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This paper deals with non-simultaneous and simultaneous blow-up for radially symmetric
solution (u1, u2, . . . , un) to heat equations coupled via nonlinear boundary ∂ui

∂η = upi
i u

qi+1
i+1

(i = 1,2, . . . ,n). It is proved that there exist suitable initial data such that ui

(i ∈ {1,2, . . . ,n}) blows up alone if and only if qi + 1 < pi . All of the classifications
on the existence of only two components blowing up simultaneously are obtained. We
find that different positions (different values of k, i, n) of ui−k and ui leads to quite
different blow-up rates. It is interesting that different initial data lead to different blow-up
phenomena even with the same requirements on exponent parameters. We also propose
that ui−k, ui−k+1, . . . , ui (i ∈ {1,2, . . . ,n}, k ∈ {0,1,2, . . . ,n − 1}) blow up simultaneously
while the other ones remain bounded in different exponent regions. Moreover, the blow-up
rates and blow-up sets are obtained.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following parabolic system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ui)t = �ui, (x, t) ∈ B R × (0, T ),

∂ui

∂η
= upi

i u
qi+1
i+1 , (x, t) ∈ ∂ B R × (0, T ),

ui(x,0) = ui,0(x), i = 1,2, . . . ,n, n � 2, x ∈ B R ,

un+1 := u1, pn+1 := p1, qn+1 := q1,

(1.1)

where B R = {x ∈ RN : |x| < R}; exponents pi,qi � 0 (i = 1,2, . . . ,n); ∂/∂η is the outer normal derivative; radially symmetric
functions ui,0(x) (i = 1,2, . . . ,n) are positive and smooth, satisfying the compatibility conditions; Let T be the blow-up time
of system (1.1). The existence and uniqueness of local solutions to system (1.1) is well known (see, for example, [8]). Nonlin-
ear parabolic system (1.1) comes from chemical reactions, heat transfer, etc., where u1, u2, . . . , un represent concentrations
of chemical reactants, temperatures of materials during heat propagations, etc.

Non-simultaneous and simultaneous blow-up for nonlinear parabolic systems have deserved so much attention (see
[1–3,9,16,19,20,25]). If n = 2, system (1.1) turns into
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⎧⎪⎪⎨
⎪⎪⎩

(u1)t = �u1, (u2)t = �u2, (x, t) ∈ B R × (0, T ),

∂u1

∂η
= up1

1 uq2
2 ,

∂u2

∂η
= up2

2 uq1
1 , (x, t) ∈ ∂ B R × (0, T ),

u1(x,0) = u1,0(x), u2(x,0) = u2,0(x), x ∈ B R .

(1.2)

For (1.2), Pinasco and Rossi [15] observed that there exist initial data such that u1 blows up while u2 remains bounded in
bounded domain of RN if and only if q1 + 1 < p1. Rossi [18], Pedersen and Lin [14], Chen [4] discussed the simultaneous
blow-up rate estimates of (1.2) in B R , respectively. For N = R = 1, Brändle, Quirós and Rossi [1,2] obtained that non-
simultaneous blow-up happens for every initial data if q1 + 1 < p1 and p2 � q2 + 1, or q2 + 1 < p2 and p1 � q1 + 1.
It is interesting that non-simultaneous blow-up and simultaneous blow-up coexist in the exponent region q1 + 1 < p1,
q2 + 1 < p2.

System (1.1) with pi = 0 becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ui)t = �ui, (x, t) ∈ Ω × (0, T ),

∂ui

∂η
= u

qi+1
i+1 , (x, t) ∈ ∂Ω × (0, T ),

ui(x,0) = ui,0(x), i = 1,2, . . . ,n, n � 2, x ∈ Ω,

un+1 := u1, qn+1 := q1.

(1.3)

It is easy to check that blow-up must be simultaneous for (1.3). Pedersen and Lin [13], Wang [22] obtained the simultaneous
blow-up rate estimates if q1q2 · · ·qn > 1.

The related discussion on blow-up solutions of parabolic systems can be seen from [5,7,10,17,21,23] and the papers
therein.

By the cited papers above, one can find that non-simultaneous blow-up is possible due to pi � 0. In the present paper,
the solution of (1.1) is making up of n components. The non-simultaneous blow-up means that at least i ∈ {1,2, . . . ,n − 1}
components blow up simultaneously while the other ones remain bounded up to the blow-up time, which has been rarely
considered before. The present paper is arranged as follows, in the next section, a necessary and sufficient condition is given
on the existence of one component blowing up alone. In Section 3, we obtain all of the classifications on the existence of
two components blowing up simultaneously with the other ones remaining bounded. Furthermore, the blow-up rates of
ui−k and ui (i ∈ {1,2, . . . ,n}, k ∈ {1,2, . . . ,n − 1}) are obtained. It is interesting that the representations of blow-up rates
are quite different with respect to different values of n, i, and k. In Section 4, we obtain the conditions of ui−k, ui−k+1, . . . , ui
(i ∈ {1,2, . . . ,n}, k ∈ {0,1,2, . . . ,n − 1}) blowing up simultaneously with the others remaining bounded for every positive
initial data. Moreover, the corresponding blow-up rates and sets are considered.

2. The existence of only one component blowing up

The critical blow-up exponents for (1.1) can be obtained from Rossi [17].

Theorem 2.1. The positive solutions of system (1.1) blow up if and only if

max

{
pi − 1 (i = 1,2, . . . ,n),

n∏
j=1

q j −
n∏

j=1

(1 − p j)

}
> 0. (2.1)

From now on, we assume that (2.1) always holds. Denote ξi := ξi+n if subscript i � 0. The set of initial data is denoted
as follows,

V0 =
{
(u1,0, u2,0, . . . , un,0): ui,0 � ζ > 0, (ui,0)r � 0, (ui,0)rr + N − 1

r
(ui,0)r � 0,

r ∈ [0, R),
∂ui,0(R)

∂η
= (

upi
i,0u

qi+1
i+1,0

)
(R), 1 � i � n

}
. (2.2)

Clearly, Ui(t) = ui(R, t) = max(y,s)∈[0,R]×[0,t] ui(y, s), 1 � i � n. In the sequel, Ui(t) ∼ (T − t)−βi represents that there exist
constants C, c > 0 such that c(T − t)−βi � Ui(t) � C(T − t)−βi as t near T .

Theorem 2.2. There exist initial data such that ui (i ∈ {1,2, . . . ,n}) blows up alone if and only if qi + 1 < pi .

Corollary 2.1. At least two components blow up simultaneously for every initial data if and only if p j � q j + 1 for all j = 1,2, . . . ,n.

