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SUMMARY

Dendritic cells are critically involved in the promotion
and regulation of T cell responses. Here, we report
a mouse strain that lacks conventional CD11chi den-
dritic cells (cDCs) because of constitutive cell-type
specific expression of a suicide gene. As expected,
cDC-less mice failed to mount effective T cell re-
sponses resulting in impaired viral clearance. In con-
trast,neither thymicnegativeselectionnorT regulatory
cell generation or T cell homeostasis were markedly
affected. Unexpectedly, cDC-less mice developed
a progressive myeloproliferative disorder character-
ized by prominent extramedullary hematopoiesis and
increased serum amounts of the cytokine Flt3 ligand.
Our data identify a critical role of cDCs in the control
of steady-state hematopoiesis, revealing a feedback
loop that links peripheral cDCs to myelogenesis
through soluble growth factors, such as Flt3 ligand.

INTRODUCTION

Antigens have to be processed and presented in the form of

peptides bound to major histocompatibility complex (MHC) mol-

ecules to be recognized by T cells. Antigen-presenting cells

(APCs) thus play a central role in the activation and control of

T cell immunity. Dendritic cells (DCs), a morphologically distinct

APC described by Steinman and colleagues (Steinman and

Witmer, 1978), belong to the body-wide network of mononuclear

phagocytes (van Furth and Cohn, 1968) and seem to have

coevolved with adaptive T cell immunity. Beyond their unique

potential to stimulate naive T cells in vitro (Steinman and Witmer,

1978), in vivo antigen targeting to DCs elicits strong T cell priming

and long-lived T cell help for antibody responses (Bonifaz et al.,

2002; Boscardin et al., 2006). Furthermore, vaccination with an-

tigen-pulsed DCs proved to be a potent way to stimulate T cell
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responses both in mouse and man with respective protocols be-

ing in clinical trials (Gilboa, 2007; Palucka et al., 2007). Finally,

conditional in vivo DC ablation established that splenic conven-

tional DCs (cDCs) are required for the initiation of naive CD4+ and

CD8+ T cell responses to protein antigens and pathogens (Jung

et al., 2002; Probst and van den Broek, 2005; Sapoznikov et al.,

2007).

Beyond their role in T cell stimulation, DCs are also involved in

controlling the inherent autoreactivity of the T cell compartment.

DCs were reported to play a critical role in the establishment of

central T cell tolerance (Brocker et al., 1997), although more

recent studies highlight the contribution of medullary thymic

epithelial cells (mTECs) that promiscuously express tissue-

restricted self-antigens (Kyewski and Klein, 2006). Immature or

resting DCs that did not encounter pathogen signatures and

hence lack expression of costimulatory molecules were shown

to induce peripheral tolerance, both of CD4+ and CD8+ T cells

(Hawiger et al., 2001; Probst et al., 2005). In addition, thymic

and peripheral DCs were proposed to play a critical role in the

generation of T regulatory (Treg) cells that suppress effector

T cell responses (Coombes et al., 2007; Fehervari and Sakagu-

chi, 2004; Mahnke and Enk, 2005; Yamazaki et al., 2007). Finally,

peripheral DCs were reported to support homeostatic prolifera-

tion and survival of T cells (Brocker et al., 1997; Gruber and

Brocker, 2005). Although the role of DCs in T cell activation

has been well established through transient DC depletion

and/or DC-specific antigen targeting, the study of DC functions

in T cell development and homeostasis requires long-term DC

elimination in the steady state. Similarly, any potential DC func-

tions outside of bona fide antigen presentation may be revealed

only after early-onset DC deletion during development. Thus, an

experimental model of constitutive DC deletion is required so

that the immunological and developmental in vivo functions of

this critical immune cell type are fully understood.

Here, we report the generation and characterization of a binary

transgenic mouse model that constitutively lacked conventional

CD11chi DCs. cDC-less mice were born at normal Mendelian

frequencies and showed unimpaired development. The lack of
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cDCs resulted in a deficiency to mount efficient and antivirally

protective T cell responses. Surprisingly, however, the steady-

state T cell compartment and T cell homeostasis remained

largely unaffected by the absence of DC, as did thymic negative

selection and the generation of natural T regulatory cells. Finally,

we report the unexpected finding that cDC-less mice developed

a myeloid proliferative syndrome by triggering a hitherto-

unknown hematopoetic feedback regulation linking peripheral

cDC to myelogenesis through soluble growth factors, such

as Flt3 ligand. Importantly, our finding might explain other DC-

deficiency-associated myelo-proliferative disorders, such as

the one reported for IRF8-deficient mice.

RESULTS

Generation of Mice that Constitutively Lack
Conventional DCs
In order to probe for potential functions of cDCs during the devel-

opment of the vertebrate organism and subsequent homeosta-

sis, we generated a mouse model that constitutively lacks

CD11chi cells. To this end, we crossed CD11c-Cre BAC trans-

genic mice (Caton et al., 2007) to mice that harbor a conditional

diphtheria toxin A (DTA) transgene in the constitutively active

Rosa26 locus (Brockschnieder et al., 2006). Cre-recombinase-

mediated deletion of the loxP signal-flanked transcriptional

STOP cassette in these mice results in specific toxin activation

in Cre-expressing cells. DTA inhibits protein synthesis (Holmes,

2000) and CD11c-expressing cells of CD11c-Cre;R26-DTA ani-

mals (called ‘‘CD11c:DTA mice’’ hereafter) are thus expected

to undergo spontaneous apoptosis. CD11c:DTA double-trans-

genic mice were born at normal Mendelian frequencies. Flow-

Figure 1. Constitutive Dendritic Cell Deple-

tion in the CD11c:DTA Mice

(A) Flow-cytometry analysis of cells isolated from

spleen, LNs, and thymi of CD11c:DTA mice or

littermate controls. DCs were identified as CD11chi

MHC-IIhi cells. Percentages refer to CD11chi cDCs

out of total cells. n = 3 for each group. p < 0.001.

The bar diagram summarizes numbers of cDCs

in CD11c:DTA mice and littermate controls.

(B) Mixed leukocyte reaction with 5 3 105 spleno-

cytes (left) or thymocytes (right) isolated from

CD11c:DTA and littermate mice (C57BL/6 back-

ground, H2b), cultured with 105 allo-reactive

BALB/c CD4+ T cells for 72 hr, after which thymi-

dine incorporation was measured. The bar graph

represents means ± SD (n = 3). Controls include

T cells cocultured with splenocytes isolated from

DTx-treated DTR mice and syngeneic splenocytes

(BALB/c, H2d). One representative experiment out

of three is shown. p values are < 0.001.

cytometry analysis of CD11c:DTA mice

revealed the essential absence of MHC

II+ CD11chi cells from spleens, peripheral

and mesenteric LNs, thymi, and nonlym-

phoid tissues of CD11c:DTA mice

(Figure 1A and Figures S1A and S1B

available online). Histological analysis

confirmed the lack of CD11chi cells in

lymphoid organs of CD11c:DTA mice (Figures S2A and S2B).

