J. Matn. Anal. Appl. 356 (2009) 215-231

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Non-simultaneous blow-up of *n* components for nonlinear parabolic systems $\stackrel{\circ}{\approx}$

Bingchen Liu*, Fengjie Li

College of Mathematics and Computational Science, China University of Petroleum, Dongying 257061, Shandong Province, PR China

ARTICLE INFO

Article history: Received 14 January 2009 Available online 10 March 2009 Submitted by T. Witelski

Keywords: Non-simultaneous blow-up Simultaneous blow-up Blow-up rate Blow-up set

ABSTRACT

This paper deals with non-simultaneous and simultaneous blow-up for radially symmetric solution (u_1, u_2, \ldots, u_n) to heat equations coupled via nonlinear boundary $\frac{\partial u_i}{\partial \eta} = u_i^{p_i} u_{i+1}^{q_{i+1}}$ $(i = 1, 2, \ldots, n)$. It is proved that there exist suitable initial data such that u_i $(i \in \{1, 2, \ldots, n\})$ blows up alone if and only if $q_i + 1 < p_i$. All of the classifications on the existence of only two components blowing up simultaneously are obtained. We find that different positions (different values of k, i, n) of u_{i-k} and u_i leads to quite different blow-up rates. It is interesting that different initial data lead to different blow-up phenomena even with the same requirements on exponent parameters. We also propose that $u_{i-k}, u_{i-k+1}, \ldots, u_i$ $(i \in \{1, 2, \ldots, n\}, k \in \{0, 1, 2, \ldots, n-1\})$ blow up simultaneously while the other ones remain bounded in different exponent regions. Moreover, the blow-up rates and blow-up sets are obtained.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following parabolic system

 $\begin{cases} (u_i)_t = \Delta u_i, \quad (x, t) \in B_R \times (0, T), \\ \frac{\partial u_i}{\partial \eta} = u_i^{p_i} u_{i+1}^{q_{i+1}}, \quad (x, t) \in \partial B_R \times (0, T), \\ u_i(x, 0) = u_{i,0}(x), \quad i = 1, 2, \dots, n, \ n \ge 2, \ x \in B_R, \\ u_{n+1} := u_1, \qquad p_{n+1} := p_1, \qquad q_{n+1} := q_1, \end{cases}$

where $B_R = \{x \in \mathbb{R}^N : |x| < R\}$; exponents $p_i, q_i \ge 0$ (i = 1, 2, ..., n); $\partial/\partial \eta$ is the outer normal derivative; radially symmetric functions $u_{i,0}(x)$ (i = 1, 2, ..., n) are positive and smooth, satisfying the compatibility conditions; Let *T* be the blow-up time of system (1.1). The existence and uniqueness of local solutions to system (1.1) is well known (see, for example, [8]). Nonlinear parabolic system (1.1) comes from chemical reactions, heat transfer, etc., where $u_1, u_2, ..., u_n$ represent concentrations of chemical reactants, temperatures of materials during heat propagations, etc.

Non-simultaneous and simultaneous blow-up for nonlinear parabolic systems have deserved so much attention (see [1-3,9,16,19,20,25]). If n = 2, system (1.1) turns into

(1.1)

^{*} This work is supported by National Natural Science Foundation of China.

^{*} Corresponding author.

E-mail address: bclfjl@yahoo.com.cn (B. Liu).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\,$ © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2009.03.018

$$\begin{cases} (u_1)_t = \Delta u_1, & (u_2)_t = \Delta u_2, & (x,t) \in B_R \times (0,T), \\ \frac{\partial u_1}{\partial \eta} = u_1^{p_1} u_2^{q_2}, & \frac{\partial u_2}{\partial \eta} = u_2^{p_2} u_1^{q_1}, & (x,t) \in \partial B_R \times (0,T), \\ u_1(x,0) = u_{1,0}(x), & u_2(x,0) = u_{2,0}(x), & x \in B_R. \end{cases}$$
(1.2)

For (1.2), Pinasco and Rossi [15] observed that there exist initial data such that u_1 blows up while u_2 remains bounded in bounded domain of \mathbf{R}^N if and only if $q_1 + 1 < p_1$. Rossi [18], Pedersen and Lin [14], Chen [4] discussed the simultaneous blow-up rate estimates of (1.2) in B_R , respectively. For N = R = 1, Brändle, Quirós and Rossi [1,2] obtained that non-simultaneous blow-up happens for every initial data if $q_1 + 1 < p_1$ and $p_2 \leq q_2 + 1$, or $q_2 + 1 < p_2$ and $p_1 \leq q_1 + 1$. It is interesting that non-simultaneous blow-up and simultaneous blow-up coexist in the exponent region $q_1 + 1 < p_1$, $q_2 + 1 < p_2$.

System (1.1) with $p_i = 0$ becomes

$$\begin{cases} (u_i)_t = \Delta u_i, \quad (x, t) \in \Omega \times (0, T), \\ \frac{\partial u_i}{\partial \eta} = u_{i+1}^{q_{i+1}}, \quad (x, t) \in \partial \Omega \times (0, T), \\ u_i(x, 0) = u_{i,0}(x), \quad i = 1, 2, \dots, n, \ n \ge 2, \ x \in \Omega, \\ u_{n+1} := u_1, \qquad q_{n+1} := q_1. \end{cases}$$
(1.3)

It is easy to check that blow-up must be simultaneous for (1.3). Pedersen and Lin [13], Wang [22] obtained the simultaneous blow-up rate estimates if $q_1q_2 \cdots q_n > 1$.

The related discussion on blow-up solutions of parabolic systems can be seen from [5,7,10,17,21,23] and the papers therein.

By the cited papers above, one can find that non-simultaneous blow-up is possible due to $p_i \ge 0$. In the present paper, the solution of (1.1) is making up of *n* components. The non-simultaneous blow-up means that at least $i \in \{1, 2, ..., n - 1\}$ components blow up simultaneously while the other ones remain bounded up to the blow-up time, which has been rarely considered before. The present paper is arranged as follows, in the next section, a necessary and sufficient condition is given on the existence of one component blowing up alone. In Section 3, we obtain all of the classifications on the existence of two components blowing up simultaneously with the other ones remaining bounded. Furthermore, the blow-up rates of u_{i-k} and u_i ($i \in \{1, 2, ..., n\}$, $k \in \{1, 2, ..., n-1\}$) are obtained. It is interesting that the representations of blow-up rates are quite different with respect to different values of n, i, and k. In Section 4, we obtain the conditions of u_{i-k} , u_{i-k+1} , ..., u_i ($i \in \{1, 2, ..., n\}$, $k \in \{0, 1, 2, ..., n-1\}$) blowing up simultaneously with the others remaining bounded for every positive initial data. Moreover, the corresponding blow-up rates and sets are considered.

2. The existence of only one component blowing up

The critical blow-up exponents for (1.1) can be obtained from Rossi [17].

Theorem 2.1. The positive solutions of system (1.1) blow up if and only if

$$\max\left\{p_i - 1 \ (i = 1, 2, \dots, n), \ \prod_{j=1}^n q_j - \prod_{j=1}^n (1 - p_j)\right\} > 0.$$
(2.1)

From now on, we assume that (2.1) always holds. Denote $\xi_i := \xi_{i+n}$ if subscript $i \leq 0$. The set of initial data is denoted as follows,

$$\mathbb{V}_{0} = \left\{ (u_{1,0}, u_{2,0}, \dots, u_{n,0}) \colon u_{i,0} \ge \zeta > 0, \ (u_{i,0})_{r} \ge 0, \ (u_{i,0})_{rr} + \frac{N-1}{r} (u_{i,0})_{r} \ge 0, \\ r \in [0, R), \ \frac{\partial u_{i,0}(R)}{\partial \eta} = \left(u_{i,0}^{p_{i}} u_{i+1,0}^{q_{i+1}} \right) (R), \ 1 \le i \le n \right\}.$$

$$(2.2)$$

Clearly, $U_i(t) = u_i(R, t) = \max_{(y,s) \in [0,R] \times [0,t]} u_i(y,s)$, $1 \le i \le n$. In the sequel, $U_i(t) \sim (T-t)^{-\beta_i}$ represents that there exist constants C, c > 0 such that $c(T-t)^{-\beta_i} \le U_i(t) \le C(T-t)^{-\beta_i}$ as t near T.

Theorem 2.2. There exist initial data such that u_i ($i \in \{1, 2, ..., n\}$) blows up alone if and only if $q_i + 1 < p_i$.

Corollary 2.1. At least two components blow up simultaneously for every initial data if and only if $p_j \leq q_j + 1$ for all j = 1, 2, ..., n.

We introduce a lemma on the upper estimate for u_i .

Lemma 2.1. Let *T* be the blow-up time of system (1.1). If $p_i > 1$, then

$$U_{i}(t) \leq C_{T}(T-t)^{-\frac{1}{2(p_{i}-1)}},$$
(2.3)
where $C_{T} = \tilde{C}(1+4C_{1}T^{\frac{1}{2}})^{\frac{1}{p_{i}-1}}, \tilde{C} = \tilde{C}(p_{i}, q_{i+1}, u_{i+1,0}(R), N, R) > 0, C_{1} = C_{1}(N, R) > 0.$

Proof. Let Γ be the fundamental solution of the heat equation. By Green's identity,

$$\begin{split} \frac{1}{2}U_i(t) &= \int\limits_{B_R} \Gamma(x-y,t-z)u_i(y,z)\,dy - \int\limits_{z}^{t} \int\limits_{\partial B_R} U_i(\tau)\frac{\partial\Gamma}{\partial\eta}(x-y,t-\tau)\,dS_y\,d\tau \\ &+ \int\limits_{z}^{t} \int\limits_{\partial B_R} U_i^{p_i}(\tau)U_{i+1}^{q_{i+1}}(\tau)\Gamma(x-y,t-\tau)\,dS_y\,d\tau \\ &\geq C_2 u_{i+1,0}^{q_{i+1}}(R) \int\limits_{z}^{t} U_i^{p_i}(\tau)(t-\tau)^{-\frac{1}{2}}\,d\tau - 2C_1T^{\frac{1}{2}}U_i(t), \quad x \in \partial B_R, \ 0 < z < t < T \end{split}$$

where C_1 , C_2 depend only on B_R . Set $I(t) = \int_z^t U_i^{p_i}(\tau)(T-\tau)^{-\frac{1}{2}} d\tau$. Then

$$I'(t) \ge \left(C_2 u_{i+1,0}^{q_{i+1}}(R)\right)^{p_i} \left(\frac{1}{2} + 2C_1 T^{\frac{1}{2}}\right)^{-p_i} I^{p_i}(t) (T-t)^{-\frac{1}{2}}.$$

Integrating the above inequality from t to T, we obtain that

$$I(t) \leq \left[2(p_{i}-1)\left(C_{2}^{p_{i}}u_{i+1,0}^{q_{i+1}}(R)\right)^{p_{i}}\left(\frac{1}{2}+2C_{1}T^{\frac{1}{2}}\right)^{-p_{i}}\right]^{-\frac{1}{p_{i}-1}}(T-t)^{-\frac{1}{2(p_{i}-1)}}.$$
(2.4)

On the other hand, for 0 < z = 2t - T < t < T,

$$I(t) \ge \int_{z}^{\frac{T+z}{2}} U^{p_{i}}(z)(T-\tau)^{-\frac{1}{2}} d\tau = (2-\sqrt{2})U^{p_{i}}(z)(T-z)^{\frac{1}{2}}.$$
(2.5)

Combining (2.4) and (2.5), we obtain the estimate (2.3) with

$$\tilde{C} = \left(2C_2 u_{i+1,0}^{q_{i+1}}(R)\right)^{-\frac{1}{p_i-1}} \left(2 - \sqrt{2}\right)^{-\frac{1}{p_i}} \left[\sqrt{2}(p_i-1)\right]^{-\frac{1}{p_i^2-p_i}}.$$

Proof of Theorem 2.2. Without loss of generality, we only prove the case for i = n. We first prove the sufficient condition. Let $G(x, y, t, \tau)$ be Green's function of the heat equation on B_R , satisfying $\frac{\partial G}{\partial p}|_{\partial B_R} = 0$ (see [6,11,12]) and

$$\int_{\partial B_R} G(x, y, t, \tau) \, dS_y \leqslant \bar{C}(t-\tau)^{-\frac{1}{2}},\tag{2.6}$$

where $\bar{C} > 0$ depends only on B_R .

Fix $u_{1,0}(R)$, $u_{2,0}(R)$, ..., $u_{n-1,0}(R)$ and then take $M_m > (2u_{m,0}(R))^{p_m}$ (m = 1, 2, ..., n - 1). One can choose the initial data $(u_{1,0}, u_{2,0}, ..., u_{n,0}) \in \mathbb{V}_0$ such that T satisfies

$$\left(2u_{m,0}(R) + 2\bar{C}M_{m+1}^{\frac{q_{m+1}}{p_{m+1}}}M_mT^{\frac{1}{2}} \right)^{p_m} < M_m \quad (m = 1, 2, \dots, n-2),$$

$$\left(2u_{n-1,0}(R) + \frac{2(p_n-1)}{p_n-1-q_n}\bar{C}M_{n-1}C_T^{q_n}T^{\frac{p_n-1-q_n}{2(p_n-1)}} \right)^{p_{n-1}} < M_{n-1},$$

where $C_T = \tilde{C}(1 + 4C_1T^{\frac{1}{2}})^{\frac{1}{p_n-1}}$ with \tilde{C} , C_1 depending only on p_n , q_1 , B_R and $u_{1,0}(R)$.