We introduce a lemma on the upper estimate for ui .



B. Liu, F. Li / J. Math. Anal. Appl. 356 (2009) 215–231 217
Lemma 2.1. Let T be the blow-up time of system (1.1). If pi > 1, then

Ui(t) � CT (T − t)
− 1

2(pi−1) , (2.3)

where CT = C̃(1 + 4C1T
1
2 )

1
pi−1 , C̃ = C̃(pi,qi+1, ui+1,0(R), N, R) > 0, C1 = C1(N, R) > 0.

Proof. Let Γ be the fundamental solution of the heat equation. By Green’s identity,

1

2
Ui(t) =

∫
B R

Γ (x − y, t − z)ui(y, z)dy −
t∫

z

∫
∂ B R

Ui(τ )
∂Γ

∂η
(x − y, t − τ )dS y dτ

+
t∫

z

∫
∂ B R

U pi
i (τ )U

qi+1
i+1 (τ )Γ (x − y, t − τ )dS y dτ

� C2u
qi+1
i+1,0(R)

t∫
z

U pi
i (τ )(t − τ )−

1
2 dτ − 2C1T

1
2 Ui(t), x ∈ ∂ B R , 0 < z < t < T ,

where C1, C2 depend only on B R . Set I(t) = ∫ t
z U pi

i (τ )(T − τ )− 1
2 dτ . Then

I ′(t) �
(
C2u

qi+1
i+1,0(R)

)pi

(
1

2
+ 2C1T

1
2

)−pi

I pi (t)(T − t)−
1
2 .

Integrating the above inequality from t to T , we obtain that

I(t) �
[

2(pi − 1)
(
C pi

2 u
qi+1
i+1,0(R)

)pi

(
1

2
+ 2C1T

1
2

)−pi
]− 1

pi−1

(T − t)
− 1

2(pi−1) . (2.4)

On the other hand, for 0 < z = 2t − T < t < T ,

I(t) �

T +z
2∫

z

U pi (z)(T − τ )−
1
2 dτ = (2 − √

2)U pi (z)(T − z)
1
2 . (2.5)

Combining (2.4) and (2.5), we obtain the estimate (2.3) with

C̃ = (
2C2u

qi+1
i+1,0(R)

)− 1
pi−1 (2 − √

2)
− 1

pi
[√

2(pi − 1)
]− 1

p2
i −pi . �

Proof of Theorem 2.2. Without loss of generality, we only prove the case for i = n. We first prove the sufficient condition.
Let G(x, y, t, τ ) be Green’s function of the heat equation on B R , satisfying ∂G

∂η |∂ B R = 0 (see [6,11,12]) and∫
∂ B R

G(x, y, t, τ )dS y � C̄(t − τ )−
1
2 , (2.6)

where C̄ > 0 depends only on B R .
Fix u1,0(R), u2,0(R), . . . , un−1,0(R) and then take Mm > (2um,0(R))pm (m = 1,2, . . . ,n − 1). One can choose the initial

data (u1,0, u2,0, . . . , un,0) ∈ V0 such that T satisfies

(
2um,0(R) + 2C̄ M

qm+1
pm+1

m+1 Mm T
1
2
)pm

< Mm (m = 1,2, . . . ,n − 2),(
2un−1,0(R) + 2(pn − 1)

pn − 1 − qn
C̄ Mn−1Cqn

T T
pn−1−qn
2(pn−1)

)pn−1

< Mn−1,

where CT = C̃(1 + 4C1T
1
2 )

1
pn−1 with C̃ , C1 depending only on pn , q1, B R and u1,0(R).

By Lemma 2.1, Un(t) � CT (T − t)−
1

2(pn−1) . Then un−1 satisfies that⎧⎪⎪⎨
⎪⎪⎩

(un−1)t = �un−1, (x, t) ∈ B R × (0, T ),

∂un−1

∂η
� Cqn

T (T − t)−
qn

2(pn−1) u
pn−1
n−1 , (x, t) ∈ ∂ B R × (0, T ), (2.7)
un−1(x,0) = un−1,0(x), x ∈ B R .
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Consider the auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(ūn−1)t = �ūn−1, (x, t) ∈ B R × (0, T ),

∂ ūn−1

∂η
= Mn−1Cqn

T (T − t)−
qn

2(pn−1) , (x, t) ∈ ∂ B R × (0, T ),

ūn−1(x,0) = ūn−1,0(x), x ∈ B R ,

where radially symmetric ūn−1,0 satisfies ∂ ūn−1,0
∂η |∂ B R = Mn−1Cqn

T T − qn
2(pn−1) , ūn−1,0(R) = 2un−1,0(R); �ūn−1,0 � 0,

ūn−1,0 � un−1,0 in B R .
For qn + 1 < pn , by Green’s identity and (2.6),

ūn−1 � 2un−1,0(R) + 2(pn − 1)

pn − 1 − qn
C̄ Mn−1Cqn

T T
pn−1−qn
2(pn−1) � M

1
pn−1

n−1 .

So ūn−1 satisfies that⎧⎪⎪⎨
⎪⎪⎩

(ūn−1)t = �ūn−1, (x, t) ∈ B R × (0, T ),

∂ ūn−1

∂η
� Cqn

T (T − t)−
qn

2(pn−1) ū
pn−1
n−1 , (x, t) ∈ ∂ B R × (0, T ),

ūn−1(x,0) = ūn−1,0(x), x ∈ B R .

By the comparison principle, un−1 � ūn−1 � M
1

pn−1
n−1 on B̄ R × [0, T ).

Introduce the following auxiliary problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ūn−2)t = �ūn−2, (x, t) ∈ B R × (0,+∞),

∂ ūn−2

∂η
= M

qn−1
pn−1

n−1 Mn−2, (x, t) ∈ ∂ B R × (0,+∞),

ūn−2(x,0) = ūn−2,0(x), x ∈ B R ,

(2.8)

where radially symmetric ūn−2,0(x) satisfies ∂ ūn−2,0
∂η = M

qn−1
pn−1

n−1 Mn−2, ūn−2,0(x) = 2un−2,0(x) for x ∈ ∂ B R ; �ūn−2,0(x) � 0,
ūn−2,0(x) � un−2,0(x) for x ∈ B R . Considering the problem (2.8) in [0, T ), we obtain that

ūn−2 � 2un−2,0(R) + 2C̄ M
qn−1
pn−1

n−1 Mn−2T
1
2 � M

1
pn−2

n−2 .