Importantly, the bulk of plasmacytoid DCs (PDCs) and epidermal

Langerhans’ cells (LCs) were still present in CD11c:DTA

mice (Figures S1C and S1D). Classical in vitro DC depletion

experiments have shown that splenic DCs are of critical impor-

tance as stimulators in a primary mixed leukocyte reaction

(MLR) (Steinman and Witmer, 1978). Moreover, conditional

in vivo cDC ablation results also in the inability of splenocytes

to prime alloreactive T cells (Jung et al., 2002). To obtain a func-

tional confirmation for the absence of cDCs in CD11c:DTA mice,

we therefore assayed cell suspensions of splenocytes and

thymocytes in an MLR. When the respective cells were isolated

from CD11c:DTA mice, they failed to stimulate alloreactive

responder T cells, as compared to single-transgenic littermate

controls (Figure 1B). Taken together, our results show

that CD11c:DTA mice lack CD11chi conventional DCs (cDCs),

but develop normally, suggesting that during development

the cells are not required for processes beyond their immune

functions.

cDC-less Mice Are Immunodeficient
The requirement of cDCs in the MLR reaction highlights their role

as unique APCs in the priming of naive T cell responses. To in-

vestigate the in vivo immune status of cDC-less mice, we next

tested their ability to respond to antigen and pathogen challenge.

Ovalbumin (OVA)-specific TCR transgenic CD4+ and CD8+

T cells (OT-I and OT-II [Barnden et al., 1998; Hogquist et al.,

1994]) were transferred into CD11c:DTA mice or littermate

controls and the recipients were challenged by intravenous

OVA injection (10 mg). Both CD4+ and CD8+ T cell responses

were impaired in the spleens of CD11c:DTA mice (Figure S3A).
Immunity 29, 986–997, December 19, 2008 ª2008 Elsevier Inc. 987
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Figure 2. Unimpaired Steady-State T Cell

Compartment in CD11c:DTA Mice

(A) Flow-cytometric analysis of T cells isolated

from thymi of CD11c:DTA mice and WT LM

controls, stained for CD4 and CD8. Numbers in

quadrants show mean percentage of respective

cells ± SD (n = 5).

(B) Flow-cytometric analysis of T cells isolated

from spleens of CD11c:DTA mice and WT LM

controls, stained for CD4 and CD8. Numbers

in quadrants show mean percentage of respec-

tive cells out of CD3-positive splenocytes ± SD

(n = 5).

(C) Bar graph represents means ± SD (n = 5) of

T cell numbers in the spleen and inguinal LNs of

CD11c:DTA mice and LM controls. T cells

are identified as CD3-positive cells. Results are

representative example of three independent

experiments.

(D) In vitro proliferation assay of CD4+ and CD8+

T cells isolated from spleens and LNs of

CD11c:DTA mice and littermate controls. Cells

were exposed to plate-bound anti-CD3 after

coating with indicated concentrations. Bar graphs

represent means ± SD (n = 3).

(E) Flow-cytometric analysis of cotransferred

CFSE-labeled CD4+ T cells (2 3 106 each) isolated

from OT-II;CD11c:DTA mice (Thy1.1 CD45.2+)

and OT-II LM controls (Thy1.1 CD45.1+), respec-

tively into Thy1.2 WT B6.Cg-IghaThy1aGpi1a/J

recipients. The recipients were analyzed 3 days after immunization with soluble OVA or without immunization. Histograms show splenocytes analyzed for

presence of the grafted cell populations identified by their allotypic markers as shown in the dot blots. n = 4 for each group.
This result confirms earlier reports that splenic CD4+ and CD8+

T cell responses depend on the presence of CD11chi DCs

(Jung et al., 2002; Sapoznikov et al., 2007). Noteworthy, how-

ever, was that CD4+ T cell responses in the LNs of CD11c:DTA

mice persisted (Figure S3B), as reported for cDC-depleted

CD11c-DTR mice (Sapoznikov et al., 2007).

To test the impact of the absence of cDCs on T cell-mediated

protection against pathogens, we challenged CD11c:DTA mice

and littermate controls with the noncytopathic lymphocytic cho-

riomeningitis virus (LCMV). LCMV protection strictly depends on

a rapidly developing cytotoxic T lymphocyte (CTL) response

(Kagi et al., 1994). CD11c:DTA mice failed to generate efficient

virus-specific CTL responses, thereby resulting in impairment

of viral clearance (Figure S4A). To test the ability of cDC-less

mice to cope with a cytopathic viral infection, we challenged

the CD11c:DTA mice with a mouse hepatitis virus (MHV) A59

strain. The defense against the MHV requires type I IFN-produc-

ing PDCs (Cervantes-Barragan et al., 2007) but also involves

a CTL component, as indicated by the impaired MHV clearance

in MHC class I deficient (B2m�/�) mice (Figure S4B). Although

CD11c:DTA mice mounted a considerable response of MHV-

specific IFN-g-secreting effector T cells in the liver, this response

was impaired in the spleen (Figure S4C). Moreover, three out of

five MHV-infected CD11c:DTA mice failed to clear the MHV from

the liver, although they did not manifest MHV-mediated liver

damage (Figure S4C). These data are consistent with the key

role of PDCs in the response to MHV (as PDCs are present in

CD11c:DTA mice), but also demonstrate an important role of

cDCs in anti-viral CTL priming in the spleen. Collectively, our

results support the prominent role of cDCs in the stimulation of
988 Immunity 29, 986–997, December 19, 2008 ª2008 Elsevier Inc.
T cell immunity, though cells other than cDCs can contribute to

CTL response initiation during viral infection.

cDC-less Mice Have an Unimpaired T Cell Compartment
T cells not only require MHC-expressing peripheral APCs for the

triggering of adaptive T cell immunity, but also for the mainte-

nance of homeostasis and steady-state survival, ensuring the

conserved size of the peripheral naive T cell pool. Given their

prominent role in T cell priming, DCs are prime candidates for

this activity because they are known to interact with T cells

even in the absence of antigen (Bousso and Robey, 2003). Inter-

estingly, thymic morphology and organization into medulla and

cortex were unimpaired in CD11c:DTA mice (Figure S5A). More-

over, percentages of thymic T cell subpopulations were un-

changed, with both immature CD4+CD8+ double positive (DP)

and mature single positive (SP) cells present in similar frequen-

cies and undisturbed CD4+/CD8+ T cell ratios (wild-type [WT]

littermate: 2.72 ± 0.55; CD11c:DTA 2.91 ± 0.54) (Figure 2A).