By Lemma 2.1, $U_n(t) \leq C_T (T-t)^{-\frac{1}{2(p_n-1)}}$. Then u_{n-1} satisfies that

$$\begin{cases} (u_{n-1})_t = \Delta u_{n-1}, & (x,t) \in B_R \times (0,T), \\ \frac{\partial u_{n-1}}{\partial \eta} \leqslant C_T^{q_n} (T-t)^{-\frac{q_n}{2(p_n-1)}} u_{n-1}^{p_{n-1}}, & (x,t) \in \partial B_R \times (0,T), \\ u_{n-1}(x,0) = u_{n-1,0}(x), & x \in B_R. \end{cases}$$

$$(2.7)$$

Consider the auxiliary problem

$$\begin{cases} (\bar{u}_{n-1})_t = \Delta \bar{u}_{n-1}, & (x,t) \in B_R \times (0,T), \\ \frac{\partial \bar{u}_{n-1}}{\partial \eta} = M_{n-1} C_T^{q_n} (T-t)^{-\frac{q_n}{2(p_n-1)}}, & (x,t) \in \partial B_R \times (0,T), \\ \bar{u}_{n-1}(x,0) = \bar{u}_{n-1,0}(x), & x \in B_R, \end{cases}$$

where radially symmetric $\bar{u}_{n-1,0}$ satisfies $\frac{\partial \bar{u}_{n-1,0}}{\partial \eta}|_{\partial B_R} = M_{n-1}C_T^{q_n}T^{-\frac{q_n}{2(p_n-1)}}, \ \bar{u}_{n-1,0}(R) = 2u_{n-1,0}(R); \ \Delta \bar{u}_{n-1,0} \ge 0, \ \bar{u}_{n-1,0} \ge u_{n-1,0}$ in B_R .

For $q_n + 1 < p_n$, by Green's identity and (2.6),

$$\bar{u}_{n-1} \leq 2u_{n-1,0}(R) + \frac{2(p_n-1)}{p_n-1-q_n} \bar{C} M_{n-1} C_T^{q_n} T^{\frac{p_n-1-q_n}{2(p_n-1)}} \leq M_{n-1}^{\frac{1}{p_n-1}}.$$

So \bar{u}_{n-1} satisfies that

$$\begin{cases} (\bar{u}_{n-1})_t = \Delta \bar{u}_{n-1}, & (x,t) \in B_R \times (0,T), \\ \frac{\partial \bar{u}_{n-1}}{\partial \eta} \ge C_T^{q_n} (T-t)^{-\frac{q_n}{2(p_n-1)}} \bar{u}_{n-1}^{p_{n-1}}, & (x,t) \in \partial B_R \times (0,T), \\ \bar{u}_{n-1}(x,0) = \bar{u}_{n-1,0}(x), & x \in B_R. \end{cases}$$

By the comparison principle, $u_{n-1} \leq \bar{u}_{n-1} \leq M_{n-1}^{\frac{1}{p_{n-1}}}$ on $\bar{B}_R \times [0, T)$. Introduce the following auxiliary problem

$$\begin{cases} (\bar{u}_{n-2})_t = \Delta \bar{u}_{n-2}, & (x,t) \in B_R \times (0,+\infty), \\ \frac{\partial \bar{u}_{n-2}}{\partial \eta} = M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}} M_{n-2}, & (x,t) \in \partial B_R \times (0,+\infty), \\ \bar{u}_{n-2}(x,0) = \bar{u}_{n-2,0}(x), & x \in B_R, \end{cases}$$
(2.8)

where radially symmetric $\bar{u}_{n-2,0}(x)$ satisfies $\frac{\partial \bar{u}_{n-2,0}}{\partial \eta} = M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}} M_{n-2}$, $\bar{u}_{n-2,0}(x) = 2u_{n-2,0}(x)$ for $x \in \partial B_R$; $\Delta \bar{u}_{n-2,0}(x) \ge 0$, $\bar{u}_{n-2,0}(x) \ge u_{n-2,0}(x)$ for $x \in B_R$. Considering the problem (2.8) in [0, *T*), we obtain that

$$\bar{u}_{n-2} \leq 2u_{n-2,0}(R) + 2\bar{C}M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}}M_{n-2}T^{\frac{1}{2}} \leq M_{n-2}^{\frac{1}{p_{n-2}}}.$$
Then \bar{u}_{n-2} satisfies $\frac{\partial \bar{u}_{n-2}}{\partial \eta} \geq M_{n-1}^{\frac{q_{n-1}}{p_{n-2}}}, (x,t) \in \partial B_R \times (0,T).$ Due to $u_{n-1} \leq M_{n-1}^{\frac{1}{p_{n-1}}}, u_{n-2}$ satisfies $\frac{\partial u_{n-2}}{\partial \eta} \leq M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}}u_{n-2}^{p_{n-2}}$
for $(x,t) \in \partial B_R \times (0,T)$. By the comparison principle $u_{n-2} \leq \bar{u}_{n-2} \leq M_{n-2}^{\frac{1}{p_{n-2}}}$ on $\overline{B}_R \times (0,T)$. The boundedness of

for $(x, t) \in \partial B_R \times (0, T)$. By the comparison principle, $u_{n-2} \leq \bar{u}_{n-2} \leq M_{n-2}^{\nu_{n-2}}$ on $B_R \times [0, T)$. The boundedness of $u_{n-3}, u_{n-4}, \dots, u_1$ can be proved similarly. So only u_n blows up.

Now, we prove the necessary condition. Assume that $u_1 \leq C$. Then u_n satisfies

$$\begin{aligned} (u_n)_t &= \Delta u_n, \qquad (x,t) \in B_R \times (0,T), \\ \frac{\partial u_n}{\partial \eta} &\leq C^{q_1} u_n^{p_n}, \qquad (x,t) \in \partial B_R \times (0,T), \\ u_n(x,0) &= u_{n,0}(x), \quad x \in B_R. \end{aligned}$$
(2.9)

By Green's identity, we have

$$U_n(t) \leq U_n(z) + 2\bar{C}C^{q_1}U_n^{p_n}(t)(T-z)^{\frac{1}{2}}, \quad z < t < T$$

Take z such that $U_n(z) = U_n(t)/2$. Then $U_n(z) \ge c(T-z)^{-\frac{1}{2(p_n-1)}}$, $z \in (0, T)$. Also by Green's identity,

$$\frac{1}{2}U_{n-1}(t) \ge c \int_{0}^{t} (T-\tau)^{-\frac{q_n}{2(p_n-1)}} (t-\tau)^{-\frac{1}{2}} d\tau.$$

The boundedness of u_{n-1} requires that $q_n + 1 < p_n$. \Box

It can be understood that the blow-up rate for only one component blowing up is equivalent to that of the scalar case (see [7]).

Theorem 2.3. If only u_i ($i \in \{1, 2, ..., n\}$) blows up, then $U_i(t) \sim (T-t)^{-\frac{1}{2(p_i-1)}}$.

3. The existence of only two blowing up

In this section, we discuss the existence of only two components blowing up.

Theorem 3.1. Assume $i \in \{1, 2, ..., n\}$, $k \in \{1, 2, ..., n-1\}$, and $n \ge 3$. If $q_i + 1 < p_i$ and $q_{i-k} + 1 < p_{i-k}$, then there exist suitable initial data such that u_{i-k} , u_i blow up simultaneously at time T while the others remain bounded up to T. Moreover,

$$\left(U_{i-k}(t), U_i(t) \right) \sim \begin{cases} \left((T-t)^{-\frac{p_i - 1 - q_i}{2(p_i - 1)(p_i - k^{-1})}}, (T-t)^{-\frac{1}{2(p_i - 1)}} \right) & \text{for } k = 1; \\ \left((T-t)^{-\frac{1}{2(p_i - k^{-1})}}, (T-t)^{-\frac{1}{2(p_i - 1)}} \right) & \text{for } k \in \{2, 3, \dots, n-2\}; \\ \left((T-t)^{-\frac{1}{2(p_i - k^{-1})}}, (T-t)^{-\frac{p_{i-k} - 1 - q_{i-k}}{2(p_i - k^{-1})(p_i - 1)}} \right) & \text{for } k = n-1. \end{cases}$$

Without loss of generality, we only prove the case for i = n. We divide Theorem 3.1 into three propositions for k = 1, $k \in \{2, 3, \dots, n-2\}$ and k = n - 1, respectively. At first, we deal with the case for i = n and k = 1.

Proposition 3.1. If $q_n + 1 < p_n$ and $q_{n-1} + 1 < p_{n-1}$, then there exist suitable initial data such that u_{n-1} , u_n blow up simultaneously at time T while the others remain bounded up to T. Moreover,

$$(U_{n-1}(t), U_n(t)) \sim ((T-t)^{-\frac{p_n-1-q_n}{2(p_n-1)(p_{n-1}-1)}}, (T-t)^{-\frac{1}{2(p_n-1)}}).$$

In order to prove Proposition 3.1, we introduce a subset of \mathbb{V}_0 as follows:

$$\begin{split} \mathbb{V}_{1} &= \left\{ \left(u_{1,0}(r), u_{2,0}(r), \dots, u_{n,0}(r) \right) \colon u_{m,0}(r) = N_{m} + \frac{R}{2} \sqrt{M_{m}^{2} + 4} - \frac{R}{2} M_{m} \right. \\ &- \sqrt{R^{2} - \left(\frac{1}{2} M_{m} \sqrt{M_{m}^{2} + 4} - \frac{1}{2} M_{m}^{2} \right) r^{2}}, \ r \in [0, R], \\ &\text{with } M_{m} = u_{m,0}^{p_{m}}(R) u_{m+1,0}^{q_{m+1}}(R), \ N_{m} = u_{m,0}(R) \ (m = 1, 2, \dots, n), \\ &\text{where } u_{1,0}(R) = \frac{R}{\lambda_{1}}, \ u_{l,0}(R) = \frac{R}{\prod_{j=1}^{l-1} (1 - \lambda_{j}) \lambda_{l}} \ (l = 2, 3, \dots, n-1), \\ &u_{n,0}(R) = \frac{R}{\prod_{j=1}^{n-1} (1 - \lambda_{j})}, \ \lambda_{1}, \lambda_{2}, \dots, \lambda_{n-1} \in (0, 1) \right\}. \end{split}$$

We use the following five lemmas to prove it.

Lemma 3.1. If $q_n + 1 < p_n$ and $q_{n-1} + 1 < p_{n-1}$, then there exists $\bar{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ such that, for any initial data satisfying that $u_{j,0}(R) = 2^j R$ (j = 1, 2, ..., n-3) and $u_{n-2,0}(R) = \frac{2^{n-3}R}{\overline{\lambda}_{n-2}}$ in \mathbb{V}_1 , non-simultaneous blow-up must happen with $u_1, u_2, ..., u_{n-2}$ remaining bounded.

Proof. Take $M_j > (2^{j+1}R)^{p_j}$ (j = 1, 2, ..., n-2). Consider the following auxiliary problem

$$\begin{cases} (\underline{u}_{n-1})_t = \Delta \underline{u}_{n-1}, & (x,t) \in B_R \times (0, \underline{T}_{n-1}), \\ \frac{\partial \underline{u}_{n-1}}{\partial \eta} = \left(2^{n-2}R - R\right)^{q_n} \underline{u}_{n-1}^{p_{n-1}}, & (x,t) \in \partial B_R \times (0, \underline{T}_{n-1}), \\ \underline{u}_{n-1}(x,0) = \underline{u}_{n-1,0}(x), & x \in B_R, \end{cases}$$
(3.1)

where radially symmetric $\underline{u}_{n-1,0}(x)$ satisfies the compatibility conditions and $\frac{2^{n-3}R}{1-\lambda_{n-2}} - 2R \leq \underline{u}_{n-1,0}(x) \leq \frac{2^{n-3}R}{1-\lambda_{n-2}} - R$ with λ_{n-2} to be determined.