Then ūn−2 satisfies ∂ ūn−2
∂η � M

qn−1
pn−1

n−1 ū
pn−2
n−2 , (x, t) ∈ ∂ B R × (0, T ). Due to un−1 � M

1
pn−1

n−1 , un−2 satisfies ∂un−2
∂η � M

qn−1
pn−1

n−1 u
pn−2
n−2

for (x, t) ∈ ∂ B R × (0, T ). By the comparison principle, un−2 � ūn−2 � M
1

pn−2
n−2 on B R × [0, T ). The boundedness of

un−3, un−4, . . . , u1 can be proved similarly. So only un blows up.
Now, we prove the necessary condition. Assume that u1 � C . Then un satisfies⎧⎪⎪⎨

⎪⎪⎩
(un)t = �un, (x, t) ∈ B R × (0, T ),

∂un

∂η
� Cq1 upn

n , (x, t) ∈ ∂ B R × (0, T ),

un(x,0) = un,0(x), x ∈ B R .

(2.9)

By Green’s identity, we have

Un(t) � Un(z) + 2C̄ Cq1 U pn
n (t)(T − z)

1
2 , z < t < T .

Take z such that Un(z) = Un(t)/2. Then Un(z) � c(T − z)−
1

2(pn−1) , z ∈ (0, T ). Also by Green’s identity,

1

2
Un−1(t) � c

t∫
0

(T − τ )
− qn

2(pn−1) (t − τ )−
1
2 dτ .

The boundedness of un−1 requires that qn + 1 < pn . �
It can be understood that the blow-up rate for only one component blowing up is equivalent to that of the scalar case

(see [7]).

Theorem 2.3. If only ui (i ∈ {1,2, . . . ,n}) blows up, then Ui(t) ∼ (T − t)
− 1

2(pi−1) .
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3. The existence of only two blowing up

In this section, we discuss the existence of only two components blowing up.

Theorem 3.1. Assume i ∈ {1,2, . . . ,n}, k ∈ {1,2, . . . ,n − 1}, and n � 3. If qi + 1 < pi and qi−k + 1 < pi−k, then there exist suitable
initial data such that ui−k, ui blow up simultaneously at time T while the others remain bounded up to T . Moreover,

(
Ui−k(t), Ui(t)

) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

((T − t)
− pi−1−qi

2(pi−1)(pi−k−1) , (T − t)
− 1

2(pi−1) ) for k = 1;
((T − t)

− 1
2(pi−k−1) , (T − t)

− 1
2(pi−1) ) for k ∈ {2,3, . . . ,n − 2};

((T − t)
− 1

2(pi−k−1) , (T − t)
− pi−k−1−qi−k

2(pi−k−1)(pi−1) ) for k = n − 1.

Without loss of generality, we only prove the case for i = n. We divide Theorem 3.1 into three propositions for k = 1,
k ∈ {2,3, . . . ,n − 2} and k = n − 1, respectively. At first, we deal with the case for i = n and k = 1.

Proposition 3.1. If qn + 1 < pn and qn−1 + 1 < pn−1 , then there exist suitable initial data such that un−1, un blow up simultaneously
at time T while the others remain bounded up to T . Moreover,

(
Un−1(t), Un(t)

) ∼ (
(T − t)

− pn−1−qn
2(pn−1)(pn−1−1) , (T − t)−

1
2(pn−1)

)
.

In order to prove Proposition 3.1, we introduce a subset of V0 as follows:

V1 =
{(

u1,0(r), u2,0(r), . . . , un,0(r)
) : um,0(r) = Nm + R

2

√
M2

m + 4 − R

2
Mm

−
√

R2 −
(

1

2
Mm

√
M2

m + 4 − 1

2
M2

m

)
r2, r ∈ [0, R],

with Mm = upm
m,0(R)u

qm+1
m+1,0(R), Nm = um,0(R) (m = 1,2, . . . ,n),

where u1,0(R) = R

λ1
, ul,0(R) = R∏l−1

j=1(1 − λ j)λl

(l = 2,3, . . . ,n − 1),

un,0(R) = R∏n−1
j=1(1 − λ j)

, λ1, λ2, . . . , λn−1 ∈ (0,1)

}
.

We use the following five lemmas to prove it.

Lemma 3.1. If qn + 1 < pn and qn−1 + 1 < pn−1 , then there exists λ̄n−2 ∈ ( 1
2 ,1) such that, for any initial data satisfying that

u j,0(R) = 2 j R ( j = 1,2, . . . ,n − 3) and un−2,0(R) = 2n−3 R
λ̄n−2

in V1 , non-simultaneous blow-up must happen with u1, u2, . . . , un−2

remaining bounded.

Proof. Take M j > (2 j+1 R)p j ( j = 1,2, . . . ,n − 2). Consider the following auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(un−1)t = �un−1, (x, t) ∈ B R × (0, T n−1),

∂un−1

∂η
= (

2n−2 R − R
)qn u

pn−1
n−1 , (x, t) ∈ ∂ B R × (0, T n−1),

un−1(x,0) = un−1,0(x), x ∈ B R ,

(3.1)

where radially symmetric un−1,0(x) satisfies the compatibility conditions and 2n−3 R
1−λn−2

− 2R � un−1,0(x) � 2n−3 R
1−λn−2

− R with
λn−2 to be determined.

For problem (3.1), there must exist λ̄n−2 ∈ ( 1
2 ,1) such that, if λn−2 = λ̄n−2, then T n−1 satisfies

M j �
(
2 j+1 R + 2C̄ M

q j+1
p j+1
j+1 M j T

1
2
n−1

)p j
( j = 1,2, . . . ,n − 3),

Mn−2 �
(

2n−1 R + 2(pn−1 − 1)

pn−1 − 1 − qn−1
C̄ Mn−2C

qn−1
T n−1

T

pn−1−1−qn−1
2(pn−1−1)

n−1

)pn−2

.

For any (u1,0, u2,0, . . . , un,0) ∈ V1 with u j,0(R) = 2 j R ( j = 1,2, . . . ,n − 3) and un−2,0(R) = 2n−3 R
¯ , we have

λn−2
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un−1,0(R) = 2n−3 R

(1 − λ̄n−2)λn−1
� 2n−3 R

1 − λ̄n−2
for any λn−1 ∈ (0,1).

Then

2n−3 R

1 − λ̄n−2
− 2R � un−1,0(x) � 2n−3 R

1 − λ̄n−2
− R � un−1,0(x) � 2n−3 R

(1 − λ̄n−2)λn−1
.