Spleens of cDC-less mice generally showed a well-preserved

segregation into red and white pulp, as well as T and B cell zones

(Figure S5B and S5C). Furthermore, when compared to litter-

mate controls, CD11c:DTA mice exhibited normal T cell numbers

in peripheral lymphoid organs (Figure 2B). Within the peripheral

T cell compartment, the ratio between CD4+ and CD8+ T cells

was found to be slightly elevated (WT littermate: 1.8 versus

CD11c:DTA: 2.4) (Figure 2C).

To probe the functionality of T cells developed in the absence

of cDCs, we investigated their ability to respond to in vitro stim-

ulation and in vivo antigen challenge after transfer into WT mice.

As shown in Figure 2D, CD4+ and CD8+ T cells isolated from
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cDC-less mice and littermate controls responded equally well to

anti-CD3-driven in vitro stimulation. For the in vivo assay of T cell

function, we generated TCR transgenic CD11c:DTA mice by

crossing the OT-II transgene, encoding the OVA-specific TCR

(Barnden et al., 1998) onto the CD11c:DTA background. We

then isolated CD4+ T cells from the OT-II;CD11c:DTA mice and

littermate OT-II controls harboring cDCs, labeled them with

CFSE, and cotransferred the cells into WT recipient mice. The

use of the respective allotypic CD45 markers allowed us to iden-

tify the two grafted cell populations in the host (Figure 2E). Upon

antigen challenge, OVA-specific CD4+ T cells isolated from the

cDC-less mice responded in this competitive assay as well as

the respective cells isolated from DC-proficient animals. Collec-

tively, these data indicate that, despite their deficiency in T cell

priming, cDC-less mice have a predominantly unimpaired

T cell compartment with functionally intact T cells.

cDCs Are Dispensable for Thymic Negative Selection
and the Generation of Natural T Regulatory Cells
To obtain a global view on the TCR repertoire of CD11c:DTA

mice, we next determined the Vb chain usage of their thymic

and peripheral T cells. As shown in Figure 3A, the absence of

cDCs did not affect the CD4+ or the CD8+ T cell repertoire, which

remained similar to WT littermate controls. Notably, certain Vb

chains, such as Vb5, Vb11, and Vb12, are underrepresented in

C57BL/6 mice (H2b) because of the presence of superantigens

(SAg) encoded by endogenous MMTV proviruses (Scherer

et al., 1993). The fact that CD11c:DTA mice exhibited unchanged

Vb distributions thus suggested that cDCs are dispensable for

this SAg-induced T cell depletion in the thymus. This notion is

further supported by that fact that introduction of an MHC H2b

allele, through intercross with BALB/c WT mice, resulted in

a comparable MMTV SAg-induced reduction of Vb3-positive

cells in cDC-proficient and cDC-deficient mice (Figure 3B). To

directly test the role of cDCs in thymic negative selection, we

resorted to a transgenic system that involves the expression of

a de novo self-antigen (RIPmOVA mice [Kurts et al., 1996]). We

generated mixed bone marrow (BM) chimeras by transferring ei-

ther WT OT-II or CD11c:DTA OT-II BM into lethally irradiated WT

or RIPmOVA recipient mice. In these chimeras, the OVA antigen

is in the thymus exclusively expressed by medullary epithelial

cells (mTECs). Recent studies had indicated that negative selec-

tion of CD4+ T cells in such chimeras requires crosspresentation

of the mTEC-derived antigen by BM-derived cells, presumably

DCs (Gallegos and Bevan, 2004). [OT-II > RIPmOVA] chimeras

displayed as reported (Gallegos and Bevan, 2004) a substantial

reduction of Va2 Vb5+ OVA-reactive T cells in their thymus and

periphery, as compared to [OT-II > WT] control chimeras (Fig-

ure 3C). More importantly, antigen-induced deletion of OVA-

reactive CD4+ T cells was also observed in [OT-II;CD11c:DTA >

RIPmOVA] chimeras and was thus independent of graft-derived

thymic or peripheral DCs.

To directly test for the potential existence of autoreactivity in

the T cell compartment of CD11c:DTA mice, we exposed CD4+

T cells isolated from cDC-deficient (CD11c:DTA, H2b) and

cDC-sufficient (LM, H2b) mice to syngeneic (H2b) and allogeneic

(H2d) splenocytes. In both cases, T cell proliferation was re-

stricted to the H2-mismatched stimulator cells (Figure 3D).

T cell autoreactivity was further assayed as recently reported
(Luckashenak et al., 2008) by transfer of CFSE-labeled poly-

clonal CD4+ and CD8+ T cells from CD11c:DTA mice and litter-

mate controls into CD45.1-congenic WT mice. Analysis of the

recipients 10 days after transfer revealed the presence of both

grafted populations at similar frequencies; moreover, neither of

them had undergone substantial proliferation (Figure 3E). Taken

together, these results demonstrate the absence of overt auto-

reactivity from the peripheral CD4+ and CD8+ T cell compartment

of cDC-less mice.

In addition to their role in thymic selection, cDCs were pro-

posed to play a critical role in the generation of Treg cells, both

in the thymus and the periphery (Coombes et al., 2007; Fehervari

and Sakaguchi, 2004; Mahnke and Enk, 2005; Yamazaki et al.,

2007). Notably, however, the frequency of CD4+ T cells with

Treg phenotype (FoxP3+) was similar in thymi and spleens of

CD11c:DTA mice and of littermate controls (Figure 3F). More-

over, when subjected to a characteristic functional in vitro assay,

these cells suppressed the proliferative response of CD25� re-

sponder CD4+ T cells as did Treg cells isolated from littermate

controls (Figure 3G). Collectively, these data establish that

cDCs are neither required to establish thymic negative selection

nor required for the generation of functional natural Treg cells.

cDC-less Mice Develop a Myeloid-Proliferative Disorder
Young CD11c:DTA mice (up to 5 weeks of age) showed no differ-

ence in size and behavior when compared with littermate

controls. However, with time the mice developed sporadic alter-

ations of secondary lymphoid organs and by the age of 3 months,

all CD11c:DTA mice displayed lymphadenopathies and their

spleens weighed approximately three times that of littermate

controls (WT, 78.6 g ± 11.31; CD11c:DTA, 280.53 g ± 63.35

[n = 5]). Correlating with the increased organ size, spleen and

LN cell numbers were significantly elevated in 3-month-old

CD11c:DTA mice compared to age-matched littermate controls.

