Schur vector-based algorithm of [17], scuvec, was
also programmed using subroutines modified from Eispack [26]. The two
programs were tested on several algebraic Riccati equations (3). Where the
exact solutions were not known, errors were estimated by (8) and (9). All
computations were performed on Northern Illinois University’'s DEC VAX
11,/750 with floating-point accelerator vnNix £77 compiler. Timings were done
while no one else was using the computer.
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Exanmere 1. The first example comes trom the position and velocity
control of a string of high-speed vehicles [19]. A string of k vehicles gives rise
to order«2k — 1) coefficient matrices A =[a, ], G, and F of the form

G = diag(0,10,0,10,...,0),
F = diag(1,0,1,0,....1),
and

~1 if i=jandiisodd,
(l”:’f~l if i=j—1landiiseven,
K 1 1 if i=j+1andiiseven,
0 otherwise.

Laub used the cases of five, ten, and twenty vehicles as an example in [17].
We tested the five-vehicle and twenty-vehicle cases. scuvec solved the
five-vehicle problem in 5.2 seconds and the twenty-vehicle problem in 240
seconds. scNREF solved the five-vehicle problem in 3.4 seconds and the
twenty-vehicle problem in 120 seconds. Only one Newton step was required
for the refinement. In both cases both algorithms produced solutions accurate
to about fifteen significant decimal digits. Machine epsilon was about 10~ 7.
sGNREF had no difficulty solving this well-conditioned Riccati equation as
accurately and somewhat less expensively than scHVEC.

FxampLe 2. This more ill-conditioned algebraic Riccati equation is
Example 6 in [17]. Define n-by-n matrices A ={«¢ ], G, and F by

G = diag(1,0,0,0,...,0),
F = diag(0,0,0,0,...,1),
and

(1 i=j—1,
a,;=
710  otherwise.

Like |17}, we used n=21. scuvec finished this problem in 47 seconds.
scarer finished it in 28 seconds. Only one Newton step was required by the
refinement step. Although the arithmetic was accurate to approximately 17
significant decimal digits, both algorithms produced solntions accurate to
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only nine significant decimal digits. The less accurate solutions of this
problem are due to the ill-conditioning of the underlying Riccati equation |2,
9, 17]. They are not the fault of the methods themselves. The ill-conditioning
did not slow convergence.

ExaMmpLE 3. The last example is artificially constructed to demonstrate
the improvement in accuracy that can be obtained from the refining step in
sGNREF. The coefficient matrices were the 20-by-20 matrices A = VBV,
G =VCV, and F=VDV, where V is the symmetric, orthogonal matrix
V=1-(2/n)uu’, uc R* is the vector of I's, and B, C, and F are 20-by-20
matrices following the pattern of the 3-by-3 example

-1 1 1 [() 0 0
B={ 0 -2 1, c¢c=lo o 0 ,
0 0 -3 lo 0 101x10°7

10° 107 107
107 107
10° 107 107

D

i

scHVEC and sGNREF both used about 28 seconds. sGNREF took longer than
usual, because it needed two Newton steps to refine the solution. This time
they did not give solutions of the same accuracy. A, GG, and F have different
magnitudes. Rounding errors in algorithms that work with the Hamiltonian
matrix (4) as a whaole tend to perturb (¢ by amounts proportional to the
magnitude of F times the precision of the arithmetic. This caused scHVEC to
produce a solution correct to about four significant decimal digits. After
refining with two steps of Newton's method, sGNReF produced a solution
correct to about 16 significant decimal digits.

Ot course, solutions produced by scuHVEC can also be refined with a few
steps of Newton's method.

Arnold [2] has also observed the advantages of refining solutions with
Newton’s method.

CONCLUSIONS

The matrix sign function with iterative refinement is an efficient numeri-
cally stable method for solving algebraic Riccati equations. Scaling by the
inverse of the geometric mean of the eigenvalues accelerates convergence of
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the iteration. The resulting algorithm reduces to the scalar quadratic formula
in the 1-by-1 _ase. Taking advantage of Hamiltonian structure by turning
unsymmetric matrix inversions into symmetric inversions cuts work and
storage requirements in half. Iterative refinement gives numerical stability
and an error estimate. With respect to work, storage, and accuracy, the
matrix sign function followed by iterative refinement compares favorably
with the Schur vector method of [17].
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