
Solving the Algebraic Riccati Equation 
with the Matrix Sign Function 

.\HSTRACT 

This paper presents solne inrprovements to the matrix-sigll-fllnction algorithn~ for 
the alge\,raic Riccati equation. A simple reorganization changes nonsynnnetric watrix 
inversion5 into syinmetric niatrix inversions. Scaling accelerates convergence of the 
basic iteration ant1 yields a new qnadratic formula for certain 2-by-2 algebraic Riccati 
eqnation5. Numerical experience suggests the algorithm he supplemented with a 
refinenwiit strategy similar to iterative refinement for systems of linear equations. 
Rrfilwllwnt also produces an error estilnate. The resnlting procedure is nulnerically 
stable. It canpares favorably with current Schur vector-based algoritlnns. 

1. INTRODUCTION 

This paper presents a modification of matrix sign-function based al- 

gorithms for solving algebraic Riccati equations [ 1, 3, 7, 251. Our algorithm 
exploits Hamiltonian structure to change full matrix inversions into symmet- 
ric matrix inversions. Symmetric matrix inversions require half the work and 
storage of full matrix inversions. Scaling by the geometric mean of the 
eigenvalues accelerates convergence of the sign iteration. The new algorithm 
reduces to the (scalar) quadratic formula for l-by-l Riccati equations. It gives 
a new quadratic formula for certain 2by-2 Riccati equations. We also propose 
that iterative refinement be used to improve numerical stability. Refinement 
also produces an error estimate. With respect to work, storage, and accuracy, 
the algorithm compares favorably with the Schur vector-based algorithm of 
[ 171. 
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Kolwrt\ 124, 231 and Beavers and Denman [‘i] itttrodttced the matrix sign 
fttttctiott its a meatts of solving algebraic Riwati eqtiatiotts and Lyapttttov 
eqrtatiotts. The matrix sign function has since attracted the attellti(Jll of 
cotttrol engineers and some applied mathematicians. Yoo and Detrmatt [30] 
awl Lttpas and Popeea [21] extended it to differential Riccati equations. 
Barrattd [6] and Bierman [8] designed algorithms to solve discrete Riccati 
eqttatiotts. Balzer [4] and Barrattd [5] have described strategies for accelerat- 
ittg convergence. Demnan and Beavers [ 101 and Dettmatt and Layva-Ratnos 
1 111 extended matrix-sign-function algorithms to a list of several ittvariattt-stth- 
space-related calculations. Matheys [22] used it for stability analysis. Howlattd 
[ 111 ttsed the matrix sign function to count eigetivalttes iii boxes in the 
umtplex Platte. Some of the algorithms have been refined and extended by 
Xttatwdeh [:3], Bierman [B], and Byers [I-)]. R ecently, Higham [ 121 has used 
tnatt-ix-sign-ftmction techniques to calculate polar decompositiotts. 

2 THE M:\TKIX SIGN FUNCTION AND ACCELERATION 
B1- SCALING 

Let the II-by-n matrix k’ have Jordan canonical form 

where .\I is a matrix of eigenvectors and ptitwipal vectors, J is a matrix of 
Jordan Itlocks, and D = diag( d ,, d,, tf :J,. . . , cl,,) is diagonal. 9 is nilpotent 
atttl commutes with D. Let Re( 2) denote the real part of the complex 
ttltmber z. The tnattix sign function of K is defined by 

Sigti( K ) = MS124 ’ 

where S = diag( s ,, s2, s,t, . . , s,, ) is a diagonal matrix whose diagonal entries 
are given I)y 

.)‘,= ,’ i 
if Re(d,) > 0, 

1 if Re( d,) < 0. 

If one of the eigenvdlues of K lies on the imaginary axis, then Sigti( K) is 
rtttdefined. 
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If Sigtl( K ) is defined, then the Newton iteration for the square root of the 
itlclrtity l\iatrix, 

w(k) _ w’k’ ’ (1) 
w(k+ 1) := w’k’ _ 

2 ) 

converges to Sign(K) [12, 251. We prefer the above formulation to Wtk+ I) = 
(W’k’+W(k)-1 )/2, because i! confines rounding errors to the eventually 
small correction (Wck) - Wtk) )/2. If Sign(K) is undefined, then either the 
iteration does not converge or one of the W’k”~ is singular. The iteration (1) 
is a practical procedure for calculating Sign(K). 