However, BM cellularity remained essentially unaffected by the

absence of cDCs (Figure 4A). Flow-cytometric analysis of

CD11c:DTA spleens and LNs revealed a dramatic increase in

the numbers of CD11b+ myeloid cells comprising Gr1int mono-

cytes and Gr1hi neutrophils (Figure 4B). Furthermore, we

observed a minor but significant elevation of these cells in the

BM (Figure 4C). Blood counts of CD11c:DTA mice revealed a

myeloid shift toward neutrophils, monocytes, and eosinophils

(Figure 4D), which progressed with age (Figure 4E). Morpholog-

ically, leukocytes of CD11c:DTA mice appeared normally (data

not shown). Myeloid cell infiltration was also observed in periph-

eral nonlymphoid organs of 3-month-old CD11c:DTA mice, such

as liver and kidney (Figure S6A). However, interestingly we did

not find increased polymorphnuclear or mononuclear myeloid

infiltrates over littermate controls in the thymi of CD11c:DTA mice

(Figure S6B). In accordance with the phenotype of other mice

harboring myelo-hyperproliferation (Holtschke et al., 1996), the

number of splenic erythrocytes, detected by Ter119 expression,

was significantly elevated in 3-month-old CD11c:DTA mice,

whereas their BM, which appeared anemic exhibited lower num-

bers of these cells (Figure 4F). Also, histological examination of

CD11c:DTA BM revealed myeloid hyperplasia and a reduction

of erythroid precursors (Figure S7).

To investigate the effect of the constitutive cDCs’ absence

on hematopoesis, we performed colony-forming unit (cfu)
Immunity 29, 986–997, December 19, 2008 ª2008 Elsevier Inc. 989
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Figure 3. Unimpaired Repertoire Distribution, Thymic Negative Selection, and Treg Cell Generation in cDC-less Mice
(A) Bar graph summarizing means ± SD of flow-cytometric analysis (n = 4) for Vb distribution among (left) total CD8+ T cells and (right) CD4+ T cells in the thymus

and spleen of CD11c:DTA mice and LM controls.

(B) Bar graph summarizing means ± SD (n = 4) of Vb3 distribution among total CD4+ T cells in the thymus and spleen of C57BL/6 CD11c:DTA mice (gray), (C57BL/

6 3 BALB/c) F1 mice (white), and (C57BL/6 3 BALB/c) F1 CD11c:DTA mice (black).

(C) Unimpaired thymic negative selection of OVA-reactive CD4+ T cells in CD11c:DTA mice. BM cells were isolated from OT-II and CD11c:DTA;OT-II donors and

transferred into irradiated WT or RIPmOVA recipients for generation of BM chimeras. Dot blots represent flow-cytometric analysis of Va2+Vb5+-specific T cells

isolated from BM chimeras. Bar graphs summarize means of percentages ± SD (n = 3) of OT-II T cells out of total CD4+ T cells in the thymus and spleen of the

chimeras.

(D) Mixed-leukocyte reaction with CD4+ T cells isolated from CD11c:DTA mice or littermate controls and allogeneic and syngeneic stimulator splenocytes. The

bar graph shows mean of triplicates ± SD. Results are representative of two independent experiments.

(E) Flow-cytometric analysis of spleens of WT mice (CD45.1) that received an adoptive transfer of polyclonal CFSE-labeled CD4+ or CD8+ T cells isolated from

CD11c:DTA mice or littermate controls (CD45.2) for the presence of graft-derived cells (CD45.2) and their proliferation status. Note absence of CD11c:DTA T cell

proliferation in recipients. Results are representative example of two independent experiments with two mice per group.
990 Immunity 29, 986–997, December 19, 2008 ª2008 Elsevier Inc.
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assays and compared hematopoietic precursor frequencies of

CD11c:DTA mice and littermate controls. The analysis revealed

a significant increase of cfu counts in the blood, the spleen,

and the BM, although the elevation in the first two organs was

more pronounced (Figure 5A). In accordance with this finding,

a 2 hr BrdU pulse resulted in an increased label of myeloid cells

in the spleens of CD11c:DTA mice as compared to littermate

controls, whereas the percentage of proliferating myeloid BM

cells was hardly affected (Figure 5B). Extramedullary hematopo-

esis was also confirmed by a histological examination of spleens

of 3-month-old CD11c:DTA mice (Figure S8). Moreover, flow-

cytometric analysis of 3-month-old CD11c:DTA spleens

revealed a significant increase of the lineage marker-negative

(Lin�) Sca-1+ c-Kit+ LSK cell subset representing hematopoetic

stem cells (Kondo et al., 2003) (Figure 5C). However, even with

progressing age, CD11c:DTA mice did not spontaneously prog-

ress into a transplantable leukemia (data not shown). Rather,

cDC-less mice develop a nonmalignant chronic, nonfatal myelo-

proliferative disorder (MPD).

The Myeloid-Proliferative Disorder Is Triggered
by the Absence of Functional cDCs
The observed MPD could be a response to ongoing cDC apopto-

sis in the CD11c:DTA mice. Alternatively, it could result from

activation of a hitherto-unknown mechanism sensing the ab-

sence of peripheral cDCs and triggering myeloid regeneration.

To distinguish between these options, we generated mixed BM

chimeras through reconstitution of lethally irradiated WT recipi-

ent mice with an equal mixture of CD11c:DTA (CD45.2)

and WT (CD45.1) BM. For controls, we included mice reconsti-

tuted with CD11c:DTA or WT BM only. [CD11c:DTA > WT]

chimeras, which constitutively lacked cDCs (Figure 6A), dis-

played markedly elevated frequencies of monocytes and

CD11b+ myeloid cells in blood and spleen, when compared to

[WT > WT] chimeras (Figures 6B and 6C). In contrast, in the

mixed [CD11c:DTA-WT > WT] BM chimeras, which retained

CD45.1+ cDC of WT donor origin (Figure 6A), blood monocyte

and myeloid cell counts were similar to the [WT > WT] controls

(Figure 6C). The direct linkage between the MPD development

and the absence of cDCs is further corroborated by the fact

that additionally, extended conditional cDC ablation—as

achieved through repetitive DTx treatment of [CD11c-DTR >

WT] chimeras (Zaft et al., 2005)—resulted in the significant eleva-

tion of myeloid cells in blood and spleen (Figure 6D). Collectively,

these data establish that the chronic myeloproliferation ob-

served in CD11c:DTA mice is a response to the lack of cDCs,

suggesting the existence of a feedback mechanism that ensures

appropriate myelogenesis in homeostasis.