For problem (3.1), there must exist $\bar{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ such that, if $\lambda_{n-2} = \bar{\lambda}_{n-2}$, then \underline{T}_{n-1} satisfies

$$\begin{split} M_{j} &\geq \left(2^{j+1}R + 2\bar{C}M_{j+1}^{\frac{q_{j+1}}{p_{j+1}}}M_{j}\underline{T}_{n-1}^{\frac{1}{2}}\right)^{p_{j}} \quad (j = 1, 2, \dots, n-3), \\ M_{n-2} &\geq \left(2^{n-1}R + \frac{2(p_{n-1}-1)}{p_{n-1}-1-q_{n-1}}\bar{C}M_{n-2}C_{\underline{I}_{n-1}}^{q_{n-1}}\underline{T}_{n-1}^{\frac{p_{n-1}-1-q_{n-1}}{2(p_{n-1}-1)}}\right)^{p_{n-2}}. \end{split}$$

For any $(u_{1,0}, u_{2,0}, \dots, u_{n,0}) \in \mathbb{V}_1$ with $u_{j,0}(R) = 2^j R$ $(j = 1, 2, \dots, n-3)$ and $u_{n-2,0}(R) = \frac{2^{n-3}R}{\overline{\lambda}_{n-2}}$, we have

$$_{n-1,0}(R) = \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})\lambda_{n-1}} \geqslant \frac{2^{n-3}R}{1-\bar{\lambda}_{n-2}} \text{ for any } \lambda_{n-1} \in (0,1).$$

Then

и

$$\frac{2^{n-3}R}{1-\bar{\lambda}_{n-2}}-2R\leqslant \underline{u}_{n-1,0}(x)\leqslant \frac{2^{n-3}R}{1-\bar{\lambda}_{n-2}}-R\leqslant u_{n-1,0}(x)\leqslant \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})\lambda_{n-1}}.$$

For $(u_n)_t \ge 0$, $u_n(x,t) \ge u_{n,0}(x) \ge 2^{n-2}R - R$. By the comparison principle, $\underline{u}_{n-1} \le u_{n-1}$ and $T \le \underline{T}_{n-1}$. Hence

$$\begin{split} M_{j} &\geq \left(2^{j+1}R + 2\bar{C}M_{j+1}^{\frac{q_{j+1}}{p_{j+1}}}M_{j}T^{\frac{1}{2}}\right)^{p_{j}} \quad (j = 1, 2, \dots, n-3), \\ M_{n-2} &\geq \left(2^{n-1}R + \frac{2(p_{n-1}-1)}{p_{n-1}-1-q_{n-1}}\bar{C}M_{n-2}C_{T}^{q_{n-1}}T^{\frac{p_{n-1}-1-q_{n-1}}{2(p_{n-1}-1)}}\right)^{p_{n-2}}. \end{split}$$

Consider the second auxiliary problem

$$\begin{cases} (\bar{u}_{n-2})_t = \Delta \bar{u}_{n-2}, & (x,t) \in B_R \times (0,T), \\ \frac{\partial \bar{u}_{n-2}}{\partial \eta} = M_{n-2} C_T^{q_{n-1}} (T-t)^{-\frac{q_{n-1}}{2(p_{n-1}-1)}}, & (x,t) \in \partial B_R \times (0,T), \\ \bar{u}_{n-2}(x,0) = \bar{u}_{n-2,0}(x), & x \in B_R, \end{cases}$$
(3.2)

where radially symmetric $\bar{u}_{n-2,0}(x)$ satisfies $\frac{\partial \bar{u}_{n-2,0}(x)}{\partial \eta} = M_{n-2}C_T^{q_{n-1}}T^{-\frac{q_{n-1}}{2(p_{n-1}-1)}}, \quad \bar{u}_{n-2,0}(x) = 2^{n-1}R$ for $x \in \partial B_R$; $\Delta \bar{u}_{n-2,0}(x) \ge 0$, $\bar{u}_{n-2,0}(x) \ge u_{n-2,0}(x)$ for $x \in B_R$.

By Green's identity and $q_{n-1} + 1 < p_{n-1}$,

$$\bar{u}_{n-2} \leqslant 2^{n-1}R + \frac{2(p_{n-1}-1)}{p_{n-1}-1-q_{n-1}}\bar{C}M_{n-2}C_T^{q_{n-1}}T^{\frac{p_{n-1}-1-q_{n-1}}{2(p_{n-1}-1)}} \leqslant M_{n-2}^{\frac{1}{p_{n-2}}}.$$

So \bar{u}_{n-2} satisfies $\frac{\partial \bar{u}_{n-2}}{\partial \eta} \ge C_T^{q_{n-1}}(T-t)^{-\frac{q_{n-1}}{2(p_{n-1}-1)}} \bar{u}_{n-2}^{p_{n-2}}$, $(x,t) \in \partial B_R \times (0,T)$. By Lemma 2.1 and $p_{n-1} > 1$, we have $u_{n-1} \le C_T(T-t)^{-\frac{1}{2(p_{n-1}-1)}}$, and hence $\frac{\partial u_{n-2}}{\partial \eta} \le C_T^{q_{n-1}}(T-t)^{-\frac{q_{n-1}}{2(p_{n-1}-1)}} u_{n-2}^{p_{n-2}}$, $(x,t) \in \partial B_R \times (0,T)$. Then by the comparison principle, $u_{n-2}\leqslant \bar{u}_{n-2}\leqslant M_{n-2}^{rac{\bar{p}_{n-2}}{\bar{p}_{n-2}}}.$ Introduce the third auxiliary problem

$$\begin{cases} (\bar{u}_{n-3})_t = \Delta \bar{u}_{n-3}, & (x,t) \in B_R \times (0,+\infty), \\ \frac{\partial \bar{u}_{n-3}}{\partial \eta} = M_{n-2}^{\frac{q_{n-2}}{p_{n-2}}} M_{n-3}, & (x,t) \in \partial B_R \times (0,+\infty), \\ \bar{u}_{n-3}(x,0) = \bar{u}_{n-3,0}(x), & x \in B_R, \end{cases}$$
(3.3)

where radially symmetric $\bar{u}_{n-3,0}(x)$ satisfies $\frac{\partial \bar{u}_{n-3,0}}{\partial \eta} = M_{n-2}^{\frac{q_{n-2}}{p_{n-2}}} M_{n-3}$, $\bar{u}_{n-3,0}(x) = 2^{n-2}R$ for $x \in \partial B_R$; $\Delta \bar{u}_{n-3,0}(x) \ge 0$, $\bar{u}_{n-3,0}(x) \ge u_{n-3,0}(x)$ for $x \in B_R$. Considering problem (3.3) in (0, *T*), we have

$$\bar{u}_{n-3} \leqslant 2^{n-2}R + 2\bar{C}M_{n-2}^{\frac{q_{n-2}}{p_{n-2}}}M_{n-3}T^{\frac{1}{2}} \leqslant M_{n-3}^{\frac{1}{p_{n-3}}}.$$

So \bar{u}_{n-3} satisfies $\frac{\partial \bar{u}_{n-3}}{\partial \eta} \ge M_{n-2}^{\frac{q_{n-2}}{p_{n-2}}} \bar{u}_{n-3}^{p_{n-3}}$ for $(x,t) \in \partial B_R \times (0,T)$. For $u_{n-2} \le M_{n-2}^{\frac{1}{p_{n-2}}}$, u_{n-3} satisfies $\frac{\partial u_{n-3}}{\partial \eta} \le M_{n-2}^{\frac{q_{n-2}}{p_{n-3}}} dn$ for $(x,t) \in \partial B_R \times (0,T)$. $(x,t) \in \partial B_R \times (0,T)$. Then $u_{n-3} \leq \bar{u}_{n-3} \leq M_{n-3}^{\frac{1}{p_{n-3}}}$. The boundedness of $u_{n-4}, u_{n-5}, \dots, u_1$ can be proved similarly. \Box

Lemma 3.2. If $q_n + 1 < p_n$ and $q_{n-1} + 1 < p_{n-1}$, then, for the fixed $\overline{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ in Lemma 3.1, there exists $\lambda'_{n-1} \in (0, \frac{1}{2})$ such that non-simultaneous blow-up happens with u_{n-1} blowing up and the others remaining bounded, where the initial data satisfy that $u_{j,0}(R) = 2^j$ (j = 1, 2, ..., n-3), $u_{n-2,0}(R) = \frac{2^{n-3}R}{\overline{\lambda}_{n-2}}$, $u_{n-1,0}(R) = \frac{2^{n-3}R}{(1-\overline{\lambda}_{n-2})\lambda'_{n-1}}$, $u_{n,0}(R) = \frac{2^{n-3}R}{(1-\overline{\lambda}_{n-2})(1-\lambda'_{n-1})}$ in \mathbb{V}_1 .

Proof. Take $M_n > (\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}})^{p_n}$. Introduce the following auxiliary problem

$$\begin{split} &(\bar{u}_n)_t = \Delta \bar{u}_n, \qquad (x,t) \in B_R \times (0,+\infty), \\ &\frac{\partial \bar{u}_n}{\partial \eta} = M_1^{\frac{q_1}{p_1}} M_n, \qquad (x,t) \in \partial B_R \times (0,+\infty), \\ &\bar{u}_n(x,0) = \bar{u}_{n,0}(x), \quad x \in B_R, \end{split}$$
(3.4)

220

where radially symmetric $\bar{u}_{n,0}(x)$ satisfies $\frac{\partial \bar{u}_{n,0}}{\partial \eta} = M_1^{\frac{q_1}{p_1}} M_n$, $\bar{u}_{n,0}(x) = \frac{2^{n-1}R}{1-\bar{\lambda}_n}$ for $x \in \partial B_R$; $\Delta \bar{u}_{n,0}(x) \ge 0$, $\bar{u}_{n,0}(x) \ge u_{n,0}(x)$ for $x \in B_R$.

Consider problem (3.1) with the initial data $\underline{u}_{n-1,0}$ satisfying that

$$\frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})\lambda_{n-1}} - 2R \leq \underline{u}_{n-1,0}(x) \leq \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})\lambda_{n-1}} - R$$

where λ_{n-1} is to be determined. There exists some $\lambda'_{n-1} \in (0, \frac{1}{2})$ such that, if $\lambda_{n-1} = \lambda'_{n-1}$, then \underline{T}_{n-1} satisfies

$$M_n \ge \left(\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + 2\bar{C}M_1^{\frac{q_1}{p_1}}M_n\underline{T}_{n-1}^{\frac{1}{2}}\right)^{p_n}.$$

Similarly to Lemma 3.1, $\underline{u}_{n-1} \leq u_{n-1}$ and $T \leq \underline{T}_{n-1}$. Hence

$$M_n \ge \left(\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + 2\bar{C}M_1^{\frac{q_1}{p_1}}M_nT^{\frac{1}{2}}\right)^{p_n}.$$

Consider problem (3.4) in [0, T). By Green's identity,

$$\bar{u}_n \leqslant \frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + 2\bar{C}M_1^{\frac{q_1}{p_1}}M_nT^{\frac{1}{2}} \leqslant M_n^{\frac{1}{p_n}}.$$

Then \bar{u}_n satisfies $\frac{\partial \bar{u}_n}{\partial n} \ge M_1^{\frac{q_1}{p_1}} \bar{u}_n^{p_n}$ for $(x, t) \in \partial B_R \times (0, T)$. Due to $u_1 \le M_1^{\frac{1}{p_1}}$, u_n satisfies $\frac{\partial u_n}{\partial \eta} \le M_1^{\frac{q_1}{p_1}} u_n^{p_n}$ for $(x, t) \in \partial B_R \times (0, T)$. By the comparison principle, $u_n \leq \bar{u}_n \leq M_n^{\frac{1}{p_n}}$. So only u_{n-1} blows up. \Box

Lemma 3.3. If $q_n + 1 < p_n$ and $q_{n-1} + 1 < p_{n-1}$, then, for the fixed $\overline{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ in Lemma 3.1, there exists $\lambda''_{n-1} \in (\frac{1}{2}, 1)$ such that non-simultaneous blow-up happens with u_n blowing up and the others remaining bounded, where the initial data satisfy that $u_{j,0}(R) = 2^j R$ $(j = 1, 2, ..., n-3), u_{n-2,0}(R) = \frac{2^{n-3}R}{\overline{\lambda}_{n-2}}, u_{n-1,0}(R) = \frac{2^{n-3}R}{(1-\overline{\lambda}_{n-2})\lambda''_{n-1}}, u_{n,0}(R) = \frac{2^{n-3}R}{(1-\overline{\lambda}_{n-2})(1-\lambda''_{n-1})}$ in \mathbb{V}_1 .