.\lthollgh ( 1) ultimately converges quadratically, initially progress may be 
slo\r 19, 121. For example, let I,, be the n-by-n identity matrix, and suppose 
11 ““’ := K = 5oOOZ,,. The first twelve iterations of (1) differ insignificantly 
frorrl \\‘I” ” := \$‘(“‘/2. ;It O(d) floating-point operations per iteration, this 
is an espelrsive way to divide by 2. 

If (‘ E 13 is positive, then Sign(K) = Sign( ck’). Convergence can be 

xx&rated 1)~ scaling W (‘) at each iteration to have eigenvalues as close to 
+ 1 a\ po\~il)le. Let h(W) denote the eigenvalues of W. Define the distance 
fliiictioii I)( IZ7 ) by 

D(W) = c (lnp()‘. 

XEX(\\, 

Thi\ i\ a lneasrlre of the distance of X(W) from the unit circle, so it is a 
partial mearru-e of how much A( W ) differs from { k 1). U( W ) = 0 iff A( W ) 
lies OII the rmit circle in the complex plane. It is an increasing function of 
( 1 - (A/ 1 for each X E X(W). As the iteration (1) converges, D( W”‘) goes to 
%c’l’O. 

Some elementary calculus shows D( cW) is minimized by c = 
(det( W) I-““, i.e., the reciprocal of the geometric mean of the eigenvalues 
of W. Incorporating this scaling into (1) gives 

w(k+U := z(k) _ 
z’k’ _ z(k)-’ 

2 

(2) 

It is convenient to calculate the determinant from the same triangular factors 
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of \\. that are rl5ecl to calcilIate M”“’ ‘, See the LINPMX matrix inversion 
41il)ro1iti”e4 nc:t:ni and nsin~ [20] for details. 

Trivial case5 are handled trivially by (2). If K is a real l-by-l matrix, then 
\\+I’/,/ det( \\’ ) / = 12”” = Sign( K ). So (2) produces Sign( W ) in one iteration. 
If \\““’ is 2-l)y-2 with real eigenvalues, then W”’ has two eigenvalues of 
CV~II;LI magnitllcle, and W”’ = Sign( K ). If K is :3-by-:3 or 4-by-4 with real 
c+gcl’\.allles. it appears that Sign(K) is procll~cecl in a finite nmnber of 
itciratioil\, I’tlt 12-e have not been able to prove anything. 

The al’oce iteration is scale invariant in the sense that tm&iplying I$““’ 
l)\- ;L po\iti\Te constant does not change the subsequent 11”““s. For the 
e\ainpIe 11.“” := K = 50001,,, \%‘(‘I = Sign( I\). 

Balzer II] gives other acceleration strategies that are not scale invariant. 
B;u~~r~l 1.5) sliggests scaling by the geometric mean of the largest and 
cilrallest eigenvalue, but usually these eigenvahles are not available. 

Recently, in independent work, Higham [ 121 has suggested using iteration 
(2) scaling by [(lW(k’~l(lIIIW(k)-‘ll,/(IIW’“‘IIIIIW’”’II~))l”” instead of 

(clet(W’k’)~~l”“. Here (I./II and lj.(/2 represent the and 1, and 1, operator 
norms, respectively. Higham’s iteration is also scale invariant, and initially it 

also accelerates convergence. However, it destroys the ultimate quadratic 
convergence. Higham wisely suggests switching to the unscaled iteration (1) 
once W’“’ gets “close” to convergence. The iteration (2) does not slow 
quadratic convergence. Also, Higham’s iteration does not give two-step 
convergence for 2-by-2 matrixes with real eigenvalues as (2) does. 

:i. SOL.VIN(: THE ALGEBRAIC RICCATI EQUATION WITH THE 
\I:\THIS SIGN FUNCTION 

The algelwaic Kiccati equation 

ark5 ii1 stochastic and optimal control. ‘4, G, and F are known /~by-tl 
lllatl'ice~. c: and F are symmetric and positive semidefinite. The desired 
collation, S. is symmetric positive semidefinite and stabilizing in the sense 
that all cige’rvulrles of 11 - KY have negative real part. Under mild condi- 
tiotrh. 411~11 a \ohition exists and is uniqlle. We will asslmle the desired solution 
exist\ atd i\ llllicpe. A discussion of the algebraic Riccati equation and its role 
in c,o”trol theory can be found in many textbooks. See for example [ 161 or 
1”9]. 
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The algel)raic Riccati equation (n) is equivalent to the 2 t I-dimensional 
rt~trix cqliation [23] 

I,, ilrtlicates the n-by-11 identity matrix, and O,, indicates an r/-by-rl matrix of 
zero\. Since the eigenvalues of A - KY have negative real part. the matrix 
\igti flitlctiolr is defined. Applying the matrix sign function to (1) gives 

Sirrcc K a~ltl Sign(K) commute, % satisfies the Lyapunov equation 

Let M E Rerlxn be the first n columns and let N E R2”x” be the last n 
columns of W - I,,,. Equation (5) detennines X by 

[ - I,, x] :Lf = [ - I,, s] - 2,,,z] = 21,,, 
[ i 

(6) is a full-rank, consistent system of 271’ equations in the n2 unknown 
entries of X. Using the normal equations to solve for X squares the condition 
number of M; it is safer to use a QR factorization. See Chapter 11 of [lS]. 