For (un)t � 0, un(x, t) � un,0(x) � 2n−2 R − R . By the comparison principle, un−1 � un−1 and T � T n−1. Hence

M j �
(
2 j+1 R + 2C̄ M

q j+1
p j+1
j+1 M j T

1
2
)p j

( j = 1,2, . . . ,n − 3),

Mn−2 �
(

2n−1 R + 2(pn−1 − 1)

pn−1 − 1 − qn−1
C̄ Mn−2C

qn−1
T T

pn−1−1−qn−1
2(pn−1−1)

)pn−2

.

Consider the second auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(ūn−2)t = �ūn−2, (x, t) ∈ B R × (0, T ),

∂ ūn−2

∂η
= Mn−2C

qn−1
T (T − t)

− qn−1
2(pn−1−1) , (x, t) ∈ ∂ B R × (0, T ),

ūn−2(x,0) = ūn−2,0(x), x ∈ B R ,

(3.2)

where radially symmetric ūn−2,0(x) satisfies ∂ ūn−2,0(x)
∂η = Mn−2C

qn−1
T T

− qn−1
2(pn−1−1) , ūn−2,0(x) = 2n−1 R for x ∈ ∂ B R ;

�ūn−2,0(x) � 0, ūn−2,0(x) � un−2,0(x) for x ∈ B R .
By Green’s identity and qn−1 + 1 < pn−1,

ūn−2 � 2n−1 R + 2(pn−1 − 1)

pn−1 − 1 − qn−1
C̄ Mn−2C

qn−1
T T

pn−1−1−qn−1
2(pn−1−1) � M

1
pn−2

n−2 .

So ūn−2 satisfies ∂ ūn−2
∂η � C

qn−1
T (T − t)

− qn−1
2(pn−1−1) ū

pn−2
n−2 , (x, t) ∈ ∂ B R × (0, T ). By Lemma 2.1 and pn−1 > 1, we have un−1 �

CT (T − t)
− 1

2(pn−1−1) , and hence ∂un−2
∂η � C

qn−1
T (T − t)

− qn−1
2(pn−1−1) u

pn−2
n−2 , (x, t) ∈ ∂ B R × (0, T ). Then by the comparison principle,

un−2 � ūn−2 � M
1

pn−2
n−2 .

Introduce the third auxiliary problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ūn−3)t = �ūn−3, (x, t) ∈ B R × (0,+∞),

∂ ūn−3

∂η
= M

qn−2
pn−2

n−2 Mn−3, (x, t) ∈ ∂ B R × (0,+∞),

ūn−3(x,0) = ūn−3,0(x), x ∈ B R ,

(3.3)

where radially symmetric ūn−3,0(x) satisfies ∂ ūn−3,0
∂η = M

qn−2
pn−2

n−2 Mn−3, ūn−3,0(x) = 2n−2 R for x ∈ ∂ B R ; �ūn−3,0(x) � 0,
ūn−3,0(x) � un−3,0(x) for x ∈ B R . Considering problem (3.3) in (0, T ), we have

ūn−3 � 2n−2 R + 2C̄ M
qn−2
pn−2

n−2 Mn−3T
1
2 � M

1
pn−3

n−3 .

So ūn−3 satisfies ∂ ūn−3
∂η � M

qn−2
pn−2

n−2 ū
pn−3
n−3 for (x, t) ∈ ∂ B R × (0, T ). For un−2 � M

1
pn−2

n−2 , un−3 satisfies ∂un−3
∂η � M

qn−2
pn−2

n−2 u
pn−3
n−3 for

(x, t) ∈ ∂ B R × (0, T ). Then un−3 � ūn−3 � M
1

pn−3
n−3 . The boundedness of un−4, un−5, . . . , u1 can be proved similarly. �

Lemma 3.2. If qn + 1 < pn and qn−1 + 1 < pn−1 , then, for the fixed λ̄n−2 ∈ ( 1
2 ,1) in Lemma 3.1, there exists λ′

n−1 ∈ (0, 1
2 ) such

that non-simultaneous blow-up happens with un−1 blowing up and the others remaining bounded, where the initial data satisfy that

u j,0(R) = 2 j ( j = 1,2, . . . ,n − 3), un−2,0(R) = 2n−3 R
λ̄n−2

, un−1,0(R) = 2n−3 R
(1−λ̄n−2)λ′

n−1
, un,0(R) = 2n−3 R

(1−λ̄n−2)(1−λ′
n−1)

in V1 .

Proof. Take Mn > ( 2n−1 R
1−λ̄n−2

)pn . Introduce the following auxiliary problem

⎧⎪⎪⎨
⎪⎪⎩

(ūn)t = �ūn, (x, t) ∈ B R × (0,+∞),

∂ ūn

∂η
= M

q1
p1

1 Mn, (x, t) ∈ ∂ B R × (0,+∞),

¯ ¯
(3.4)
un(x,0) = un,0(x), x ∈ B R ,
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where radially symmetric ūn,0(x) satisfies ∂ ūn,0
∂η = M

q1
p1

1 Mn , ūn,0(x) = 2n−1 R
1−λ̄n−2

for x ∈ ∂ B R ; �ūn,0(x) � 0, ūn,0(x) � un,0(x) for

x ∈ B R .
Consider problem (3.1) with the initial data un−1,0 satisfying that

2n−3 R

(1 − λ̄n−2)λn−1
− 2R � un−1,0(x) � 2n−3 R

(1 − λ̄n−2)λn−1
− R,

where λn−1 is to be determined. There exists some λ′
n−1 ∈ (0, 1

2 ) such that, if λn−1 = λ′
n−1, then T n−1 satisfies

Mn �
(

2n−1 R

1 − λ̄n−2
+ 2C̄ M

q1
p1

1 Mn T
1
2
n−1

)pn

.

Similarly to Lemma 3.1, un−1 � un−1 and T � T n−1. Hence

Mn �
(

2n−1 R

1 − λ̄n−2
+ 2C̄ M

q1
p1

1 Mn T
1
2

)pn

.

Consider problem (3.4) in [0, T ). By Green’s identity,

ūn � 2n−1 R

1 − λ̄n−2
+ 2C̄ M

q1
p1

1 Mn T
1
2 � M

1
pn

n .

Then ūn satisfies ∂ ūn
∂η � M

q1
p1

1 ūpn
n for (x, t) ∈ ∂ B R ×(0, T ). Due to u1 � M

1
p1

1 , un satisfies ∂un
∂η � M

q1
p1

1 upn
n for (x, t) ∈ ∂ B R ×(0, T ).