Proof. Introduce the following auxiliary problem

$$\begin{cases} (\underline{u}_n)_t = \Delta \underline{u}_n, & (x,t) \in B_R \times (0, \underline{T}_n), \\ \frac{\partial \underline{u}_n}{\partial \eta} = R^{q_1} \underline{u}_n^{p_n}, & (x,t) \in \partial B_R \times (0, \underline{T}_n), \\ \underline{u}_n(x,0) = \underline{u}_{n,0}(x), & x \in B_R, \end{cases}$$

where radially symmetric $\underline{u}_{n,0}(x)$ satisfies the compatibility conditions and

$$\frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})(1-\lambda_{n-1})} - 2R \leqslant \underline{u}_{n,0}(x) \leqslant \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})(1-\lambda_{n-1})} - R$$

with λ_{n-1} to be determined. Take $M_{n-1} > (\frac{2^{n-1}R}{1-\tilde{\lambda}_{n-2}})^{p_{n-1}}$. There exists $\lambda_{n-1}'' \in (\frac{1}{2}, 1)$ such that, if $\lambda_{n-1} = \lambda_{n-1}''$, then \underline{T}_n satisfies that

$$M_{n-1} \ge \left(\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + \frac{2(p_n-1)}{p_n-1-q_n}\bar{C}M_{n-1}C_{\underline{I}_n}^{q_n}\underline{T}_n^{\frac{p_n-1-q_n}{2(p_n-1)}}\right)^{p_{n-1}}$$

Take initial data $(u_{1,0}, u_{2,0}, \dots, u_{n,0})$ in \mathbb{V}_1 such that $\lambda_j = \frac{1}{2}$ $(j = 1, 2, \dots, n-3), \ \lambda_{n-2} = \bar{\lambda}_{n-2}, \ \lambda_{n-1} = \lambda''_{n-1}$. For $\underline{u}_{n,0}(x) \leq \lambda_{n-1} = \lambda_{n-1}''$. $\frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})(1-\lambda_{n-1}')} - R \leqslant u_{n,0}(x) \text{ and } u_1(x,t) \geqslant u_{1,0}(x) \geqslant R, u_n \text{ satisfies } \frac{\partial u_n}{\partial \eta} \geqslant R^{q_1}u_n^{p_n} \text{ on } \partial B_R \times (0,T), \text{ and hence } \underline{u}_n \leqslant u_n \text{ and } u_n \approx u_n \text{ an$ $T \leq T_n$. So

$$M_{n-1} \ge \left(\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + \frac{2(p_n-1)}{p_n-1-q_n}\bar{C}M_{n-1}C_T^{q_n}T^{\frac{p_n-1-q_n}{2(p_n-1)}}\right)^{p_n-1}.$$

Consider the following auxiliary problem

$$\begin{cases} (\bar{u}_{n-1})_t = \Delta \bar{u}_{n-1}, & (x,t) \in B_R \times (0,T), \\ \frac{\partial \bar{u}_{n-1}}{\partial \eta} = M_{n-1} C_T^{q_n} (T-t)^{-\frac{q_n}{2(p_n-1)}}, & (x,t) \in \partial B_R \times (0,T) \\ \bar{u}_{n-1}(x,0) = \bar{u}_{n-1,0}(x), & x \in B_R, \end{cases}$$

where radially symmetric $\bar{u}_{n-1,0}(x)$ satisfies the compatibility conditions and $\bar{u}_{n-1,0}(x) = \frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}}$, $x \in \partial B_R$; $\Delta \bar{u}_{n-1,0}(x) \ge 0$, $\bar{u}_{n-1,0}(x) \ge u_{n-1,0}(x)$, $x \in B_R$.

For $q_n + 1 < p_n$ and by Green's identity,

$$\bar{u}_{n-1} \leqslant \frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + \frac{2(p_n-1)}{p_n-1-q_n} \bar{C}M_{n-1}C_T^{q_n}T^{\frac{p_n-1-q_n}{2(p_n-1)}} \leqslant M_{n-1}^{\frac{1}{p_{n-1}}}.$$

So \bar{u}_{n-1} satisfies $\frac{\partial \bar{u}_{n-1}}{\partial \eta} \ge C_T^{q_n} (T-t)^{-\frac{q_n}{2(p_n-1)}} \bar{u}_{n-1}^{p_{n-1}}$, $(x,t) \in \partial B_R \times (0,T)$. For $p_n > 1$, $u_n \le C_T (T-t)^{-\frac{1}{2(p_n-1)}}$. Hence u_{n-1} satisfies $\frac{\partial u_{n-1}}{\partial \eta} \le C_T^{q_n} (T-t)^{-\frac{q_n}{2(p_n-1)}} u_{n-1}^{p_{n-1}}$, $(x,t) \in \partial B_R \times (0,T)$. By the comparison principle, $u_{n-1} \le \bar{u}_{n-1} \le M_{n-1}^{\frac{1}{p_{n-1}}}$. Then only u_n blows up. \Box

Lemma 3.4.

- (i) The set of initial data in \mathbb{V}_1 such that u_n blows up while the others remain bounded is open in L^{∞} -topology.
- (ii) The set of initial data in \mathbb{V}_1 such that u_{n-1} blows up while the others remain bounded is open in L^{∞} -topology.

Proof. Without loss of generality, we only prove case (i). Let $(u_1, u_2, ..., u_n)$ be a solution of (1.1) with initial data $(u_{1,0}, u_{2,0}, ..., u_{n,0})$ in \mathbb{V}_1 such that u_n blows up at t = T while the other components remain bounded, say $0 < 2\xi \leq u_1, u_2, ..., u_{n-1} \leq M$. It suffices to find an L^{∞} -neighborhood of $(u_{1,0}, u_{2,0}, ..., u_{n,0})$ in \mathbb{V}_1 such that any solution $(\hat{u}_1, \hat{u}_2, ..., \hat{u}_n)$ of (1.1) coming from this neighborhood maintains the property that \hat{u}_n blows up while the others remain bounded.

By Theorem 2.2, $q_n + 1 < p_n$. Take $S_j > (2M + 2\xi)^{p_j}$ (j = 1, 2, ..., n - 1). Let $(\tilde{u}_1, \tilde{u}_2, ..., \tilde{u}_n)$ be the solution of the following problem

$$\begin{cases} (\tilde{u}_{j})_{t} = \Delta \tilde{u}_{j}, & (x,t) \in B_{R} \times (0, T_{0}), \\ \frac{\partial \tilde{u}_{j}}{\partial \eta} = \tilde{u}_{j}^{p_{j}} \tilde{u}_{j+1}^{q_{j+1}}, & (x,t) \in \partial B_{R} \times (0, T_{0}), \\ \tilde{u}_{j}(x,0) = \tilde{u}_{j,0}(x), & j = 1, 2, \dots, n, \ n \ge 2, \ x \in B_{R}, \\ \tilde{u}_{n+1} := \tilde{u}_{1}, & p_{n+1} := p_{1}, & q_{n+1} := q_{1}, \end{cases}$$
(3.5)

where radially symmetric $(\tilde{u}_{1,0}, \tilde{u}_{2,0}, \dots, \tilde{u}_{n,0}) \in \mathbb{V}_0$ is to be determined. Denote

$$\mathcal{N}(u_{1,0}, u_{2,0}, \dots, u_{n,0}) = \left\{ (\tilde{u}_{1,0}, \tilde{u}_{2,0}, \dots, \tilde{u}_{n,0}) \in \mathbb{V}_0 \colon \left\| \tilde{u}_{j,0}(x) - u_j(x, T - \varepsilon_0) \right\|_{\infty} < \xi, \ 1 \leq j \leq n \right\}.$$

Since (u_1, u_2, \ldots, u_n) blows up at time T with fixed ξ , there exists $\varepsilon_0 > 0$ such that T_0 satisfies that

$$S_{j} \ge \left(2M + 2\xi + 2\bar{C}S_{j+1}^{\frac{q_{j+1}}{p_{j+1}}}S_{j}T_{0}^{\frac{1}{2}}\right)^{p_{j}} \quad (j = 1, 2, \dots, n-2),$$

$$S_{n-1} \ge \left(2M + 2\xi + \frac{2(p_{n}-1)}{p_{n}-1-q_{n}}\bar{C}S_{n-1}C_{T_{0}}^{q_{n}}T_{0}^{\frac{p_{n}-1-q_{n}}{2(p_{n}-1)}}\right)^{p_{n-1}}$$

provided $(\tilde{u}_{1,0}, \tilde{u}_{2,0}, \dots, \tilde{u}_{n,0}) \in \mathcal{N}(u_{1,0}, u_{2,0}, \dots, u_{n,0}).$ Consider the auxiliary problem

$$\begin{cases} (\bar{u}_{n-1})_t = \Delta \bar{u}_{n-1}, & (x,t) \in B_R \times (0,T_0), \\ \frac{\partial \bar{u}_{n-1}}{\partial \eta} = S_{n-1} C_{T_0}^{q_n} (T_0 - t)^{-\frac{q_n}{2(p_n - 1)}}, & (x,t) \in \partial B_R \times (0,T_0) \\ \bar{u}_{n-1}(x,0) = \bar{u}_{n-1,0}(x), & x \in B_R, \end{cases}$$

where radially symmetric $\bar{u}_{n-1,0}(x)$ satisfies $\frac{\partial \bar{u}_{n-1,0}}{\partial \eta} = S_{n-1}C_{T_0}^{q_n}T_0^{-\frac{q_n}{2(p_n-1)}}$, $\bar{u}_{n-1,0}(x) = 2\tilde{u}_{n-1,0}(x)$, $x \in \partial B_R$; $\Delta \bar{u}_{n-1,0}(x) \ge 0$, $\bar{u}_{n-1,0}(x) \ge \tilde{u}_{n-1,0}(x)$, $x \in B_R$. By Green's identity,

$$\bar{u}_{n-1} \leqslant 2M + 2\xi + \frac{2(p_n-1)}{p_n-1-q_n} \bar{C}S_{n-1}C_{T_0}^{q_n} T_0^{\frac{p_n-1-q_n}{2(p_n-1)}} \leqslant S_{n-1}^{\frac{1}{p_{n-1}}}$$

Then $\frac{\partial \tilde{u}_{n-1}}{\partial \eta} \ge C_{T_0}^{q_n}(T_0 - t)^{-\frac{q_n}{2(p_n-1)}} \bar{u}_{n-1}^{p_{n-1}}$, $(x, t) \in \partial B_R \times (0, T_0)$. For $p_n > 1$, $\tilde{u}_n \le C_{T_0}(T_0 - t)^{-\frac{1}{2(p_n-1)}}$. So \tilde{u}_{n-1} satisfies $\frac{\partial \tilde{u}_{n-1}}{\partial \eta} \le C_{T_0}^{q_n}(T_0 - t)^{-\frac{q_n}{2(p_n-1)}} \tilde{u}_{n-1}^{p_n}$, $(x, t) \in \partial B_R \times (0, T_0)$. By the comparison principle, $\tilde{u}_{n-1} \le \bar{u}_{n-1} \le S_{n-1}^{-\frac{1}{2(p_n-1)}}$.

Introduce the following auxiliary problem

$$\begin{cases} (\bar{u}_{n-2})_t = \Delta \bar{u}_{n-2}, & (x,t) \in B_R \times (0,+\infty), \\ \frac{\partial \bar{u}_{n-2}}{\partial \eta} = S_{n-1}^{\frac{q_{n-1}}{p_{n-1}}} S_{n-2}, & (x,t) \in \partial B_R \times (0,+\infty), \\ \bar{u}_{n-2}(x,0) = \bar{u}_{n-2,0}(x), & x \in B_R, \end{cases}$$

where $\bar{u}_{n-2,0}(x)$ satisfies the compatibility conditions and $\bar{u}_{n-2,0} = 2\tilde{u}_{n-2,0}$ on ∂B_R ; $\Delta \bar{u}_{n-2,0} \ge 0$, $\bar{u}_{n-2,0} \ge \tilde{u}_{n-2,0}$ in B_R . By Green's identity, $\bar{u}_{n-2} \leqslant S_{n-2}^{\frac{1}{p_{n-2}}}$ in $B_R \times (0, T_0)$. So $\frac{\partial \bar{u}_{n-2}}{\partial \eta} \ge S_{n-1}^{\frac{q_{n-1}}{p_{n-1}}} \tilde{u}_{n-2}^{p_{n-2}}$, $(x, t) \in \partial B_R \times (0, T_0)$. For $\tilde{u}_{n-1} \leqslant S_{n-1}^{\frac{1}{p_{n-1}}}$, $\frac{\partial \tilde{u}_{n-2}}{\partial \eta} \leqslant S_{n-1}^{\frac{q_{n-1}}{p_{n-2}}}$, $(x, t) \in \partial B_R \times (0, T_0)$. For $\tilde{u}_{n-1} \leqslant S_{n-1}^{\frac{1}{p_{n-1}}}$, $\frac{\partial \tilde{u}_{n-2}}{\partial \eta} \leqslant S_{n-1}^{\frac{q_{n-1}}{p_{n-2}}}$, $(x, t) \in \partial B_R \times (0, T_0)$. For $\tilde{u}_{n-1} \leqslant S_{n-1}^{\frac{1}{p_{n-1}}}$, $\frac{\partial \tilde{u}_{n-2}}{\partial \eta} \leqslant S_{n-1}^{\frac{q_{n-1}}{p_{n-2}}}$, $(x, t) \in \partial B_R \times (0, T_0)$. For \tilde{u}_i is the blow-up component.

According to the continuity on initial data for bounded solutions, there must exist a neighborhood $N(\subset \mathbb{V}_0)$ of $(u_{1,0}, u_{2,0}, \ldots, u_{n,0})$ such that every solution $(\hat{u}_1, \hat{u}_2, \ldots, \hat{u}_n)$ starting from the neighborhood will enter $\mathcal{N}(u_{1,0}, u_{2,0}, \ldots, u_{n,0})$ at time $T - \varepsilon_0$, and hence keeps the property that \hat{u}_n blows up while the other components remain bounded. So there must exist a neighborhood $N_1(\subset N)$ in \mathbb{V}_1 such that any solution coming from it blows up with \hat{u}_n blowing up and the other components remaining bounded. \Box

Lemma 3.5. If $q_n + 1 < p_n$, $q_{n-1} + 1 < p_{n-1}$, and u_{n-1} , u_n blow up simultaneously at time T while the others remain bounded up to T, then

$$\left(U_{n-1}(t), U_n(t)\right) \sim \left(\left(T-t\right)^{-\frac{p_n-1-q_n}{2(p_n-1)(p_{n-1}-1)}}, \left(T-t\right)^{-\frac{1}{2(p_n-1)}}\right)$$

Proof. Due to the boundedness of u_1 and by Green's identity, we have

$$U_n(t) \leq U_n(z) + CU_n^{p_n}(t)(T-z)^{\frac{1}{2}}$$

For the blow-up property of u_n , one can take $U_n(z) = \frac{1}{2}U_n(t)$. So $U_n(z) \ge c(T-z)^{-\frac{1}{2(p_n-1)}}$.