The scaled sign iteration (2) also handles trivial Riccati equations trivially. 
For real scalar quadratic equations, K in (5) is a 2-by-2 matrix with real 
eigenvalues of equal magnitude and opposite sign. So K /() det( K ) 1 lp2) = 
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Sigtr( K ). T~II\ (2) prodiices Sign( K ) in one iteration. Siibstituting thi\ 
e\pre4siorr for 11” in (!5) and simplifying turns (6) into the visual scalar 
cpatllatic forn,11la. The discriminant of the scalar quadratic equation i.s 
dct( k‘ ). For 2-liy-2 algebraic Riccati equations, R in (5) is a 3-by-4 matrix 
wit Ir t\\‘o pairs of eigenvalues of equal magnitude and opposite sign. If these 
are real eigcnvahies, then in (2) W (‘I has two double eigenvalues of equal 
niagnitiitle and opposite sign, and tlr’Z’ = Sign( K ). So (2), (S), and (6) form a 
q~~adratic~ fornnila for 2-by-2 Riccati eqiiations with real eigenvahies. 

Thi\ relationship with the qriadratic formula is not shared by the accelera- 
tioii of [I] 11or Iry the sealing strategy of [la]. 

Defirre .I E R3” ’ “’ to be 

A matrix H E R2'1x2n is said to be Hamiltonian if JH is symmetric. The 
matrix K in (5) is Hamiltonian. Matrix inversion, scalar multiplication, and 
matrix addition preserve Hamiltonian matrices, so throughout the iteration 
(2), Wk) is Hamiltonian. The full 2n-by-2n matrix inversions can be changed 
to symmetric 2n-by-2n matrix inversions by organizing Z’“’ ’ as ( JZck)) ‘1 

(8, 91. Incorporating this change into (2) gives 

Of c~)~n\e it i4 iiiiirecessary to actually perform matrix niultiplication by J. It 
\iiffic.es to rearrange the components of IV, changing signs where necessary. 
t’sirrg \ynrriretry ciits work and storage requirements ahnost in half. See the 
I.I\PU I $y-irrliietric inversion subroutines I~SICO and LXGIDI [ 181. 

1. (:O~Il’l’T~~TIONAL DET:$ILS 

Ortlitrarily. rorniding errors alit1 stoppitlg (7) after a fiilite number of 
itcratioirs corrrrpt the results. It is difficiilt to analyze the effect these errors 
ha\ e OII the cornpiitecl solution %. It is pnident to refine .t and estimate the 
“1’1’oI .Y - .t. 
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It is kno~.n that the desired solution is symmetric. So some sn~all 
iltlprovemellt can be made by replacing the calculated sohltion 2? l)y 
( .c + .< “)/2, the Frobenius projection of i onto the space of symmetric 
t rrat ricer. 

Let I( = R&=6 + A%+ ?A - id. If P E R”X”, P= P”, and P 
satisfies the algebraic Riccati equation [8] 

R + ( A - F.f ) “I’ + P( A - Fi ) - I’FP = 0, (8) 

then X = J! + P satisfies the original algebraic Riccati equation (3). So an 
approximate solution i can be refined by solving (8) for P and replacing J? 
by J? + P. Since 2 is an approximate solution of the original algebraic Riccati 

equation, the correction P is small. The refinement step is well suited to 
Newton’s method starting with the initial guess P = 0 [ 13, 151. The matrix 
sign function can be regarded simply as a way to obtain a good initial guess 

for Newton’s method. The eigenvalues of A - FX are a by-product of some 
implementations of Newton’s method [13]. Bierman has observed that almost 
any algebraic Riccati solver can be used to solve (8)-even the matrix sign 
function itself [8]. 