Mice deficient for the interferon (IFN) regulatory factor (IRF)-8

(also known as interferon consensus sequence binding protein

[ICSBP]) display a severe myeloid hyper-proliferation (Holtschke

et al., 1996). Interestingly, Irf8�/� mice also exhibit a DC defi-

ciency comprising CD11b� CD8a+ cDCs, as well as LCs and

PDCs (Aliberti et al., 2003; Schiavoni et al., 2002). The MPD in
Im
mice lacking IRF-8 is thought to result from the tumor-suppres-

sive activity of the transcription factor (Hao and Ren, 2000),

rather than from its role in cDC development. In the light of our

present findings, we decided to readdress this issue and test

the possibility that the MPD of Irf-8�/� mice could be triggered

by a DC-restricted deficiency. To this end, we generated irradi-

ation chimeras with BM obtained from Irf8�/� mice (Holtschke

et al., 1996), CD11c:DTA mice, and WT mice. Mice reconstituted

with Irf8�/� BM developed MPD similar to mice that received

CD11c:DTA BM, as indicated by the prominent accumulation

of splenic CD11b+ cells 8 weeks after reconstitution

(Figure 6E). Mixed [Irf8�/�-WT > WT] chimeras displayed normal

numbers of CD11b+ cells in their blood and spleens. In contrast,

mixed [Irf8�/�-CD11c:DTA > WT] chimeras displayed myelohy-

perproliferation. The MPD reported for Irf8�/� mice can thus be

explained as a result of a specific defect in the DC compartment

of these mice, such as the absence of CD8a+ cDCs or an addi-

tional functional DC impairment (Mattei et al., 2006). Together

with the results obtained from the CD11c:DTA mice, this finding

highlights the existence of a feedback mechanism sensing

peripheral cDC numbers in the steady state.

Absence of Functional cDCs Triggers
a Flt3-Ligand-Associated Feedback
Loop Resulting in Myeloproliferation
Our data suggest a critical link between the size control of mye-

loid compartment and the presence of functional peripheral

cDCs. In search for a soluble factor that could mediate this feed-

back loop, we analyzed the sera of CD11c:DTA mice suffering

from MPD and healthy littermate controls for the elevation of

growth factors that have been implied in myeloid or DC differen-

tiation, e.g., M-CSF (Wiktor-Jedrzejczak et al., 1990), GM-CSF

(Vremec et al., 1997), and Flt3 ligand (McKenna et al., 2000). In

addition, we tested the serum of the mice for TNFa, which re-

cently has been associated with MPD development (Walkley

et al., 2007). Interestingly of the factor tested we found only the

serum concentrations of Flt3 ligand consistently and markedly

increased in the CD11c:DTA mice as compared to age-matched

littermate controls (Figure 7A). Moreover, the Flt3-ligand serum

elevation was observed also in young CD11c:DTA mice (<5

weeks of age) and thus considerably preceded overt develop-

ment of a disorder in the animals. This finding supports a scenario

in which Flt3L causes MPD, as shown in other settings (Brasel

et al., 1996). The Fms-like tyrosine kinase 3 (Flt3) receptor is ex-

pressed by immediate cDC precursors (Naik et al., 2007; Onai

et al., 2007) and peripheral cDCs (Tussiwand et al., 2005), and

its corresponding ligand has been identified as a critical factor

in the control of DC development (Maraskovsky et al., 1997;

McKenna et al., 2000) and peripheral cDC maintenance (Was-

kow et al., 2008). Notably, Flt3 is also expressed in hematopoi-

etic stem or progenitor cells.

To obtain further evidence for a link between Flt3 ligand and

the chronic myeloproliferation, we tested the serum titers of

the growth factor in the set of BM chimeras that was described
(F) Flow-cytometric analysis of thymi and spleens of CD11c:DTA mice and LM controls indicating percentages of Foxp3+ Treg cells out CD4+ T cells. n = 3 for each

group; results are representative of three independent experiments.

(G) In vitro suppression assay with CD25+ CD4+ Treg cells isolated from CD11c:DTA mice and littermate controls and WT CD25� CD4+ T responder cells (Tresp).

Cells are stimulated with splenic DCs and soluble anti-CD3. The bar graph shows mean of triplicates ± SD.
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above and that we generated with CD11c:DTA and Irf8�/� BM.

The Flt3-ligand elevation was restricted to [Irf8�/� > WT] and

[Irf8�/�-CD11c:DTA > WT] chimeras (Figure 7B) and thus corre-

lated with MPD development (Figure 6E). Flt3-ligand-driven ex-

pansion of myeloid precursor cells thus could provide a causative

explanation for the observed myeloid expansion. Taken to-

gether, our results show a critical role of cDCs in the control of

steady-state hematopoiesis, revealing a feedback loop that links

peripheral cDCs to myelogenesis through soluble growth

factors, such as Flt3 ligand.

DISCUSSION

Here, we report the use of a binary transgenic system to generate

mice that constitutively lack CD11chi DCs. cDC-less mice were

born at normal Mendelian frequencies and displayed no devel-

opmental abnormalities. Confirming the critical role of cDCs as

APCs in the efficient activation of naive T lymphocytes, T cell re-

sponses in CD11c:DTA mice were severely impaired. However,

surprisingly, cDCs were largely dispensable for T cell homeosta-

sis and repertoire shaping including thymic negative selection for

autoreactivity. Moreover, T cells that developed in CD11c:DTA

mice, i.e., in absence of cDCs, did not show overt functional im-

pairments. With time, however, CD11c:DTA mice developed

a progressive MPD as a direct result of the absence of cDCs.

On the basis of shared progenitors and differentiation

markers, DCs have been grouped together with monocytes

and macrophages into the mononuclear phagocyte system

(van Furth and Cohn, 1968; Gordon and Taylor, 2005), although

the exact categorization and relation of the subpopulations re-

mains controversial. Two properties that distinguish DCs from

related cell types such as macrophages are their unrivaled ca-

pacity to stimulate naive T cells (Steinman and Witmer, 1978) and

their unique migration propensity. Murine cDCs can furthermore

also be genetically defined in transgenic animals on the basis of

the activity of the CD11c promoter (Brocker, 1999; Caton et al.,

2007; Jung et al., 2002; Lindquist et al., 2004), although this

definition is not absolute (Sapoznikov and Jung, 2008).

Homeostasis of naive CD4+ and CD8+ T cells is critically de-

pendent on MHC expression and the presence of distinct cyto-

kines (Boyman et al., 2007; Dummer et al., 2001; Gruber and

Brocker, 2005). Moreover, among the various APCs, DCs have

Figure 4. CD11c:DTA Mice Develop a Myeloid-Proliferative Disorder

(A) Bar graph showing total cell numbers of spleen, LN, and BM cells of 3-month-old CD11c:DTA mice and LM controls ± SD (n = 5).

(B) Myeloid cell number (identified as CD11b+ cells) in the spleen and inguinal LNs of 3-month-old CD11c:DTA mice and LM controls (n = 5 for each group). Bar

graphs represent mean ± SD (n = 4).

(C) Flow-cytometry analysis of BM neutrophils (Gr1hi CD115�) and monocytes (CD115+) of 3-month-old CD11c:DTA mice and LM controls. Bar graphs summa-

rize means of cell numbers ± SD (n = 4).

(D) Bar graph representing data obtained from blood cell count ± SD (n = 2) of 3-month-old CD11c:DTA mice and LM controls.