By the comparison principle, un � ūn � M
1

pn
n . So only un−1 blows up. �

Lemma 3.3. If qn + 1 < pn and qn−1 + 1 < pn−1 , then, for the fixed λ̄n−2 ∈ ( 1
2 ,1) in Lemma 3.1, there exists λ′′

n−1 ∈ ( 1
2 ,1) such

that non-simultaneous blow-up happens with un blowing up and the others remaining bounded, where the initial data satisfy that

u j,0(R) = 2 j R ( j = 1,2, . . . ,n − 3), un−2,0(R) = 2n−3 R
λ̄n−2

, un−1,0(R) = 2n−3 R
(1−λ̄n−2)λ′′

n−1
, un,0(R) = 2n−3 R

(1−λ̄n−2)(1−λ′′
n−1)

in V1 .

Proof. Introduce the following auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(un)t = �un, (x, t) ∈ B R × (0, T n),

∂un

∂η
= Rq1 upn

n , (x, t) ∈ ∂ B R × (0, T n),

un(x,0) = un,0(x), x ∈ B R ,

where radially symmetric un,0(x) satisfies the compatibility conditions and

2n−3 R

(1 − λ̄n−2)(1 − λn−1)
− 2R � un,0(x) � 2n−3 R

(1 − λ̄n−2)(1 − λn−1)
− R

with λn−1 to be determined.

Take Mn−1 > ( 2n−1 R
1−λ̄n−2

)pn−1 . There exists λ′′
n−1 ∈ ( 1

2 ,1) such that, if λn−1 = λ′′
n−1, then T n satisfies that

Mn−1 �
(

2n−1 R

1 − λ̄n−2
+ 2(pn − 1)

pn − 1 − qn
C̄ Mn−1Cqn

T n
T n

pn−1−qn
2(pn−1)

)pn−1

.

Take initial data (u1,0, u2,0, . . . , un,0) in V1 such that λ j = 1
2 ( j = 1,2, . . . ,n − 3), λn−2 = λ̄n−2, λn−1 = λ′′

n−1. For un,0(x) �
2n−3 R

(1−λ̄n−2)(1−λ′′
n−1)

− R � un,0(x) and u1(x, t) � u1,0(x) � R , un satisfies ∂un
∂η � Rq1 upn

n on ∂ B R × (0, T ), and hence un � un and

T � T n . So

Mn−1 �
(

2n−1 R

1 − λ̄n−2
+ 2(pn − 1)

pn − 1 − qn
C̄ Mn−1Cqn

T T
pn−1−qn
2(pn−1)

)pn−1

.

Consider the following auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(ūn−1)t = �ūn−1, (x, t) ∈ B R × (0, T ),

∂ ūn−1

∂η
= Mn−1Cqn

T (T − t)−
qn

2(pn−1) , (x, t) ∈ ∂ B R × (0, T ),

¯ ¯
un−1(x,0) = un−1,0(x), x ∈ B R ,
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where radially symmetric ūn−1,0(x) satisfies the compatibility conditions and ūn−1,0(x) = 2n−1 R
1−λ̄n−2

, x ∈ ∂ B R ; �ūn−1,0(x) � 0,

ūn−1,0(x) � un−1,0(x), x ∈ B R .
For qn + 1 < pn and by Green’s identity,

ūn−1 � 2n−1 R

1 − λ̄n−2
+ 2(pn − 1)

pn − 1 − qn
C̄ Mn−1Cqn

T T
pn−1−qn
2(pn−1) � M

1
pn−1

n−1 .

So ūn−1 satisfies ∂ ūn−1
∂η � Cqn

T (T −t)−
qn

2(pn−1) ū
pn−1
n−1 , (x, t) ∈ ∂ B R ×(0, T ). For pn > 1, un � CT (T −t)−

1
2(pn−1) . Hence un−1 satisfies

∂un−1
∂η � Cqn

T (T − t)−
qn

2(pn−1) u
pn−1
n−1 , (x, t) ∈ ∂ B R × (0, T ). By the comparison principle, un−1 � ūn−1 � M

1
pn−1

n−1 . Then only un blows
up. �
Lemma 3.4.

(i) The set of initial data in V1 such that un blows up while the others remain bounded is open in L∞-topology.
(ii) The set of initial data in V1 such that un−1 blows up while the others remain bounded is open in L∞-topology.

Proof. Without loss of generality, we only prove case (i). Let (u1, u2, . . . , un) be a solution of (1.1) with initial data
(u1,0, u2,0, . . . , un,0) in V1 such that un blows up at t = T while the other components remain bounded, say 0 <

2ξ � u1, u2, . . . , un−1 � M . It suffices to find an L∞-neighborhood of (u1,0, u2,0, . . . , un,0) in V1 such that any solution
(û1, û2, . . . , ûn) of (1.1) coming from this neighborhood maintains the property that ûn blows up while the others remain
bounded.

By Theorem 2.2, qn + 1 < pn . Take S j > (2M + 2ξ)p j ( j = 1,2, . . . ,n − 1). Let (ũ1, ũ2, . . . , ũn) be the solution of the
following problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ũ j)t = �ũ j, (x, t) ∈ B R × (0, T0),

∂ ũ j

∂η
= ũ

p j

j ũ
q j+1
j+1 , (x, t) ∈ ∂ B R × (0, T0),

ũ j(x,0) = ũ j,0(x), j = 1,2, . . . ,n, n � 2, x ∈ B R ,

ũn+1 := ũ1, pn+1 := p1, qn+1 := q1,

(3.5)

where radially symmetric (ũ1,0, ũ2,0, . . . , ũn,0) ∈ V0 is to be determined. Denote

N (u1,0, u2,0, . . . , un,0) = {
(ũ1,0, ũ2,0, . . . , ũn,0) ∈ V0:

∥∥ũ j,0(x) − u j(x, T − ε0)
∥∥∞ < ξ, 1 � j � n

}
.

Since (u1, u2, . . . , un) blows up at time T with fixed ξ , there exists ε0 > 0 such that T0 satisfies that

S j �
(
2M + 2ξ + 2C̄ S

q j+1
p j+1
j+1 S j T

1
2

0

)p j
( j = 1,2, . . . ,n − 2),

Sn−1 �
(

2M + 2ξ + 2(pn − 1)

pn − 1 − qn
C̄ Sn−1Cqn

T0
T

pn−1−qn
2(pn−1)

0

)pn−1

provided (ũ1,0, ũ2,0, . . . , ũn,0) ∈ N (u1,0, u2,0, . . . , un,0).
Consider the auxiliary problem

⎧⎪⎪⎨
⎪⎪⎩

(ūn−1)t = �ūn−1, (x, t) ∈ B R × (0, T0),

∂ ūn−1

∂η
= Sn−1Cqn

T0
(T0 − t)−

qn
2(pn−1) , (x, t) ∈ ∂ B R × (0, T0),

ūn−1(x,0) = ūn−1,0(x), x ∈ B R ,

where radially symmetric ūn−1,0(x) satisfies ∂ ūn−1,0
∂η = Sn−1Cqn

T0
T

− qn
2(pn−1)

0 , ūn−1,0(x) = 2ũn−1,0(x), x ∈ ∂ B R ; �ūn−1,0(x) � 0,

ūn−1,0(x) � ũn−1,0(x), x ∈ B R . By Green’s identity,

ūn−1 � 2M + 2ξ + 2(pn − 1)

pn − 1 − qn
C̄ Sn−1Cqn

T0
T

pn−1−qn
2(pn−1)

0 � S
1

pn−1
n−1 .