111 practice. rounding errors cornlpt the calculation of I’ to give a nlatrix 
?. The refinement step may need to be repeated iteratively. If the first fe\c ^ 
significant binary digits of the entries of P are correct, then % + ? is more 
accurate than .?. Thus, if the underlying algebraic Kiccati eqllation is not too 
ill conditioned, then the accuracy attainable is limited only l)y the accllracy of 
the arithmetic. the condition of the Riccati eqllation, and the accuracy to 
wdlich R = R( dt ) is calculated [Y]. Iterative refinenient makes the algorithnr 
nrlmerically stal)le. 

Note that 2 gives the error estimate 

Often limiting accuracy is reached after one or two refinements. Even when 
there is no improvement, the error estimate (8) is of the correct magnitude. 

Some of the benefits of refining with Newton’s method have also l)een 
01 )served in [ 21. 

:\dn~ittedIy some economy of work and storage of the matrix sign 
fllrlctiotl is lost in the refining process. In our numerical experiments using 
\ee\vton’s method the refinements accomlted for 25% to S50%) of the work. 

The iteration (7) needs a stopping criterion. Inverting the J%(“‘s ac- 
counts for the most significant rounding errors. Using tdigit base-h arith- 
metic, the relative error of the calculated inverse tends to be about 
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~h’-‘[llJZ’~‘(l ll(J%‘“‘)- ‘II]. H ere 11. I/ may be any reasonably well-l)alancetl 
matrix norm. The number c is a low-degree polynomial in n that depends on 
the norm and on the details of the arithmetic [28]. This suggests that the 
iteration be stopped when 

.\llc~thcr posail~le stopping criterioir is to stop wheir the iterates \i7” ’ lfo 

I01rgw clraifge significantly, i.e. Lvlieir 

IJZ’A’-(JZ(A’) ‘Jji<ll’ ‘//%‘“‘l(. (11) 

III prac.ticae the criterion (10) sonletimes stops the iteration too early. and the 
c~ritcrioll ( 11) soiiletimes stops it too late. Rounding error\ inlay prcvcllt (1 1) 
frown ever l,eing satisfied. We llse the observations of [;7] to choose a 

collrpronlist l)etu~een them. 
The follo\villg algorithm sllmmarizes the preceding tliarussion. 

.\f.(:OfIITHhl S(;NREF 

1Yl’I.T: .\,[;.I: E R”“‘: c; c(;“: 1; zz 1;” 

Olltpllt: S E R”’ ” approximately satisfying (3) and such that all eigenva- 
116’4 of i1 - FS have negative real part: error estinlate 1’ E R” ’ ” 

3 
I. FOR j = 1,2.X... UNTIL (DONE = TRCW) 

2.1. ‘CT\e I.INPA~~ slllzoutines I)sIco and l)sII~I to calcrk~te 
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:3. Partition II’ = [ gi: :I] 

1. IT%! LINP.\C:K roiitines DyRIx alld DyRSL to solve for s in 
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.3. S := (S + S“)/B 

6. Solve (8) for P 1)~ Newton’s method [ 1:3] with initial guess P = 0 or mine 
other means [8]. 

- I .v := s + I’ 

The solr1tion can be further refined I,y iterating steps 6 and 7. 
It is Imneces4ary to perform the matrix ln\~ltiplicatioils by J ill step 2. It 

stIffices to rearrange the components of W and %, bangiiig signs where 
necessary. \I’ is conveniently represented as the lower triangle of the 
synrnretric matrix IW. It can be stored in the lower triangle of a Z,~-by-Zn 
array. The upper trimgle can be used by IXICO and MIIX to calculate 
dct( JM.) alld (JW) 1. 

‘I’he alcove algorithm uses approximately fir? storage locations. The f\lll 
nratrix L1 requires t? locations. The 5ynmetric matrices C; and F require 
,I( II + 1)/2 locations each. :1 2rAy-211 workspace array is used ill step 2 to 
culclJate Sign( U’). The same kvorkspace may I)e used to form S in steps 1 
mltl 3 and to set np and solve (8) for P. 011~ implementation of Newton’s 
nlethod (91 also requires 6 r+ storage locations. The Schllr vector-lmsed 
algorithm \ l’i] rises 8n” storage locations. 