(E) Comparison of neutrophil and monocyte percentages (±SD, n = 3) in the blood of 3-month-old versus 1-month-old CD11c:DTA mice and LM controls.

(F) Flow-cytometric analysis of BM and spleen of 3-month-old CD11c:DTA mice and LM controls for Ter119+ erythrocytes. Bar graph shows means ± SD (n = 6).
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been proposed to play a unique role in the maintenance of the

steady-state T cell repertoire (Brocker et al., 1997; Gruber and

Brocker,2005;Zaft etal., 2005).Surprisinglyhowever,CD11c:DTA

mice displayed a largely unimpaired CD4+ and CD8+ T cell com-

partment, with respect to naive T cell numbers, subset ratios,

and Vb TCR representation. Although this finding does not gener-

ally negate a role of DCs in thymic selection, it establishes that in

contrast to the current notion, steady-state T cell survival and

T cell homeostasis can be maintained largely without cDCs.

Exclusive expression of MHC class II on DCs was shown to

promote thymic negative selection of CD4+ T cells (Brocker

et al., 1997). Moreover, although antigen expression and presen-

tation by mTEC was reported to suffice for the deletion of auto-

reactive CD8+ T cells (Gallegos and Bevan, 2006), the cellular re-

quirement for CD4+ T cell tolerization in the thymus has remained

under debate. Data from chimeras in which paternal BM was

transferred into lethally irradiated F1 offspring suggested that

BM-derived cells are dispensable for thymic negative selection

(Gao et al., 1990; Sprent et al., 1992), although a more recent

study reported the requirement of DCs (Gallegos and Bevan,

2004) for CD4+ T cell tolerization. Here, we showed that thymic

DCs were dispensable for the establishment of deletional toler-

ance, including the clearance of the T cell repertoire from endog-

enous MMTV super antigen-reactive T cells, polyclonal

Figure 6. Absence of Functional cDCs Results in Myeloproliferation

(A) Flow-cytometric analysis of splenic DCs of [WT > WT], [CD11c:DTA > WT]

and [CD11c:DTA-WT > WT] chimeras. DCs are gated as CD11chi cells. Donor

BM is indicated above the dot blots.

(B) Flow-cytometric analysis of percentage of blood monocytes (CD115+) out

of total nongranular white blood cells (ngWBC) in the three chimeras. Splenic

myloid cells defined as CD11b+ cells were analyzed in the same way. Donor

BM is indicated above the dot blots.

(C) Bar graphs summarizing mean ± SD percentages (n = 3) of CD115+ mono-

cytes in the blood (out of total ngWBC) and CD11b+ cells in the spleen of

indicated chimeras. Results are representative example of three independent

experiments.

(D) Myeloproliferative disorder after persistent conditional cDC ablation. Flow-

cytometric analysis of splenic and blood cells of [CD11c-DTR > WT] chimeras

treated for 2 weeks with diphtheria toxin (DTx) (every second day). Controls

were left untreated. FACS analysis representing percentages of CD11c hi

splenic DCs in DTx-treated and untreated mice is shown. The bar graph

represents mean percentages ± SD (n = 3) of blood monocytes and splenic

myeloid cells in (black bar) DTx-treated CD11c-DTR mice versus (white bar)

nonreated mice.

(E) Flow-cytometric analysis of BM chimeras generated with CD11c:DTA

BM and Irf8�/� BM. Bar diagrams summarize mean percentages ± SD

(n = 3) of CD11b-positive cell out of total splenocytes in the indicated BM

chimeras.

Figure 5. Enhancement of Peripheral Hematopoiesis in CD11c:DTA

Mice

(A) Number of colonies per 2 3 105 seeded blood cells (left), 1.5 3 104 seeded

BM cells (middle), and 16.7 3 105 splenocytes (right) of (black bar) CD11c:DTA

mice and (white bar) LM control. Bar graphs represent duplicates ± SD.

Results are representative of three independent experiments.

(B) Percentages of BrdU+ cells out of myeloid (CD11b+) cells in the (left) spleen

and (right) BM of CD11c:DTA mice and LM controls 2 hr after BrdU pulse. Bar

graphs represent mean ± SD (n = 3).

(C) Flow-cytometric analysis of hematopoietic stem cells (defined as Lin� Sca-

1+ and c-kit+ cells) (LSK cells) in spleens of CD11c:DTA mice and LM controls.

Bar graphs represent LSK mean percentages ± SD (n = 4) out of splenic cells.
Immunity 29, 986–997, December 19, 2008 ª2008 Elsevier Inc. 993



Immunity

Constitutive Ablation of Dendritic Cells in Mice
autoreactive CD4+ and CD8+ T cells, as well as CD4+ T cells re-

sponsive to a model self-antigen (OVA).

DCs are believed to play a critical role in the maintenance of

peripheral tolerance by their induction and/or stimulation of

Treg cells. Human TSLP-activated DCs within the thymic me-

dulla were reported to stimulate developing T cells to differenti-

ate into Treg cells (Watanabe et al., 2005). Furthermore, in vitro

studies support a unique role of murine DCs in the generation

of CD4+Foxp3+ Treg cells from peripheral naive T cells (Coombes

et al., 2007; Yamazaki et al., 2007). DCs are most effective in trig-

gering Treg in vitro proliferation (Fehervari and Sakaguchi, 2004)

and regulating Treg homeostasis in vivo (Cong et al., 2005). Ad-

ditionally, in vivo targeting of antigens to immature DCs was

shown to result in Treg cell induction (Mahnke et al., 2003). Sur-

prisingly however, CD11c:DTA mice harbored normal numbers

of functional CD4+Foxp3+ Treg cells in the thymus and periphery.

This establishes that DCs are dispensable for homeostasis and

generation of natural Treg cells, supporting the notion that other

cells might perform this task as well, including thymic mTECs

(Aschenbrenner et al., 2007). Collectively, our results do not sup-

port an essential role of cDCs in T cell homeostasis, survival, and

negative selection, as well as in the generation of natural Treg

cells, that cannot be compensated by other cells.

Mice that constitutively lack cDCs developed a MPD. Until re-

cently MPD were considered to be hematopoietic cell intrinsic,

a notion supported by the involvement of Bcr-Abl in human

CML (Van Etten and Shannon, 2004) and various murine MPD

models (Passegue et al., 2004; Wernig et al., 2006). In contrast,

the MPD developed by CD11c:DTA mice is not cell autonomous

but arises as a response of the organism to the lack of cDCs. This

notion is supported by the results obtained from mixed BM

chimeras generated with WT and CD11c:DTA BM, as well as

the studies involving persistent conditional cDC ablation. As

such, CD11c:DTA mice resemble reported models of microenvi-

ronment-induced, stroma-regulated MPD (Rupec et al., 2005;

Walkley et al., 2007). Moreover, we provide evidence that the

MPD in mice deficient for the transcription factor IRF-8

(Holtschke et al., 1996) may also develop as a consequence of

their impaired cDC compartment. Taken together, these results

argue that the absence of cDCs triggers a feedback loop result-

ing in systemic myeloid expansion.