Similarly to the method of Lemma 2.1, one can obtain $U_n(t) \leq C(T-t)^{-\frac{1}{2(p_n-1)}}$ and $U_{n-1}(t) \leq C(T-t)^{-\frac{p_n-1-q_n}{2(p_n-1)(p_n-1-1)}}$. Combining the upper estimate of U_n with Green's identity to u_{n-1} , we have

$$U_{n-1}(t) \leq U_{n-1}(z) + CU_{n-1}^{p_{n-1}}(t)(T-z)^{\frac{p_n-1-q_n}{2(p_n-1)}}$$

Take $U_{n-1}(z) = \frac{1}{2}U_{n-1}(t)$. Then $U_{n-1}(t) \ge c(T-t)^{-\frac{p_n - 1 - q_n}{2(p_n - 1)(p_{n-1} - 1)}}$. \Box

Proof of Proposition 3.1. Lemma 3.1 says that there exists $\bar{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ such that any initial data in \mathbb{V}_1 satisfying $\lambda_1 = \lambda_2 = \cdots = \lambda_{n-3} = \frac{1}{2}$, $\bar{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ develops the non-simultaneous blow-up solution with u_j $(j = 1, 2, \dots, n-2)$ remaining bounded. We know from Lemma 3.2 that there exists $\lambda'_{n-1} \in (0, \frac{1}{2})$ such that the solution of (1.1) with the initial data in \mathbb{V}_1 satisfying $\lambda_1 = \lambda_2 = \cdots = \lambda_{n-3} = \frac{1}{2}$, $\lambda_{n-2} = \bar{\lambda}_{n-2}$ and $\lambda_{n-1} = \lambda'_{n-1}$ blows up non-simultaneously, where u_{n-1} blows up and the others remain bounded. Lemma 3.3 guarantees that there exists $\lambda''_{n-1} \in (\frac{1}{2}, 1)$ such that u_n blows up alone with the initial data in \mathbb{V}_1 where $\lambda_1 = \lambda_2 = \cdots = \lambda_{n-3} = \frac{1}{2}$, $\lambda_{n-2} = \bar{\lambda}_{n-2}$ and $\lambda_{n-1} = \lambda''_{n-1}$. In addition, the sets of the initial data in \mathbb{V}_1 such that u_n blows up alone and that u_{n-1} blows up alone are all open by Lemma 3.4. Notice that \mathbb{V}_1 is connected. So there must exist initial data (suitable $\bar{\lambda}_{n-1} \in (\lambda'_{n-1}, \lambda''_{n-1})$) such that u_n and u_{n-1} blow up simultaneously while the others remain bounded.

The blow-up rates can be obtained by Lemma 3.5 directly. \Box

Secondly, we discuss the case for i = n and $k \in \{2, 3, ..., n - 2\}$, $n \ge 4$.

Proposition 3.2. If $q_n + 1 < p_n$ and $q_{n-k} + 1 < p_{n-k}$, then there exist suitable initial data such that u_{n-k} , u_n blow up simultaneously at some time T while the others remain bounded up to T. Moreover,

$$(U_{n-k}(t), U_n(t)) \sim ((T-t)^{-\frac{1}{2(p_{n-k}-1)}}, (T-t)^{-\frac{1}{2(p_n-1)}}).$$

Without loss of generality, we only prove the case for k = 2 by the following five lemmas. Define another subset of \mathbb{V}_0 as follows,

$$\begin{split} \mathbb{V}_{2} &= \left\{ \left(u_{1,0}(r), u_{2,0}(r), \dots, u_{n,0}(r) \right) \colon u_{m,0}(r) = N_{m} + \frac{R}{2} \sqrt{M_{m}^{2} + 4} - \frac{R}{2} M_{m} \right. \\ &- \sqrt{R^{2} - \left(\frac{1}{2} M_{m} \sqrt{M_{m}^{2} + 4} - \frac{1}{2} M_{m}^{2} \right) r^{2}}, \ r \in [0, R], \\ &\text{with } M_{m} = u_{m,0}^{p_{m}}(R) u_{m+1,0}^{q_{m+1}}(R), \ N_{m} = u_{m,0}(R) \ (m = 1, 2, \dots, n), \\ &\text{where } u_{1,0}(R) = \frac{R}{\lambda_{1}}, \ u_{l,0}(R) = \frac{R}{\prod_{j=1}^{l-1}(1 - \lambda_{j})\lambda_{l}} \ (l = 2, 3, \dots, n - 3), \\ &u_{n-1,0}(R) = \frac{R}{\prod_{j=1}^{n-3}(1 - \lambda_{j})\lambda_{n-2}}, \ u_{n-2,0}(R) = \frac{R}{\prod_{j=1}^{n-2}(1 - \lambda_{j})\lambda_{n-1}}, \\ &u_{n,0}(R) = \frac{R}{\prod_{j=1}^{n-1}(1 - \lambda_{j})}, \ \lambda_{1}, \lambda_{2}, \dots, \lambda_{n-1} \in (0, 1) \right\}. \end{split}$$

Lemma 3.6. If $q_n + 1 < p_n$ and $q_{n-2} + 1 < p_{n-2}$, then there exists $\overline{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ such that non-simultaneous blow-up happens with $u_1, u_2, \ldots, u_{n-3}, u_{n-1}$ remaining bounded for the initial data satisfying $u_{j,0}(R) = 2^j R$ $(j = 1, 2, \ldots, n-3)$ and $u_{n-1,0}(R) = \frac{2^{n-3}R}{\overline{\lambda}_{n-2}}$ in \mathbb{V}_2 .

Proof. Take $M_j > (2^{j+1}R)^{p_j}$ (j = 1, 2, ..., n-3), $M_{n-1} > (2^{n-1}R)^{p_{n-1}}$. Consider the following auxiliary problem

$$\begin{cases} (\underline{u}_{n-2})_t = \Delta \underline{u}_{n-2}, & (x,t) \in B_R \times (0, \underline{T}_{n-2}), \\ \frac{\partial \underline{u}_{n-2}}{\partial \eta} = (2^{n-3}R - R)^{q_{n-1}} \underline{u}_{n-2}^{p_{n-2}}, & (x,t) \in \partial B_R \times (0, \underline{T}_{n-2}), \\ \underline{u}_{n-2}(x,0) = \underline{u}_{n-2,0}(x), & x \in B_R, \end{cases}$$
(3.6)

where radially symmetric $\underline{u}_{n-2,0}(x)$ satisfies the compatibility conditions and $\frac{2^{n-3}R}{1-\lambda_{n-2}} - 2R \leq \underline{u}_{n-2,0}(x) \leq \frac{2^{n-3}R}{1-\lambda_{n-2}} - R$ with λ_{n-2} to be determined.

For problem (3.6), there must exist $\lambda_{n-2} = \overline{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ such that \underline{T}_{n-2} satisfies

$$\begin{split} M_{j} &\geq \left(2^{j+1}R + 2\bar{C}M_{j+1}^{\frac{q_{j+1}}{p_{j+1}}}M_{j}\underline{T}_{n-2}^{\frac{1}{2}}\right)^{p_{j}} \quad (j = 1, 2, \dots, n-4), \\ M_{n-3} &\geq \left(2^{n-2}R + \frac{2(p_{n-2}-1)}{p_{n-2}-1-q_{n-2}}\bar{C}M_{n-3}C_{\underline{T}_{n-2}}^{q_{n-2}}\underline{T}_{n-2}^{\frac{p_{n-2}-1-q_{n-2}}{2(p_{n-2}-1)}}\right)^{p_{n-3}} \\ M_{n-1} &\geq \left(2^{n-1}R + \frac{2(p_{n}-1)}{p_{n}-1-q_{n}}\bar{C}M_{n-1}C_{\underline{T}_{n-2}}^{q_{n}}\underline{T}_{n-2}^{\frac{p_{n-1}-q_{n}}{2(p_{n}-1)}}\right)^{p_{n-1}}. \end{split}$$

For any $(u_{1,0}, u_{2,0}, \dots, u_{n,0}) \in \mathbb{V}_2$ satisfying $u_{j,0}(R) = 2^j R$ $(j = 1, 2, \dots, n-3)$ and $u_{n-1,0}(R) = \frac{2^{n-3}R}{\tilde{\lambda}_{n-2}}$, we have $u_{n-2,0}(R) = \frac{2^{n-3}R}{(1-\tilde{\lambda}_{n-2})\lambda_{n-1}} \ge \frac{2^{n-3}R}{1-\tilde{\lambda}_{n-2}}$ for any $\lambda_{n-1} \in (0, 1)$. Then

$$\frac{2^{n-3}R}{1-\bar{\lambda}_{n-2}} - 2R \leqslant \underline{u}_{n-2,0}(x) \leqslant \frac{2^{n-3}R}{1-\bar{\lambda}_{n-2}} - R \leqslant u_{n-2,0}(x) \leqslant \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})\lambda_{n-1}}$$

For $(u_{n-1})_t \ge 0$, $u_{n-1}(x,t) \ge u_{n-1,0}(x) \ge 2^{n-3}R - R$. By the comparison principle, $\underline{u}_{n-2} \le u_{n-2}$ and $T \le \underline{T}_{n-2}$. Hence

$$\begin{split} M_{j} &\geq \left(2^{j+1}R + 2\bar{C}M_{j+1}^{\frac{q_{j+1}}{p_{j+1}}}M_{j}T^{\frac{1}{2}}\right)^{p_{j}} \quad (j = 1, 2, \dots, n-4), \\ M_{n-3} &\geq \left(2^{n-2}R + \frac{2(p_{n-2}-1)}{p_{n-2}-1-q_{n-2}}\bar{C}M_{n-3}C_{T}^{q_{n-2}}T^{\frac{p_{n-2}-1-q_{n-2}}{2(p_{n-2}-1)}}\right)^{p_{n-3}} \\ M_{n-1} &\geq \left(2^{n-1}R + \frac{2(p_{n}-1)}{p_{n}-1-q_{n}}\bar{C}M_{n-1}C_{T}^{q_{n}}T^{\frac{p_{n-1}-q_{n}}{2(p_{n}-1)}}\right)^{p_{n-1}}. \end{split}$$

Consider the second auxiliary problem

$$\begin{cases} (\bar{u}_{n-3})_t = \Delta \bar{u}_{n-3}, & (x,t) \in B_R \times (0,T), \\ \frac{\partial \bar{u}_{n-3}}{\partial \eta} = M_{n-3} C_T^{q_{n-2}} (T-t)^{-\frac{q_{n-2}}{2(p_{n-2}-1)}}, & (x,t) \in \partial B_R \times (0,T), \\ \bar{u}_{n-3}(x,0) = \bar{u}_{n-3,0}(x), & x \in B_R, \end{cases}$$

where radially symmetric $\bar{u}_{n-3,0}(x)$ satisfies $\frac{\partial \bar{u}_{n-3,0}}{\partial \eta} = M_{n-3}C_T^{q_{n-2}}T^{-\frac{q_{n-2}}{2(p_{n-2}-1)}}$, $\bar{u}_{n-3,0}(x) = 2^{n-2}R$ for $x \in \partial B_R$; $\Delta \bar{u}_{n-3,0}(x) \ge 0$, $\bar{u}_{n-3,0}(x) \ge u_{n-3,0}(x)$ for $x \in B_R$.

By Green's identity and $q_{n-2} + 1 < p_{n-2}$,

$$\bar{u}_{n-3} \leqslant 2^{n-2}R + \frac{2(p_{n-2}-1)}{p_{n-2}-1-q_{n-2}}\bar{C}M_{n-3}C_T^{q_{n-2}}T^{\frac{p_{n-2}-1-q_{n-2}}{2(p_{n-2}-1)}} \leqslant M_{n-3}^{\frac{1}{p_{n-3}}}.$$

So \bar{u}_{n-3} satisfies $\frac{\partial \bar{u}_{n-3}}{\partial \eta} \ge C_T^{q_{n-2}}(T-t)^{-\frac{q_{n-2}}{2(p_{n-2}-1)}} \bar{u}_{n-3}^{p_{n-3}}$, $(x,t) \in \partial B_R \times (0,T)$. By Lemma 2.1 and $p_{n-2} > 1$, $u_{n-2} \le C_T(T-t)^{-\frac{1}{2(p_{n-2}-1)}}$, and hence $\frac{\partial u_{n-3}}{\partial \eta} \le C_T^{q_{n-2}}(T-t)^{-\frac{q_{n-2}}{2(p_{n-2}-1)}} u_{n-3}^{p_{n-3}}$, $(x,t) \in \partial B_R \times (0,T)$. Then by the comparison principle, $u_{n-3} \le \bar{u}_{n-3} \le M_{n-3}^{\frac{1}{p_{n-3}}}$.