.\lgoritllnl smRm was programned in FORTRAN with Xewton’s metllotl 

for the refining step. The Schur vector-based algorithm of [17], SCHVEC, was 

also progranlnled rlsirlg subroutines modified from EISPACK [%I. The two 
programs were tested on several algebraic Riccati equations (:3). Where the 
exact solutions were not known, errors were estimated 1)~ (8) and (9). .411 
comprltatiolrs were performed on Northern Illinois University’s DEC VAX 
1 1 ,A’30 with floating-point accelerator UNIX f77 compiler. Timings were done 
\rhile IIO one else was using the computer. 
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E;s.\x~PL.E 1. The first example coines from the position and velocity 
coirtrol of a string of high-speed vehicles [ 191. :I string of k vehicles gives rise 
to order-(2k - 1) coefficient matrices A = [u, ,I, C:, a11d F of the form 

G=diag(O,lO,O,lO ,..., 0), 

F=diag(l,O,l,O ,..., I), 

- 1 if i = j and i is odd, 

- 1 if 
(1 = 

i i = j - 1 aid i is eveii, 

‘I 

I 

1 if i=j+lancl i iseven, 

0 otherwise. 

Laub used the cases of five, ten, and twenty vehicles as an example in [17]. 
We tested the five-vehicle and twenty-vehicle cases. SCHVEC solved the 
five-vehicle problem in 5.2 seconds and the twenty-vehicle problem in 240 
seconds. SGNREF solved the five-vehicle problem in 3.4 seconds and the 
twenty-vehicle problem in 120 seconds. Only one Newton step was required 
for the refinement. In both cases both algorithms produced solutions accurate 
to about fifteen significant decimal digits. Machine epsilon was about lo- i’. 
SGNREF had no difficulty solving this well-conditioned Riccati equation as 
accurately and somewhat less expensively than SCHVEC. 

E~XWPLE 2. This more ill-conditioned algebraic: Riccati equation is 
Example A in [ 171. Define n-by-n matrices A = [(I ,]I, G, and F by 

G = diag(l,O,O,O ,..., 0), 

F = diag(O,O,O,O ,..., l), 

c,ijJi if i=j-1, 
otheiwise. 

Like [ 171, we cased n = 21. SCHVEC finished this problem in 47 seconds. 
S(:N~EF fiiiished it in 28 seconds. Only one Newton step was required by the 
refinement step. Although the arithmetic was accurate to approximately 17 
jiglrificant decimal digits, both algorithms produced solutions accurate to 
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ot11y tlilre significant decimal digits. The less accurate solutions of this 
prol~lcn~ arc due to the ill-conditioning of the underlying Riccati equation 12, 
9. 1 T]. They are not the fault of the methods themselves. The iIl-collditiolliiIg 
did not slow convergence. 

EXAMPLE 3. The last example is artificially constructed to demonstrate 
the improvement in accuracy that can be obtained from the refining step in 
SGNREF. The coefficient matrices were the 2O-by-20 matrices A = VBV, 
G = VCV, and F = VDV, where V is the symmetric, orthogonal matrix 
V = I - (2/n)z4uT, u E R20 is the vector of l’s, and B, C, and F are 20-by-20 
matrices following the pattern of the 3-by-3 example 

I 
-1 1 1 0 0 0 

I(= 

0 -2 1 

1 I 

, c 

= I 
0 

0 

0 

I 

> 
0 0 - :3 0 0 l.~)lXl()~’ 

10; 10; IO’ 
1) = I()7 

i I 

IO’ 10; . 

10; IO’ 10’ 

S~:HVEX: and SGNREF both used about 28 seconds. WNREF took longer than 
11\11;tl, becalrse it needed two Newton steps to refine the solution. This time 
they did not give solutions of the same accuracy. A, G, and F have different 
nragnitlldes. Rounding errors in algorithms that work with the Hamiltonian 
nlatrix (4) as a whole tend to perturb G by amounts proportional to the 
ulagnitrlde of F times the precision of the arithmetic. This caused SCHVEC: to 
produce a sohltion correct to about four significant decimal digits. After 
refining w?th two steps of Newton’s method, SGNREF produced a solution 
correct to about 16 significant decimal digits. 

Of collrse, sohItions produced by S~:HVEC can also be refined with a few 
steps of Newton’s method. 

.\rnold [a] has also observed the advantages of refining solutions with 
Newton’s method. 

<:ON<:LUSIONS 

The matrix sign function with iterative refinement is an efficient numeri- 
cally \tal)Ie method for solving algebraic Riccati equations. Scaling by the 
illverse of the geometric mean of the eigenvahles accelerates convergence of 
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the iteration. The resulting algorithm reduces to the scalar quadratic formula 
ilr the 1-\)y-1 _dse. Taking advantage of Hamiltonian stnlcture 1)~ turning 

111 lsytrrnretric matrix inversions into symmetric inversions cuts work and 

storage requirements in half. Iterative refinement gives numerical stability 
and a11 error estimate. With respect to work, storage, and accuracy, the 
rllatrix sign function followed by iterative refinement compares favorably 
\\.ith the Schur vector method of [ 171. 
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