Interestingly, serum analysis of CD11c:DTA mice and mice

that were reconstituted with Irf8�/�BM revealed a marked eleva-

tion of the growth factor Flt3 ligand, which probably caused con-

stitutive activation of Flt3 receptor expressed on hematopoietic

stem or progenitor cells. Importantly, activating Flt3 mutations

are frequently involved in human myeloid leukemia (Stirewalt

and Radich, 2003); moreover, constitutive activity of endoge-

nous Flt3 through an activating knockin mutation was recently

shown to cause MPD (Lee et al., 2007; Li et al., 2008). Finally,

experimentally induced elevation of Flt3-ligand concentrations

causes a disorder similar to the one observed in CD11c:DTA

mice (Brasel et al., 1996). Thus, elevated serum levels of Flt3 li-

gand provide a potential explanation for the MPD observed in

CD11c:DTA mice. A unique role of Flt3 ligand in the feedback

loop is supported by the fact that we failed to detect an elevation

of serum titers of other candidate growth factors and cytokines,

such as M-CSF, GM-CSF, and TNFa.

Several mutually nonexclusive scenarios may explain the in-

creased Flt3-ligand levels in the absence of DCs. First, cDCs

(along with the less numerous PDCs) are the only mature periph-

eral hematopoietic cells expressing Flt3 (Karsunky et al., 2003)

and therefore might serve as a major constitutive ‘‘ligand sink.’’ Al-

ternatively, cDCs might provide a secreted or membrane-bound

signal that regulates Flt3-ligand production by stromal cells or

lymphocytes. In the absence of such DC-mediated feedback,

Flt3-ligand production would be increased, ultimately resulting

in MPD. Although these possibilities remain to be tested, our cur-

rent findings describe a critical and unexpected role of DCs in the

feedback regulation of steady-state hematopoiesis. Future eluci-

dation of the molecular mechanism linking the cDC loss to the my-

eloproliferative disorder might provide critical insight in the etiol-

ogy of MPDs and help develop novel strategies for therapeutic

interventions of chronic nonmalignant myeloid disorders.

EXPERIMENTAL PROCEDURES

Mice

The following mice were used in this study: 8- to-12 week-old C57BL/6 mice,

BALB/c mice, CD11c-DTR transgenic mice (B6.FVB-Tg Itgax-DTR/GFP

57Lan/J) carrying a transgene encoding a human DTR-GFP fusion protein un-

der the control of the murine CD11c promoter (Jung et al., 2002); CD11c-Cre

mice (Caton et al., 2007); R26-DTA mice (backcrossed for ten generations onto

C57BL/6) (Brockschnieder et al., 2006); OT-I (C57BL/6) TCR transgenic mice

harboring OVA-specific CD8+ T cells (Hogquist et al., 1994); OT II (C57BL/6)

TCR transgenic mice harboring OVA-specific CD4+ T cells (Barnden et al.,

1998); RIPmOVA transgenic mice expressing a membrane-bound form of

OVA (residues 139–385) under control of the rat insulin promoter (RIP) (Kurts

et al., 1996); MHC class I-deficient B2m�/� mice (Koller et al., 1990); Irf8�/�

mice (Holtschke et al., 1996); and B6.Cg-IghaThy1aGpi1a/J mice (kindly

provided by H.-W. Mittruecker, Berlin). R26-DTA mice were crossed with

CD11c-Cre transgenic mice for generating CD11c-Cre:DTA mice. Mixed

[CD11c-DTR > WT], [WT > WT], [DTA > WT], [50% DTA-50% WT > WT],

[Irf8�/� > WT], [50% DTA-50% Irf8�/� > WT], [DTA OTII > RIPmOVA], [DTA

OTII > WT], [OTII > RIPmOVA], and [OTII > WT] BM chimeras were generated

as reported (Zaft et al., 2005). For conditional DC ablation, [CD11c-DTR > WT]

Figure 7. Absence of cDC Results in

Increase of Serum Titers of Flt3 Ligand

(A) Serum analysis of CD11c:DTA mice and litter-

mate controls for Flt3 ligand by ELISA. The bar

graph shows means of triplicates ± SD (n = 3).

(B) Serum Flt3-ligand titers as analyzed by ELISA

of lethally irradiated mice reconstituted with WT,

Irf8�/�, Irf8�/�-WT, or Irf8�/�-CD11c:DTA BM.

The bar graph shows means of triplicates ± SD

(n = 3).
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BM chimeras were inoculated intraperitoneally every second day for 2 weeks

with 16 ng diphtheria toxin (DTx) per g body weight. For BrdU labeling, mice

were i.p. injected with 1 mg/ml of BrdU (Sigma) and analyzed for incorporation

2 hr later by FACS analysis. All animals were maintained under specific path-

ogen-free (SPF) conditions and handled according to protocols approved by

the Weizmann Institute Animal Care Committee as per international guidelines.

Flow-Cytometry Analysis

Staining reagents used in this study included the PE-coupled antibodies anti-

MHC II, mPDCA-1 (Milteny Biotec), CD4, CD8, Va2, Vb3, Vb5, Vb6, Vb8.1,

Vb8.3, Vb11, Vb12, CD11b, CD115, Ter119, and Sca1; the biotinylated anti-

bodies anti-CD45.1, CD4, CD3, and Thy1.2; the APC-coupled antibodies

anti-SA, CD11c, CD45.1, CD4, Foxp3, CD19, Gr1(Ly6C/G), and CD117

(c-Kit); the PerCP-coupled antibodies anti-CD8, CD11b; and the FITC-coupled

antibodies anti-Brdu (BD PharMingen), CD8, CD4, Gr1, B220, NK1.1, and

CD11b. Unless indicated otherwise, the reagents were obtained from eBio-

science or Biolegend. The cells were analyzed on a FACS Calibur cytometer

(Becton Dickinson) with CellQuest software (Becton Dickinson).

Mixed-Leukocyte Reactions

Stimulator cells were isolated from spleens and thymi of CD11c:DTA mice,

CD11c-DTR transgenic mice, and littermates controls as indicated. Re-

sponder T cells were enriched from spleens of BALB/c mice by positive selec-

tion with anti-CD4 microbeads (Miltenyi Biotec). A total of 5 3 105 splenocytes

or thymocytes were cultured with 105 responder CD4+ T cells (BALB/c).

Cultures were pulsed after 72 hr with 1mCi of [H3] thymidine incorporation

was measured 16 hr later.

Histology and Immunohistochemistry

Tissues were fixed in 4% para-formaldehyde for 24 hr, embedded in paraffin,

sectioned serially (4 mm), and stained with hematoxyline and eosin (Sigma).