Similarly to the proof for u_{n-3} , we have $u_{n-1} \leq M_{n-1}^{\frac{1}{p_{n-1}}}$. In order to obtain the boundedness of u_{n-4} , we introduce the third auxiliary problem

$$\begin{cases} (\bar{u}_{n-4})_t = \Delta \bar{u}_{n-4}, & (x,t) \in B_R \times (0,+\infty), \\ \frac{\partial \bar{u}_{n-4}}{\partial \eta} = M_{n-3}^{\frac{q_{n-3}}{p_{n-3}}} M_{n-4}, & (x,t) \in \partial B_R \times (0,+\infty), \\ \bar{u}_{n-4}(x,0) = \bar{u}_{n-4,0}(x), & x \in B_R, \end{cases}$$

where radially symmetric $\bar{u}_{n-4,0}(x)$ satisfies $\frac{\partial \bar{u}_{n-4,0}}{\partial \eta} = M_{n-3}^{\frac{q_{n-3}}{p_{n-3}}} M_{n-4}$, $\bar{u}_{n-4,0}(x) = 2^{n-3}R$ for $x \in \partial B_R$; $\Delta \bar{u}_{n-4,0}(x) \ge 0$, $\bar{u}_{n-4,0}(x) \ge u_{n-4,0}(x)$ for $x \in B_R$. By Green's identity, we have

$$\bar{u}_{n-4} \leqslant 2^{n-3}R + 2\bar{C}M_{n-3}^{\frac{q_{n-3}}{p_{n-3}}}M_{n-4}T^{\frac{1}{2}} \leqslant M_{n-4}^{\frac{1}{p_{n-4}}}.$$

So \bar{u}_{n-4} satisfies $\frac{\partial \bar{u}_{n-4}}{\partial \eta} \ge M_{n-3}^{\frac{q_{n-3}}{p_{n-3}}} \bar{u}_{n-4}^{p_{n-4}}$ for $(x, t) \in \partial B_R \times (0, T)$. For $u_{n-3} \le M_{n-3}^{\frac{1}{p_{n-3}}}$, u_{n-4} satisfies $\frac{\partial u_{n-4}}{\partial \eta} \le M_{n-3}^{\frac{q_{n-3}}{p_{n-3}}} u_{n-4}^{p_{n-4}}$. By the comparison principle, $u_{n-4} \le \bar{u}_{n-4} \le M_{n-4}^{\frac{1}{p_{n-4}}}$. We can obtain $u_j \le M_j^{\frac{1}{p_j}}$ (j = n - 5, n - 6, ..., 1), similarly. \Box

Lemma 3.7. If $q_n + 1 < p_n$ and $q_{n-2} + 1 < p_{n-2}$, then, for the fixed $\overline{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ in Lemma 3.6, there exists $\lambda'_{n-1} \in (0, \frac{1}{2})$ such that u_{n-2} blows up while the other components remain bounded for the initial data satisfying $u_{j,0}(R) = 2^{j}R$ (j = 1, 2, ..., n - 3), $u_{n-1,0}(R) = \frac{2^{n-3}R}{\overline{\lambda}_{n-2}}$, $u_{n-2,0}(R) = \frac{2^{n-3}R}{(1-\overline{\lambda}_{n-2})\lambda'_{n-1}}$, and $u_{n,0}(R) = \frac{2^{n-3}R}{(1-\overline{\lambda}_{n-2})(1-\lambda'_{n-1})}$ in \mathbb{V}_2 .

Proof. Take $M_n > (\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}})^{p_n}$. Consider problem (3.6) with initial data $\underline{u}_{n-2,0}$ satisfying the compatibility conditions and

$$\frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})\lambda_{n-1}} - 2R < \underline{u}_{n-2,0}(x) \le \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})\lambda_{n-1}} - R$$

where λ_{n-1} is to be determined. There exists some $\lambda'_{n-1} \in (0, \frac{1}{2})$ such that, if $\lambda_{n-1} = \lambda'_{n-1}$, \underline{T}_{n-2} satisfies

$$M_n \ge \left(\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + 2\bar{C}M_1^{\frac{q_1}{p_1}}M_n\underline{T}_{n-2}^{\frac{1}{2}}\right)^{p_n}.$$

Similarly to Lemma 3.6, $\underline{u}_{n-2} \leq u_{n-2}$ and $T \leq \underline{T}_{n-2}$. Hence

$$M_n \ge \left(\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + 2\bar{C}M_1^{\frac{q_1}{p_1}}M_nT^{\frac{1}{2}}\right)^{p_n}.$$

Considering (3.4) in [0, *T*), we have $\bar{u}_n \leq \frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + 2\bar{C}M_1^{\frac{q_1}{p_1}}M_nT^{\frac{1}{2}} \leq M_n^{\frac{1}{p_n}}$. Then \bar{u}_n satisfies $\frac{\partial \bar{u}_n}{\partial \eta} \geq M_1^{\frac{q_1}{p_1}}\bar{u}_n^{p_n}$, $(x, t) \in \partial B_R \times (0, T)$. Due to $u_1 \leq M_1^{\frac{1}{p_1}}$, u_n satisfies $\frac{\partial u_n}{\partial \eta} \leq M_1^{\frac{q_1}{p_1}}u_n^{p_n}$, $(x, t) \in \partial B_R \times (0, T)$. By the comparison principle, $u_n \leq \bar{u}_n \leq M_n^{\frac{1}{p_n}}$. So only u_{n-2} blows up. \Box

Lemma 3.8. If $q_n + 1 < p_n$ and $q_{n-2} + 1 < p_{n-2}$, then, for the fixed $\bar{\lambda}_{n-2} \in (\frac{1}{2}, 1)$ in Lemma 3.1, there exists $\lambda''_{n-1} \in (\frac{1}{2}, 1)$ such that u_n blows up while the other components remain bounded for the initial data satisfying $u_{j,0}(R) = 2^j R$ (j = 1, 2, ..., n - 3), $u_{n-1,0}(R) = \frac{2^{n-3}R}{\bar{\lambda}_{n-2}}$, $u_{n-2,0}(R) = \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})\lambda''_{n-1}}$, and $u_{n,0}(R) = \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})(1-\lambda''_{n-1})}$ in \mathbb{V}_2 .

Proof. Introduce the following auxiliary problem

$$\begin{cases} (\underline{u}_n)_t = \Delta \underline{u}_n, & (x,t) \in B_R \times (0, \underline{T}_n), \\ \frac{\partial \underline{u}_n}{\partial \eta} = R^{q_1} \underline{u}_n^{p_n}, & (x,t) \in \partial B_R \times (0, \underline{T}_n), \\ \underline{u}_n(x,0) = \underline{u}_{n,0}(x), & x \in B_R, \end{cases}$$

where radially symmetric $\underline{u}_{n,0}(x)$ satisfies the compatibility conditions and

$$\frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})(1-\lambda_{n-1})} - 2R \leqslant \underline{u}_{n,0} \leqslant \frac{2^{n-3}R}{(1-\bar{\lambda}_{n-2})(1-\lambda_{n-1})} - R$$

with λ_{n-1} to be determined.

Choose $M_{n-2} > (\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}})^{p_{n-2}}$. There exists $\lambda_{n-1}'' \in (\frac{1}{2}, 1)$ such that, if $\lambda_{n-1} = \lambda_{n-1}'', \underline{T}_n$ satisfies $M_{n-2} \ge \left(\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + 2\bar{C}M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}}M_{n-2}\underline{T}_n^{\frac{1}{2}}\right)^{p_{n-2}}$.

Take the initial data in \mathbb{V}_2 such that $\lambda_j = \frac{1}{2}$ (j = 1, 2, ..., n - 3), $\lambda_{n-2} = \overline{\lambda}_{n-2}$, $\lambda_{n-1} = \lambda_{n-1}''$. For $\underline{u}_{n,0}(x) \leq u_{n,0}(x)$ and $u_1(x,t) \geq u_{1,0}(x) \geq R$, we have $\underline{u}_n \leq u_n$ and $T \leq \underline{T}_n$. So

$$M_{n-2} \ge \left(\frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}} + 2\bar{C}M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}}M_{n-2}T^{\frac{1}{2}}\right)^{p_{n-2}}.$$

Consider the following auxiliary problem

$$\begin{cases} (\bar{u}_{n-2})_t = \Delta \bar{u}_{n-2}, & (x,t) \in B_R \times (0, +\infty), \\ \frac{\partial \bar{u}_{n-2}}{\partial \eta} = M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}} M_{n-2}, & (x,t) \in \partial B_R \times (0, +\infty), \\ \bar{u}_{n-2}(x,0) = \bar{u}_{n-2,0}(x), & x \in B_R, \end{cases}$$

where radially symmetric $\bar{u}_{n-2,0}(x)$ satisfies the compatibility conditions and $\bar{u}_{n-2,0}(R) = \frac{2^{n-1}R}{1-\bar{\lambda}_{n-2}}$; $\Delta \bar{u}_{n-2,0}(x) \ge 0$, $\bar{u}_{n-2,0}(x) \ge u_{n-2,0}(x)$ for $x \in B_R$. By Green's identity, $\bar{u}_{n-2} \le M_{n-2}^{\frac{1}{p_{n-2}}}$. So \bar{u}_{n-2} satisfies $\frac{\partial \bar{u}_{n-2}}{\partial \eta} \ge M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}} \bar{u}_{n-2}^{p_{n-2}}$, $(x, t) \in \partial B_R \times (0, T)$. For $u_{n-1} \le M_{n-1}^{\frac{1}{p_{n-1}}}$, u_{n-2} satisfies $\frac{\partial u_{n-2}}{\partial \eta} \le M_{n-1}^{\frac{q_{n-1}}{p_{n-1}}} \bar{u}_{n-2}^{p_{n-2}}$, $(x, t) \in \partial B_R \times (0, T)$. By the comparison principle, $u_{n-2} \le \bar{u}_{n-2} \le M_{n-2}^{\frac{1}{p_{n-2}}}$. Then only u_n blows up. \Box

Similarly to the proof of Lemma 3.4, we have

Lemma 3.9.

- (i) The set of initial data in \mathbb{V}_2 such that u_n blows up while the others remain bounded is open in L^{∞} -topology.
- (ii) The set of initial data in \mathbb{V}_2 such that u_{n-2} blows up while the others remain bounded is open in L^{∞} -topology.

Lemma 3.10. If $q_n + 1 < p_n$, $q_{n-2} + 1 < p_{n-2}$, and u_{n-2} , u_n blow up simultaneously while the others remain bounded up to time *T*, then

$$(U_{n-2}(t), U_n(t)) \sim ((T-t)^{-\frac{1}{2(p_{n-2}-1)}}, (T-t)^{-\frac{1}{2(p_n-1)}}).$$

Proof. The proof is similar to the scale case [7]. We omit the detail here. \Box

By now, we get Proposition 3.2.

Finally, we consider the case for i = n and k = n - 1. Similarly to Proposition 3.1, we give the following proposition without proof.

Proposition 3.3. If $q_n + 1 < p_n$ and $q_1 + 1 < p_1$, then there exist suitable initial data such that u_1, u_n blow up simultaneously at some time *T* while the others remain bounded up to *T*. Moreover,

$$(U_1(t), U_n(t)) \sim ((T-t)^{-\frac{1}{2(p_1-1)}}, (T-t)^{-\frac{p_1-1-q_1}{2(p_1-1)(p_n-1)}}).$$

At the end of this section, we give the result on n = 2.

Theorem 3.2. Assume n = 2. If $q_1 + 1 < p_1$ and $q_2 + 1 < p_2$, then there exist suitable initial data such that u_1, u_2 blow up simultaneously at some time *T*. Moreover, for N = 1,

$$(U_1(t), U_2(t)) \sim ((T-t)^{-\frac{1+q_2-p_2}{2[q_2q_1-(1-p_1)(1-p_2)]}}, (T-t)^{-\frac{1+q_1-p_1}{2[q_2q_1-(1-p_1)(1-p_2)]}}).$$

Proof. Simultaneous blow-up of (u_1, u_2) can be proved similarly to the proof of Proposition 3.1. The blow-up rate estimates can be followed by Theorem 2.1 [24]. \Box

Remark 3.1. By Theorems 3.1 and 3.2, one can check that all of the cases for the existence of the initial data such that only two components blow up simultaneously with the other ones remaining bounded are discussed (i.e., the discussion on the classification of *n*, *i*, and *k* is complete). Furthermore, $q_i + 1 < p_i$ and $q_{i-k} + 1 < p_{i-k}$ is the coexistent region. In fact, there exist initial data such that u_i (or u_{i-k}) blows up alone (by Theorem 2.2), and there also exist initial data such that u_{i-k} and u_i blow up simultaneously with the others remaining bounded by Theorem 3.1 ($n \ge 3$) and Theorem 3.2 (n = 2). All of the blow-up rates for (u_{i-k}, u_i) are obtained. It is interesting that the representations of blow-up rates are quite different with respect to different values of *n*, *i*, and *k*.

4. Non-simultaneous and simultaneous blow-up for every initial data

In this section, we will discuss the exponent regions where $k \ (\in \{1, 2, ..., n\})$ components blow up while the other (n - k) ones remain bounded for every initial data.