Then ∂ ūn−1
∂η � Cqn

T0
(T0 − t)−

qn
2(pn−1) ū

pn−1
n−1 , (x, t) ∈ ∂ B R × (0, T0). For pn > 1, ũn � CT0 (T0 − t)−

1
2(pn−1) . So ũn−1 satisfies ∂ ũn−1

∂η �

Cqn (T0 − t)−
qn

2(pn−1) ũpn , (x, t) ∈ ∂ B R × (0, T0). By the comparison principle, ũn−1 � ūn−1 � S
1

pn−1 .
T0 n−1 n−1
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Introduce the following auxiliary problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ūn−2)t = �ūn−2, (x, t) ∈ B R × (0,+∞),

∂ ūn−2

∂η
= S

qn−1
pn−1

n−1 Sn−2, (x, t) ∈ ∂ B R × (0,+∞),

ūn−2(x,0) = ūn−2,0(x), x ∈ B R ,

where ūn−2,0(x) satisfies the compatibility conditions and ūn−2,0 = 2ũn−2,0 on ∂ B R ; �ūn−2,0 � 0, ūn−2,0 � ũn−2,0 in B R .

By Green’s identity, ūn−2 � S
1

pn−2
n−2 in B R × (0, T0). So ∂ ūn−2

∂η � S
qn−1
pn−1

n−1 ū
pn−2
n−2 , (x, t) ∈ ∂ B R × (0, T0). For ũn−1 � S

1
pn−1

n−1 , ∂ ũn−2
∂η �

S
qn−1
pn−1

n−1 ũ
pn−2
n−2 , (x, t) ∈ ∂ B R ×(0, T0). So ũn−2 � ūn−2 � S

1
pn−2

n−2 , (x, t) ∈ B R ×(0, T0). The boundedness of ũi (i = n−3,n−4, . . . ,1)

can be proved similarly. So ũn is the blow-up component.
According to the continuity on initial data for bounded solutions, there must exist a neighborhood N(⊂ V0) of

(u1,0, u2,0, . . . , un,0) such that every solution (û1, û2, . . . , ûn) starting from the neighborhood will enter N (u1,0, u2,0,

. . . , un,0) at time T − ε0, and hence keeps the property that ûn blows up while the other components remain bounded.
So there must exist a neighborhood N1(⊂ N) in V1 such that any solution coming from it blows up with ûn blowing up
and the other components remaining bounded. �
Lemma 3.5. If qn + 1 < pn, qn−1 + 1 < pn−1 , and un−1, un blow up simultaneously at time T while the others remain bounded up
to T , then

(
Un−1(t), Un(t)

) ∼ (
(T − t)

− pn−1−qn
2(pn−1)(pn−1−1) , (T − t)−

1
2(pn−1)

)
.

Proof. Due to the boundedness of u1 and by Green’s identity, we have

Un(t) � Un(z) + C U pn
n (t)(T − z)

1
2 .

For the blow-up property of un , one can take Un(z) = 1
2 Un(t). So Un(z) � c(T − z)−

1
2(pn−1) .

Similarly to the method of Lemma 2.1, one can obtain Un(t) � C(T − t)−
1

2(pn−1) and Un−1(t) � C(T − t)
− pn−1−qn

2(pn−1)(pn−1−1) .
Combining the upper estimate of Un with Green’s identity to un−1, we have

Un−1(t) � Un−1(z) + C U
pn−1
n−1 (t)(T − z)

pn−1−qn
2(pn−1) .

Take Un−1(z) = 1
2 Un−1(t). Then Un−1(t) � c(T − t)

− pn−1−qn
2(pn−1)(pn−1−1) . �

Proof of Proposition 3.1. Lemma 3.1 says that there exists λ̄n−2 ∈ ( 1
2 ,1) such that any initial data in V1 satisfying λ1 =

λ2 = · · · = λn−3 = 1
2 , λ̄n−2 ∈ ( 1

2 ,1) develops the non-simultaneous blow-up solution with u j ( j = 1,2, . . . ,n − 2) remaining
bounded. We know from Lemma 3.2 that there exists λ′

n−1 ∈ (0, 1
2 ) such that the solution of (1.1) with the initial data in

V1 satisfying λ1 = λ2 = · · · = λn−3 = 1
2 , λn−2 = λ̄n−2 and λn−1 = λ′

n−1 blows up non-simultaneously, where un−1 blows up

and the others remain bounded. Lemma 3.3 guarantees that there exists λ′′
n−1 ∈ ( 1

2 ,1) such that un blows up alone with the

initial data in V1 where λ1 = λ2 = · · · = λn−3 = 1
2 , λn−2 = λ̄n−2 and λn−1 = λ′′

n−1. In addition, the sets of the initial data in
V1 such that un blows up alone and that un−1 blows up alone are all open by Lemma 3.4. Notice that V1 is connected. So
there must exist initial data (suitable λ̄n−1 ∈ (λ′

n−1, λ
′′
n−1)) such that un and un−1 blow up simultaneously while the others

remain bounded.
The blow-up rates can be obtained by Lemma 3.5 directly. �
Secondly, we discuss the case for i = n and k ∈ {2,3, . . . ,n − 2}, n � 4.

Proposition 3.2. If qn + 1 < pn and qn−k + 1 < pn−k, then there exist suitable initial data such that un−k, un blow up simultaneously
at some time T while the others remain bounded up to T . Moreover,

(
Un−k(t), Un(t)

) ∼ (
(T − t)

− 1
2(pn−k−1) , (T − t)−

1
2(pn−1)

)
.