Photographic documentation was performed with and E800 microscope

equipped with a digital camera (DXM 1200, NIKON, Japan). For immunohisto-

chemistry, freshly removed organs were immersed in Hank’s balanced-salt so-

lution and were ‘‘snap-frozen’’ in liquid nitrogen. Tissue sections that were 5 mm

in thickness were air-dried, fixed for 10 min with acetone, and stored at�70�C.

Cryosections were blocked for 30 min with 1 g Fc-blocking antibody 2.4G2 per

sample, washed in PBS, and incubated for 1 hr at 4�C with the appropriate fluo-

rescent antibodies. Where needed, streptavidin-tetramethyl rhodamine iso-

thiocyanate was added in a second step. After sections were washed with

PBS, and they were mounted with fluorescence mounting solution (Dako).

Analysis of In Vivo T Cell Proliferation

TCR transgenic T cells were isolated from spleens and LNs of respective mice,

enriched by MACS cell sorting with anti-CD8 or anti-CD4 antibodies according

to themanufacturer’s protocol (Miltenyi Biotec GmbH), and labeledwithcarboxy

fluorescein succinimidyl Ester (CFSE, C-1157; Invitrogen) (Lyons, 2000). CFSE-

labeled T cells (1 to 2 3 106 cells/mouse) were injected into the tail veins of the

recipient mice. Cells were analyzed 4 days later for CFSE dilution with FACS.

Viral Infection

Mice were injected with indicated pfu of MHV A59 (i.p.) and with 200 pfu of

LCMV WE (i.v.) and sacrificed at the indicated time points. Organs were stored

at �70�C until further analysis. For measuring the amount of the liver enzyme

alanine 2-oxoglutarate-aminotransferase (ALT), which is indicative of liver

damage, blood was incubated at RT to coagulate and centrifuged, and serum

was used for ALT measurements with a Hitachi 747 auto-analyzer (Tokio,

Japan). MHV titers were determined by standard plaque assay on day 8 after

infection with L929 cells. LCMV titers in the spleens were determined 4 days

after i.v. infection in an LCMV infectious focus assay. MHC class I (H-2Db)

monomers complexed with GP33 were produced as described (Krebs et al.,

2005) and tetramerized by addition of streptavidin-PE (Molecular Probes). At

the indicated time points after immunization, animals were bled and single-

cell suspensions were prepared from spleens and lymph nodes. Aliquots of

5 3 105 cells or three drops of blood were stained with 50 ml of a solution

containing tetrameric class I-peptide complexes at 37�C for 10 min and then

stained with anti-CD8-FITC (BD PharMingen) at 4�C for 20 min. The cells

were analyzed by flow-cytometry gating on viable leukocytes.
Analysis of IFN-g Production

Specific ex vivo production of IFN-g was determined by intracellular cytokine

staining. Organs were removed at the indicated time points after infection. For

intracellular cytokine staining, single-cell suspensions of 1 3 106 splenocytes

were incubated for 5 hr at 37�C in 96-well round-bottom plates in 200 ml

culture medium containing 25 U/ml IL-2 and 5 mg/ml Brefeldin A (Sigma). Cells

were stimulated with phorbol-myristate acetate (PMA, 50 ng/ml) and ionomy-

cin (500 ng/ml) (both purchased from Sigma, Buchs, Switzerland) as a positive

control or left untreated as a negative control. For analysis of peptide-specific

responses, cells were stimulated with 1 mM of GP33 peptide or 100 mM of MHV

S598 peptide. The percentage of CD8+ T cells producing IFN-g was deter-

mined with a FACSCalibur flow cytometer. Both S598 (RCQIFANI) and GP33

(KAVYNFATC) peptides were purchased from Neosystem.

Analysis of In Vitro T Cell Proliferation

CD4+ and CD8+ T cells were isolated from spleens and LNs of respective mice,

enriched by MACS cell sorting with bead-coupled anti-CD4 or anti-CD8

antibodies according to the manufacturer’s protocol (Miltenyi Biotec GmbH).

A total of 105 cells were plated on 96-well round-bottom plates coated with

anti-CD3 antibody in different concentrations (10.1, 0.5, and 0.1 mg/ml) (BD

PharMingen). Cultures were pulsed after 72 hr with 1mCi of [H3] thymidine,

incorporation was measured 16 hr later.

Treg Cell-Suppression Assay

CD25� and CD25+ CD4+ T cells were isolated from WT or CD11c:DTA mice by

magnetic depletion according to the manufacturer’s protocol (Miltenyi Biotec

GmbH). CD4+CD25� WT responder T cells (105) were cultured in 96-well

round-bottom plates in a total volume of 0.2 ml in the presence or absence

of freshly isolated CD4+CD25+ Treg cells (105). A total of 2 3 104 splenic

CD11c+ DCs/well isolated by MACS (Miltenyi Biotec GmbH) were used as ac-

cessory cells, and anti-CD3 mAb (145-2C11; 2 mg/ml) was used as stimulus.

Cultures were pulsed after 96 hr with 1mCi of [H3] thymidine; incorporation

was measured 16 hr later.

Colony-Forming-Unit Assay

Semisolid cultures were performed as previously described (Petit et al., 2005).

In brief, murine splenocytes (5 3 105 cells/ plate), peripheral blood cells (2 3

105 cells/plate), and BM cells (1.5 3 104 cells/plate) were plated in 0.9% meth-

ylcellulose (Sigma), 30% FCS (Biological Industries), 50 ng/ml SCF, 5 ng/ml

IL-3, 5 ng/ml GM-CSF (Kirin), and 2 u/ ml Erythropoietin (Orto Bio Tech). The

cultures were incubated at 37�C in a humidified atmosphere containing 5%

CO2 and scored 7 days later according to morphologic criteria.

Detection of Serum Titers of Growth Factors and Cytokines

Sera of CD11c:DTA mice and age matched littermate controls were tested by

ELISA for Flt3L and M-CSF (catalog #DY416; R&D Systems), as well as GM-

CSF and TNFa (catalog #555167, 555268; Becton Dickinson) according to

the manufacturer’s protocol. The detection levels as determined by analysis

of the respective recombinant standards diluted in PBS-BSA or 20% serum/

80% PBS-BSA were �15 pg/ml; 22 pg/ml (GM-CSF); 10 pg/ml; 14 pg/ml

(M-CSF); and 15 pg/ml, 20 pg/ml (TNFa). Note that dilution of the standard

in serum lowered the sensitivity of the commercial ELISA kits.

Statistical Analysis

All statistics were generated with a Student’s t test. All error bars in diagrams

and numbers following a plus-minus sign are standard deviations (SD).

SUPPLEMENTAL DATA

Supplemental Data include eight figures and can be found with this article

online at http://www.immunity.com/supplemental/S1074-7613(08)00503-7.
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