Theorem 4.1. Fix $i \in \{1, 2, ..., n\}$ and define $\beta_i = \frac{1}{2(p_i-1)}$. Assume $p_m \leq 1 < p_i \ (m = 1, 2, ..., i - 1, i + 1, ..., n)$.

(i) If $k \in \{0, 1, \dots, n-2\}$, $\beta_j := \frac{\frac{1}{2} - q_{j+1}\beta_{j+1}}{p_{j-1}} > 0$, $p_j < 1$ $(j = i - 1, i - 2, \dots, i - k)$, $q_{i-k}\beta_{i-k} < \frac{1}{2}$, then $u_{i-k}, u_{i-k+1}, \dots, u_i$ blow up simultaneously while the other (n - k - 1) components remain bounded for every initial data in \mathbb{V}_0 . Moreover,

$$\left(U_{i-k}(t), U_{i-k+1}(t), \dots, U_{i}(t)\right) \sim \left((T-t)^{-\beta_{i-k}}, (T-t)^{-\beta_{i-k+1}}, \dots, (T-t)^{-\beta_{i}}\right).$$
(4.1)

(ii) If k = n - 1, $\beta_j := \frac{\frac{1}{2} - q_{j+1}\beta_{j+1}}{p_j - 1}$, $p_j < 1$ (j = i - 1, i - 2, ..., i + 1 - n), $\beta_j > 0$ (j = i - 1, i - 2, ..., i + 2 - n), $\beta_{i+1-n} \ge 0$, then $u_1, u_2, ..., u_n$ blow up simultaneously for every initial data in \mathbb{V}_0 .

Remark 4.1. For $n \ge 2$ and $N \ge 1$, Theorems 4.1(i) shows the exponent regions where non-simultaneous blow-up occurs with only $k \ (\in \{1, 2, ..., n-1\})$ components blowing up simultaneously for every initial data, which consists with Theorem 2.4(I) of [25] (n = 2 and N = 1) for $l_{11} = l_{12} = l_{21} = l_{22} = 0$ and Theorem 1.6 of [2] (n = 2 and N = 1) for semilinear system; Case (ii) gives the result on all of the components blowing up simultaneously for every initial data, which is compatible with Theorem 2.1 for $l_{11} = l_{12} = l_{21} = l_{22} = 0$ in [25] (n = 2 and N = 1) and Theorem 1.1 for semilinear system in [2] (n = 2 and N = 1).

Without loss of generality, we prove the case i = n by three lemmas. So $\beta_n = \frac{1}{2(p_n - 1)}$. The first lemma deals with the case (i) for k = 0.

Lemma 4.1. If $p_m \leq 1 < p_n$ (m = 1, 2, ..., n - 1) and $q_n \beta_n < \frac{1}{2}$, then only u_n blows up while the others remain bounded for every initial data in \mathbb{V}_0 . Moreover, $U_n(t) \sim (T - t)^{-\beta_n}$.

Proof. This proof consists of three steps.

Step 1. u_n must be the blow-up component. Otherwise, $u_1, u_2, \ldots, u_{n-1}$ would remain bounded also for $p_m \leq 1$ ($m = 1, 2, \ldots, n-1$). It is a contradiction.

Step 2. $u_1, u_2, \ldots, u_{n-1}$ remain bounded and $u_n \leq C(T-t)^{-\beta_n}$. For $p_n > 1$, we have $u_n \leq C(T-t)^{-\beta_n}$ by Lemma 2.1. By Green's identity, for 0 < z < t < T,

$$U_{n-1}(t) \leq U_{n-1}(z) + CU_{n-1}^{p_{n-1}}(t)(T-z)^{\frac{1}{2}-q_n\beta_n}.$$

We claim that u_{n-1} remains bounded up to blow-up time *T*. Otherwise, there would exist $z_j \to T$ such that $C(T - z_j)^{\frac{1}{2} - q_n \beta_n} < \frac{1}{4}$, $U_{n-1}(z_j) > 1$, $U_{n-1}(z_j) \to +\infty$ as $j \to +\infty$. Take t_j such that $U_{n-1}(z_j) = \frac{1}{2}U_{n-1}(t_j)$. We obtain a contradiction: $\frac{1}{2}U_{n-1}(t_j) < \frac{1}{4}U_{n-1}(t_j)$. Then u_m (m = n - 2, n - 3, ..., 1) remains bounded for $p_m \leq 1$, recursively.

Step 3. $U_n(t) \ge c(T-t)^{-\beta_n}$. As u_1 remains bounded up to time *T*, it can be understood that the blow-up rate of u_n is equivalent to that of the scalar case [7]. \Box

Next, we prove case (i) for k = 1. The other subcases $k \in \{2, 3, ..., n-2\}$ can be obtained similarly.

Lemma 4.2. If $p_m \leq 1 < p_n$ (m = 1, 2, ..., n - 2), $p_{n-1} < 1$, $\beta_{n-1} := \frac{\frac{1}{2} - q_n \beta_n}{p_{n-1} - 1} > 0$, and $\frac{1}{2} - q_{n-1}\beta_{n-1} > 0$, then u_{n-1} and u_n blow up simultaneously while the other (n - 2) components remain bounded for every initial data in \mathbb{V}_0 . Moreover,

$$(U_{n-1}(t), U_n(t)) \sim ((T-t)^{-\beta_{n-1}}, (T-t)^{-\beta_n}).$$

Proof. This proof is divided into four steps.

Step 1. Both u_{n-1} and u_n are the blow-up components. We claim that u_n is the blow-up component. If not, the other components would remain bounded for $p_m \le 1$ (m = 1, 2, ..., n-2) and $p_{n-1} < 1$, a contradiction. We say that u_{n-1} is also the blow-up component. Otherwise, $u_1, u_2, ..., u_{n-2}$ would remain bounded. Let $u_1 \le C$. Then u_n satisfies $\frac{\partial u_n}{\partial \eta} \le C^{q_1} u_n^{p_n}$ for $(x, t) \in \partial B_R \times (0, T)$. By Green's identity and $(1.1), U_n(t) \le U_n(z) + C(T-z)^{\frac{1}{2}} U_n^{p_n}(t)$. Since u_n blows up, one can take z such that $2U_n(z) = U_n(t)$ for t near T. Then $U_n(z) \ge c(T-z)^{-\beta_n}$. So we have

$$\frac{1}{2}U_{n-1}(t) \ge c \int_{0}^{t} (T-\tau)^{-q_n \beta_n} (t-\tau)^{-\frac{1}{2}} d\tau.$$

The boundedness of U_{n-1} requires $\frac{1}{2} > q_n \beta_n$, and hence $\beta_{n-1} < 0$, which contradicts $\beta_{n-1} > 0$.

Step 2. The upper estimates of u_{n-1} and u_n . We know from Lemma 2.1 that $u_n \leq C(T-t)^{-\frac{1}{2(p_n-1)}}$. Combining Green's identity with the upper estimate for u_n , we have

$$U_{n-1}(t) \leq U_{n-1}(z) + C(T-z)^{\frac{1}{2}-q_n\beta_n} U_{n-1}^{p_{n-1}}(t).$$

Take *z* such that $U_{n-1}(z) = \frac{1}{4}U_{n-1}(t)$. Then $U_{n-1}(t) \leq C(T-t)^{-\beta_{n-1}}$.

Step 3. The boundedness of u_1, \ldots, u_{n-2} . This part is similar to Step 2 of Lemma 4.1.

Step 4. *The lower estimates for* u_{n-1} , u_n . Assume $u_1 \leq C$. Then by Green's identity and (1.1), $U_n(t) \geq c(T-t)^{-\beta_n}$. Combining the lower estimate of U_n with (1.1), we have

$$U_{n-1}(t) \ge c \int_{z}^{t} U_{n-1}^{p_{n-1}}(\tau) (T-\tau)^{-\beta_{n}q_{n}-\frac{1}{2}} d\tau.$$

Define $J(t) = \int_{z}^{t} U_{n-1}^{p_{n-1}}(\tau)(T-\tau)^{-\beta_{n}q_{n}-\frac{1}{2}} d\tau$, then $J'(t) \ge c J^{p_{n-1}}(t)(T-t)^{-\beta_{n}q_{n}-\frac{1}{2}}$, so

$$I^{-p_{n-1}}(t) I'(t) \ge c(T-t)^{-\beta_n q_n - \frac{1}{2}}.$$

Integrating the above inequality from z to t and taking z = 2t - T, we have $U_{n-1}^{1-p_{n-1}}(t) \ge cJ^{1-p_{n-1}}(t) \ge c(T-t)^{\frac{1}{2}-\beta_n q_n}$, and hence $U_{n-1}(t) \ge c(T-t)^{-\beta_{n-1}}$. \Box

Then we prove case (ii).

Lemma 4.3. If $\beta_j := \frac{1}{2} - \frac{q_{j+1}\beta_{j+1}}{p_j - 1}$, $p_j < 1 < p_n$ (j = 1, 2, ..., n - 1), and $\beta_1 \ge 0$, $\beta_j > 0$ (j = 2, 3, ..., n - 1), then $u_1, u_2, ..., u_n$ blow up simultaneously for every initial data in \mathbb{V}_0 .

Proof. Due to $p_n > 1$, the solution of (1.1) must blow up for every initial data. We claim that u_n is the blow-up component. Otherwise, $u_{n-1}, u_{n-2}, \ldots, u_1$ would remain bounded. Next, we prove that u_{n-1} also blow up. If not, $u_{n-2}, u_{n-3}, \ldots, u_1$ would be bounded up to blow-up time *T*. Let $u_1 \leq C$. It is easy to get from Green's identity that $U_n(t) \geq c(T-t)^{-\beta_n}$. Combining the lower estimate of U_n with Green's identity, we have $U_{n-1}(t) \geq c \int_0^t (T-\tau)^{-\frac{1}{2}-q_n\beta_n} d\tau$. The boundedness of U_{n-1} requires that $\frac{1}{2} > q_n\beta_n$, so $\beta_{n-1} < 0$, a contradiction. Then u_{n-1} must blow up. By Step 4 of Lemma 4.2, we have $U_{n-1}(t) \geq c(T-t)^{-\beta_{n-1}}$. By the similar method, we obtain that u_m must be the blow-up component and $U_m(t) \geq c(T-t)^{-\beta_m}$ $(m=n-2, n-3, \ldots, 2)$. For $\beta_1 \geq 0$, u_1 also blows up at time *T*, similarly. That means u_1, u_2, \ldots, u_n must blow up simultaneously. \Box

So Theorem 4.1 is proved.

Remark 4.2. As for $\beta_{i-k} = 0$ ($k \ge 1$) in Theorem 4.1(i), we can also obtain that u_{i-k} , u_{i-k+1} , ..., u_i blow up simultaneously while the other (n - k - 1) components remain bounded for every initial data in \mathbb{V}_0 , but fail to obtain (4.1) here. In fact, without loss of generality, we only prove i = n and k = 1. We can easily obtain that both u_{n-1} and u_n are the blow-up components by changing $\beta_{n-1} > 0$ to $\beta_{n-1} = 0$ in the last line of Step 1 in Lemma 4.2. And then by Green's identity, one can obtain $U_{n-1}(t) \le C(\ln \frac{1}{T_r})^{\frac{1}{1-p_n}}$. Then

$$U_{n-2}(t) \leq U_{n-2}(z) + C^* U_{n-2}^{p_{n-2}}(t) \int_{z}^{t} \left(\ln \frac{1}{T-\tau} \right)^{\frac{q_{n-1}}{1-p_n}} (t-\tau)^{-\frac{1}{2}} d\tau.$$
(4.2)

We claim u_{n-2} remains bounded. Otherwise, there would exist z_j such that $z_j \to T$, $1 < U_{n-2}(z_j) \to +\infty$ as $j \to +\infty$, $(\ln \frac{1}{T-\tau})^{\frac{q_{n-1}}{1-p_n}} \leq (T-\tau)^{-\frac{1}{4}}$ for $\tau \in (z_j, T)$, $4C^*(T-z_j)^{\frac{1}{4}} < \frac{1}{4}$. Take t_j such that $U_{n-2}(t_j) = 2U_{n-2}(z_j)$. Then (4.2) turns into $\frac{1}{2}U_{n-2}(t_j) \leq \frac{1}{4}U_{n-2}(t_j)$, a contradiction. So u_{n-2} remains bounded. Due to $p_m \leq 1$ (m = n - 3, n - 4, ..., 1), we can obtain the boundedness of $u_{n-3}, u_{n-4}, ..., u_1$ recursively.

Theorem 4.1(i) gives the results on k + 1 ($k \in \{0, 1, ..., n - 2\}$) components blowing up while the other (n - k - 1) ones remaining bounded for every initial data. In the following theorem, if we restrict $k \in \{0, 1, ..., n - 3\}$, then p_{i+1} can be extended from $p_{i+1} \leq 1$ to $1 < p_{i+1} \leq q_{i+1} + 1$.