Without loss of generality, we only prove the case for k = 2 by the following five lemmas. Define another subset of V0
as follows,
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V2 =
{(

u1,0(r), u2,0(r), . . . , un,0(r)
)
: um,0(r) = Nm + R

2

√
M2

m + 4 − R

2
Mm

−
√

R2 −
(

1

2
Mm

√
M2

m + 4 − 1

2
M2

m

)
r2, r ∈ [0, R],

with Mm = upm
m,0(R)u

qm+1
m+1,0(R), Nm = um,0(R) (m = 1,2, . . . ,n),

where u1,0(R) = R

λ1
, ul,0(R) = R∏l−1

j=1(1 − λ j)λl

(l = 2,3, . . . ,n − 3),

un−1,0(R) = R∏n−3
j=1(1 − λ j)λn−2

, un−2,0(R) = R∏n−2
j=1(1 − λ j)λn−1

,

un,0(R) = R∏n−1
j=1(1 − λ j)

, λ1, λ2, . . . , λn−1 ∈ (0,1)

}
.

Lemma 3.6. If qn + 1 < pn and qn−2 + 1 < pn−2 , then there exists λ̄n−2 ∈ ( 1
2 ,1) such that non-simultaneous blow-up happens with

u1, u2, . . . , un−3, un−1 remaining bounded for the initial data satisfying u j,0(R) = 2 j R ( j = 1,2, . . . ,n − 3) and un−1,0(R) = 2n−3 R
λ̄n−2

in V2 .

Proof. Take M j > (2 j+1 R)p j ( j = 1,2, . . . ,n − 3), Mn−1 > (2n−1 R)pn−1 . Consider the following auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(un−2)t = �un−2, (x, t) ∈ B R × (0, T n−2),

∂un−2

∂η
= (

2n−3 R − R
)qn−1 u

pn−2
n−2 , (x, t) ∈ ∂ B R × (0, T n−2),

un−2(x,0) = un−2,0(x), x ∈ B R ,

(3.6)

where radially symmetric un−2,0(x) satisfies the compatibility conditions and 2n−3 R
1−λn−2

− 2R � un−2,0(x) � 2n−3 R
1−λn−2

− R with
λn−2 to be determined.

For problem (3.6), there must exist λn−2 = λ̄n−2 ∈ ( 1
2 ,1) such that T n−2 satisfies

M j �
(
2 j+1 R + 2C̄ M

q j+1
p j+1
j+1 M j T

1
2
n−2

)p j
( j = 1,2, . . . ,n − 4),

Mn−3 �
(

2n−2 R + 2(pn−2 − 1)

pn−2 − 1 − qn−2
C̄ Mn−3C

qn−2
T n−2

T
pn−2−1−qn−2

2(pn−2−1)

n−2

)pn−3

,

Mn−1 �
(

2n−1 R + 2(pn − 1)

pn − 1 − qn
C̄ Mn−1Cqn

T n−2
T

pn−1−qn
2(pn−1)

n−2

)pn−1

.

For any (u1,0, u2,0, . . . , un,0) ∈ V2 satisfying u j,0(R) = 2 j R ( j = 1,2, . . . ,n − 3) and un−1,0(R) = 2n−3 R
λ̄n−2

, we have un−2,0(R) =
2n−3 R

(1−λ̄n−2)λn−1
� 2n−3 R

1−λ̄n−2
for any λn−1 ∈ (0,1). Then

2n−3 R

1 − λ̄n−2
− 2R � un−2,0(x) � 2n−3 R

1 − λ̄n−2
− R � un−2,0(x) � 2n−3 R

(1 − λ̄n−2)λn−1
.

For (un−1)t � 0, un−1(x, t) � un−1,0(x) � 2n−3 R − R . By the comparison principle, un−2 � un−2 and T � T n−2. Hence

M j �
(
2 j+1 R + 2C̄ M

q j+1
p j+1
j+1 M j T

1
2
)p j

( j = 1,2, . . . ,n − 4),

Mn−3 �
(

2n−2 R + 2(pn−2 − 1)

pn−2 − 1 − qn−2
C̄ Mn−3C

qn−2
T T

pn−2−1−qn−2
2(pn−2−1)

)pn−3

,

Mn−1 �
(

2n−1 R + 2(pn − 1)

pn − 1 − qn
C̄ Mn−1Cqn

T T
pn−1−qn
2(pn−1)

)pn−1

.

Consider the second auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(ūn−3)t = �ūn−3, (x, t) ∈ B R × (0, T ),

∂ ūn−3

∂η
= Mn−3C

qn−2
T (T − t)

− qn−2
2(pn−2−1) , (x, t) ∈ ∂ B R × (0, T ),

¯ ¯
un−3(x,0) = un−3,0(x), x ∈ B R ,
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where radially symmetric ūn−3,0(x) satisfies ∂ ūn−3,0
∂η = Mn−3C

qn−2
T T

− qn−2
2(pn−2−1) , ūn−3,0(x) = 2n−2 R for x ∈ ∂ B R ; �ūn−3,0(x) � 0,

ūn−3,0(x) � un−3,0(x) for x ∈ B R .
By Green’s identity and qn−2 + 1 < pn−2,

ūn−3 � 2n−2 R + 2(pn−2 − 1)

pn−2 − 1 − qn−2
C̄ Mn−3C

qn−2
T T

pn−2−1−qn−2
2(pn−2−1) � M

1
pn−3

n−3 .

So ūn−3 satisfies ∂ ūn−3
∂η � C

qn−2
T (T − t)

− qn−2
2(pn−2−1) ū

pn−3
n−3 , (x, t) ∈ ∂ B R × (0, T ). By Lemma 2.1 and pn−2 > 1, un−2 �

CT (T − t)
− 1

2(pn−2−1) , and hence ∂un−3
∂η � C

qn−2
T (T − t)

− qn−2
2(pn−2−1) u

pn−3
n−3 , (x, t) ∈ ∂ B R × (0, T ). Then by the comparison princi-

ple, un−3 � ūn−3 � M
1

pn−3
n−3 .

Similarly to the proof for un−3, we have un−1 � M
1

pn−1
n−1 .

In order to obtain the boundedness of un−4, we introduce the third auxiliary problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ūn−4)t = �ūn−4, (x, t) ∈ B R × (0,+∞),

∂ ūn−4

∂η
= M

qn−3
pn−3

n−3 Mn−4, (x, t) ∈ ∂ B R × (0,+∞),

ūn−4(x,0) = ūn−4,0(x), x ∈ B R ,

where radially symmetric ūn−4,0(x) satisfies ∂ ūn−4,0
∂η = M

qn−3
pn−3

n−3 Mn−4, ūn−4,0(x) = 2n−3 R for x ∈ ∂ B R ; �ūn−4,0(x) � 0,
ūn−4,0(x) � un−4,0(x) for x ∈ B R . By Green’s identity, we have

ūn−4 � 2n−3 R + 2C̄ M
qn−3
pn−3

n−3 Mn−4T
1
2 � M

1
pn−4

n−4 .