Theorem 4.2. Fix $i \in \{1, 2, ..., n\}$ and define $\beta_i = \frac{1}{2(p_i-1)}$. Assume $p_m \leq 1 < p_i$ (m = 1, 2, ..., i - 1, i + 2, ..., n) and $1 < p_{i+1} \leq q_{i+1} + 1$. If $k \in \{0, 1, ..., n-3\}$, $\beta_j := \frac{1}{2} - \frac{q_{j+1}\beta_{j+1}}{p_j-1} > 0$, $p_j < 1$ (j = i - 1, i - 2, ..., i - k), $q_{i-k}\beta_{i-k} < \frac{1}{2}$, then $u_{i-k}, u_{i-k+1}, ..., u_i$ blow up simultaneously while the other (n - k - 1) ones remain bounded for every initial data in \mathbb{V}_0 . Moreover,

 $(U_{i-k}(t), U_{i-k+1}(t), \dots, U_i(t)) \sim ((T-t)^{-\beta_{i-k}}, (T-t)^{-\beta_{i-k+1}}, \dots, (T-t)^{-\beta_i}).$

We use two lemmas to prove it. Without loss of generality, we only give the proof for i = n - 1. So $\beta_{n-1} = \frac{1}{2(p_{n-1}-1)}$. First, we deal with the subcase k = 0.

Lemma 4.4. Assume $p_m \leq 1 < p_{n-1}$ (m = 1, 2, ..., n-2). If $q_{n-1}\beta_{n-1} < \frac{1}{2}$ and $1 < p_n \leq q_n + 1$, then only u_{n-1} blows up for every initial data in \mathbb{V}_0 . Moreover, $U_{n-1}(t) \sim (T-t)^{-\beta_{n-1}}$.

Proof. Firstly, we will show that non-simultaneous blow-up happens with $u_1, u_2, \ldots, u_{n-2}$ remaining bounded up to blow-up time *T* for every initial data in \mathbb{V}_0 . One can prove that $U_{n-1}(t) \leq C(T-t)^{-\beta_{n-1}}$. Also by Green's identity,

$$U_{n-2}(t) \leq U_{n-2}(z) + C^* U_{n-2}^{p_{n-2}}(t) (T-z)^{\frac{1}{2}-q_{n-1}\beta_{n-1}}$$

We claim that u_{n-2} is bounded up to time *T*. If not, there would exist $z_j \to T$ such that $U_{n-2}(z_j) > 1$, $U_{n-2}(z_j) \to +\infty$ as $j \to +\infty$, and $C^*(T-z_j)^{\frac{1}{2}-q_{n-1}\beta_{n-1}} < \frac{1}{4}$. Take t_j such that $U_{n-2}(t_j) = 2U_{n-2}(z_j)$. So $\frac{1}{2}U_{n-2}(t_j) < \frac{1}{4}U_{n-2}(t_j)$, a contradiction. Considering $p_m \leq 1$ (m = 1, 2, ..., n-3), one can obtain the boundedness of $u_{n-3}, u_{n-4}, ..., u_1$, recursively.

Secondly, we will prove that u_n also remains bounded up to time *T*. Assume that u_n blows up at *T*. By the boundedness of u_1 , we obtain $U_n(t) \ge C_1(T-t)^{-\frac{1}{2(p_n-1)}}$. So u_{n-1} satisfies that $\frac{\partial u_{n-1}}{\partial \eta} \ge C_1^{q_n}(T-t)^{-\frac{q_n}{2(p_n-1)}}u_{n-1}^{p_{n-1}}$, $(x, t) \in \partial B_R \times (0, T)$.

Consider the auxiliary problem

$$\begin{cases}
(\underline{u}_{n-1})_t = \Delta \underline{u}_{n-1}, & (x,t) \in B_R \times (0, \underline{T}_{n-1}), \\
\frac{\partial \underline{u}_{n-1}}{\partial \eta} = C_1^{q_n} (T-t)^{-\frac{q_n}{2(p_n-1)}} \underline{u}_{n-1}^{p_{n-1}}, & (x,t) \in \partial B_R \times (0, \underline{T}_{n-1}), \\
\underline{u}_{n-1} (x,0) = \underline{u}_{n-1,0} (x), & x \in B_R,
\end{cases}$$
(4.3)

where $\underline{u}_{n-1,0}(x)$ satisfies the compatibility conditions and $\Delta \underline{u}_{n-1,0}(x) \ge 0$, $\underline{u}_{n-1,0}(x) \le u_{n-1,0}(x)$ for $x \in B_R$. Then we have $u_{n-1} \ge \underline{u}_{n-1}$ and $T \le \underline{T}_{n-1}$ by the comparison principle. But problem (4.3) means $\underline{T}_{n-1} \le T$. Hence $\underline{T}_{n-1} = T$. By Green's identity,

$$\underline{U}_{n-1}(t) \ge c \int_{0}^{t} \frac{\underline{U}_{n-1}^{p_{n-1}}(\tau)}{(T-\tau)^{\frac{1}{2} + \frac{q_n}{2(p_n-1)}}} d\tau = cW(t).$$
(4.4)

It is easy to see that W(t) blows up at time T. By (4.4),

$$W^{-p_{n-1}}(t)W'(t) \ge c(T-t)^{-(\frac{1}{2}+\frac{q_n}{2(p_n-1)})}.$$

Integrating the above inequality from $\frac{T}{2}$ to *t*, we obtain that

$$\frac{1}{p_{n-1}-1} \left(W^{1-p_{n-1}} \left(\frac{T}{2} \right) - W^{1-p_{n-1}}(t) \right) \ge c \int_{\frac{T}{2}}^{t} (T-\tau)^{-(\frac{1}{2} + \frac{q_n}{2(p_n-1)})} d\tau = I(t).$$
(4.5)

For $p_n \leq q_n + 1$, $I(t) \to +\infty$ as $t \to T$. It is a contradiction to the boundedness of the left part of (4.5). So u_n still remains bounded up to time *T*. Then only u_{n-1} blows up. The blow-up rate estimates can also be followed by the scale case (see [7]). \Box

Second, we consider subcase k = 1. The other subcases of k can be proved similarly.

Lemma 4.5. If $p_m \leq 1 < p_{n-1}$ (m = 1, 2, ..., n-3), $p_{n-2} < 1$, $1 < p_n \leq q_n + 1$, $\beta_{n-2} := \frac{\frac{1}{2} - q_{n-1}\beta_{n-1}}{p_{n-2} - 1} > 0$, $q_{n-2}\beta_{n-2} < \frac{1}{2}$, then u_{n-2} and u_{n-1} blow up simultaneously while the other (n-2) components remain bounded for every initial data in \mathbb{V}_0 . Moreover,

$$(U_{n-2}(t), U_{n-1}(t)) \sim ((T-t)^{-\beta_{n-2}}, (T-t)^{-\beta_{n-1}}).$$

Proof. We claim that whether u_{n-2} is bounded or not, u_1 always remains bounded. If u_{n-2} is bounded up to time T, then $u_{n-3}, u_{n-4}, \ldots, u_1$ are bounded also. Assume that u_{n-2} blows up at time T. Since $p_{n-1} > 1$, we have $U_{n-1}(t) \leq C(T-t)^{-\beta_{n-1}}$. Combining Green's identity with the upper estimate of u_{n-1} , we have

$$U_{n-2}(t) \leq U_{n-2}(z) + CU_{n-2}^{p_{n-2}}(t)(T-t)^{\frac{1}{2}-q_{n-1}\beta_{n-1}}, \quad 0 < z < t < T$$

Take z such that $U_{n-2}(z) = \frac{1}{4}U_{n-2}(t)$. Then $U_{n-2}(t) \leq C(T-t)^{-\beta_{n-2}}$. By Green's identity,

$$U_{n-3}(t) \leq U_{n-3}(z) + CU_{n-3}^{p_{n-3}}(t)(T-z)^{\frac{1}{2}-q_{n-2}\beta_{n-2}}$$

Similarly to Step 2 of Lemma 4.1, we obtain that u_{n-3} is bounded. Then $u_{n-4}, u_{n-5}, \ldots, u_1$ are bounded for $p_{n-4}, p_{n-5}, \ldots, p_1 \leq 1$.

By the similar method used in Lemma 4.4, one can check that u_n also remains bounded up to time T. It is easy to see that u_{n-1} is the blow-up component. In fact, if u_{n-1} remains bounded up to time T, then u_{n-2} will be bounded also for $p_{n-2} < 1$, a contradiction with at least one component blowing up. By the method of Lemma 4.2, we obtain the blow-up property of u_{n-2} and the blow-up rates of u_{n-2} and u_{n-1} . \Box

In the following, we show another result on $n \ (\geq 2)$ components blowing up simultaneously.

Theorem 4.3. If $p_1, p_2, \ldots, p_n \leq 1$ and $\prod_{j=1}^n q_j - \prod_{j=1}^n (1-p_j) > 0$, then u_1, u_2, \ldots, u_n blow up simultaneously for every initial data.

Proof. Without loss of generality, assume that u_n would remain bounded up to the blow-up time *T*. Then the others would be bounded also for $p_i \leq 1$ ($1 \leq i \leq n-1$). Due to $\prod_{j=1}^n q_j - \prod_{j=1}^n (1-p_j) > 0$, it contradicts to Theorem 2.1. \Box

Similarly to Theorem 4.1 of [7] or Theorem 4.8 of [9], we have the following result.

Theorem 4.4. If u_i blows up with $U_i(t) \leq C(T-t)^{-\alpha}$ for any $i \in \{1, 2, ..., n\}$, then the blow-up only can occur on the boundary.

References

- [1] C. Brändle, F. Quirós, J.D. Rossi, A complete classification of simultaneous blow-up rates, Appl. Math. Lett. 19 (2006) 599-603.
- [2] C. Brändle, F. Quirós, J.D. Rossi, Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary, Commun. Pure Appl. Anal. 4 (2005) 523–536.
- [3] C. Brändle, F. Quirós, J.D. Rossi, The role of nonlinear diffusion in non-simultaneous blow-up, J. Math. Anal. Appl. 308 (2005) 92-104.
- [4] W.Y. Chen, The blow-up estimate for heat equations with non-linear boundary conditions, Appl. Math. Comput. 156 (2004) 355–366.
- [5] K. Deng, Blow-up rates for parabolic systems, Z. Angew. Math. Phys. 47 (1996) 132-143.
- [6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964.
- [7] B. Hu, H.M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. 346 (1994) 117–135.
- [8] O.A. Ladyženskaja, V.A. Sol'onnikov, N.N. Uralceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl. Ser. 2, vol. 23, Amer. Math. Soc., Providence, RI, 1968.
- [9] F.J. Li, B.C. Liu, S.N. Zheng, Simultaneous and non-simultaneous blow-up for heat equations with coupled nonlinear boundary flux, Z. Angew. Math. Phys. 58 (2007) 1–19.
- [10] Y.X. Li, Q.L. Liu, C.H. Xie, Semilinear reaction-diffusion systems of several components, J. Differential Equations, doi:10.1016/j.jde.2003.07.017.
- [11] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, River Edge, 1996.

- [12] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
- [13] M. Pedersen, Z.G. Lin, Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition, Appl. Math. Lett. 14 (2001) 171–176.
- [14] M. Pedersen, Z.G. Lin, Blow-up estimates of the positive solution of a parabolic system, J. Math. Anal. Appl. 255 (2001) 551-563.
- [15] I.P. Pinasco, I.D. Rossi, Simultaneous versus non-simultaneous blow-up, New Zealand J. Math. 29 (2000) 55-59.
- [16] F. Quirós, J.D. Rossi, Non-simultaneous blow-up in a semilinear parabolic system, Z. Angew. Math. Phys. 52 (2001) 342-346.
- [17] J.D. Rossi, On the existence and nonexistence in the large for an N-dimensional system of heat equations with nontrivial coupling at the boundary, New Zealand J. Math. 26 (1997) 275-285.
- [18] J.D. Rossi, The blow-up rate for a system of heat equations with non-trivial coupling at the boundary, Math. Methods Appl. Sci. 20 (1997) 1-11.
- [19] J.D. Rossi, Ph. Souplet, Coexistence of simultaneous and non-simultaneous blow-up in a semilinear parabolic system, Differential Integral Equations 18 (2005) 405-418.
- [20] Ph. Souplet, S. Tayachi, Optimal condition for non-simultaneous blow-up in a reaction-diffusion system, J. Math. Soc. Japan 56 (2004) 571-584.
- [21] S. Wang, M.X. Wang, C.H. Xie, Quasilinear parabolic systems with nonlinear boundary conditions, J. Differential Equations 166 (2000) 251–265.
- [22] M.X. Wang, The blow-up rates for systems of heat equations with nonlinear boundary conditions, Sci. China Ser. A 46 (2003) 169-175.
- [23] M.X. Wang, Y.M. Wang, Reaction-diffusion systems with nonlinear boundary conditions, Sci. China Ser. A 39 (1996) 834-840.
- [24] S.N. Zheng, B.C. Liu, F.J. Li, Blow-up rate estimates for a doubly coupled reaction-diffusion system, J. Math. Anal. Appl. 312 (2005) 576-595.
- [25] S.N. Zheng, B.C. Liu, F.J. Li, Non-simultaneous blow-up for a multi-coupled reaction-diffusion system, Nonlinear Anal. 64 (2006) 1189-1202.