So ūn−4 satisfies ∂ ūn−4
∂η � M

qn−3
pn−3

n−3 ū
pn−4
n−4 for (x, t) ∈ ∂ B R × (0, T ). For un−3 � M

1
pn−3

n−3 , un−4 satisfies ∂un−4
∂η � M

qn−3
pn−3

n−3 u
pn−4
n−4 . By the

comparison principle, un−4 � ūn−4 � M
1

pn−4
n−4 . We can obtain u j � M

1
p j

j ( j = n − 5,n − 6, . . . ,1), similarly. �
Lemma 3.7. If qn + 1 < pn and qn−2 + 1 < pn−2 , then, for the fixed λ̄n−2 ∈ ( 1

2 ,1) in Lemma 3.6, there exists λ′
n−1 ∈ (0, 1

2 ) such

that un−2 blows up while the other components remain bounded for the initial data satisfying u j,0(R) = 2 j R ( j = 1,2, . . . ,n − 3),

un−1,0(R) = 2n−3 R
λ̄n−2

, un−2,0(R) = 2n−3 R
(1−λ̄n−2)λ′

n−1
, and un,0(R) = 2n−3 R

(1−λ̄n−2)(1−λ′
n−1)

in V2 .

Proof. Take Mn > ( 2n−1 R
1−λ̄n−2

)pn . Consider problem (3.6) with initial data un−2,0 satisfying the compatibility conditions and

2n−3 R

(1 − λ̄n−2)λn−1
− 2R < un−2,0(x) � 2n−3 R

(1 − λ̄n−2)λn−1
− R,

where λn−1 is to be determined. There exists some λ′
n−1 ∈ (0, 1

2 ) such that, if λn−1 = λ′
n−1, T n−2 satisfies

Mn �
(

2n−1 R

1 − λ̄n−2
+ 2C̄ M

q1
p1

1 Mn T
1
2
n−2

)pn

.

Similarly to Lemma 3.6, un−2 � un−2 and T � T n−2. Hence

Mn �
(

2n−1 R

1 − λ̄n−2
+ 2C̄ M

q1
p1

1 Mn T
1
2

)pn

.

Considering (3.4) in [0, T ), we have ūn � 2n−1 R
1−λ̄n−2

+ 2C̄ M
q1
p1

1 Mn T
1
2 � M

1
pn

n . Then ūn satisfies ∂ ūn
∂η � M

q1
p1

1 ūpn
n , (x, t) ∈

∂ B R ×(0, T ). Due to u1 � M
1

p1
1 , un satisfies ∂un

∂η � M
q1
p1

1 upn
n , (x, t) ∈ ∂ B R ×(0, T ). By the comparison principle, un � ūn � M

1
pn

n .
So only un−2 blows up. �
Lemma 3.8. If qn + 1 < pn and qn−2 + 1 < pn−2 , then, for the fixed λ̄n−2 ∈ ( 1

2 ,1) in Lemma 3.1, there exists λ′′
n−1 ∈ ( 1

2 ,1) such

that un blows up while the other components remain bounded for the initial data satisfying u j,0(R) = 2 j R ( j = 1,2, . . . ,n − 3),

un−1,0(R) = 2n−3 R
λ̄

, un−2,0(R) = 2n−3 R
(1−λ̄ )λ′′ , and un,0(R) = 2n−3 R

(1−λ̄ )(1−λ′′ )
in V2 .
n−2 n−2 n−1 n−2 n−1
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Proof. Introduce the following auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(un)t = �un, (x, t) ∈ B R × (0, T n),

∂un

∂η
= Rq1 upn

n , (x, t) ∈ ∂ B R × (0, T n),

un(x,0) = un,0(x), x ∈ B R ,

where radially symmetric un,0(x) satisfies the compatibility conditions and

2n−3 R

(1 − λ̄n−2)(1 − λn−1)
− 2R � un,0 � 2n−3 R

(1 − λ̄n−2)(1 − λn−1)
− R

with λn−1 to be determined.

Choose Mn−2 > ( 2n−1 R
1−λ̄n−2

)pn−2 . There exists λ′′
n−1 ∈ ( 1

2 ,1) such that, if λn−1 = λ′′
n−1, T n satisfies

Mn−2 �
(

2n−1 R

1 − λ̄n−2
+ 2C̄ M

qn−1
pn−1

n−1 Mn−2T n
1
2

)pn−2

.

Take the initial data in V2 such that λ j = 1
2 ( j = 1,2, . . . ,n − 3), λn−2 = λ̄n−2, λn−1 = λ′′

n−1. For un,0(x) � un,0(x) and
u1(x, t) � u1,0(x) � R , we have un � un and T � T n . So

Mn−2 �
(

2n−1 R

1 − λ̄n−2
+ 2C̄ M

qn−1
pn−1

n−1 Mn−2T
1
2

)pn−2

.

Consider the following auxiliary problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ūn−2)t = �ūn−2, (x, t) ∈ B R × (0,+∞),

∂ ūn−2

∂η
= M

qn−1
pn−1

n−1 Mn−2, (x, t) ∈ ∂ B R × (0,+∞),

ūn−2(x,0) = ūn−2,0(x), x ∈ B R ,

where radially symmetric ūn−2,0(x) satisfies the compatibility conditions and ūn−2,0(R) = 2n−1 R
1−λ̄n−2

; �ūn−2,0(x) � 0,

ūn−2,0(x) � un−2,0(x) for x ∈ B R . By Green’s identity, ūn−2 � M
1

pn−2
n−2 . So ūn−2 satisfies ∂ ūn−2

∂η � M
qn−1
pn−1

n−1 ū
pn−2
n−2 , (x, t) ∈

∂ B R × (0, T ). For un−1 � M
1

pn−1
n−1 , un−2 satisfies ∂un−2

∂η � M
qn−1
pn−1

n−1 u
pn−2
n−2 , (x, t) ∈ ∂ B R × (0, T ). By the comparison principle,

un−2 � ūn−2 � M
1

pn−2
n−2 . Then only un blows up. �

Similarly to the proof of Lemma 3.4, we have

Lemma 3.9.

(i) The set of initial data in V2 such that un blows up while the others remain bounded is open in L∞-topology.
(ii) The set of initial data in V2 such that un−2 blows up while the others remain bounded is open in L∞-topology.

Lemma 3.10. If qn + 1 < pn, qn−2 + 1 < pn−2 , and un−2, un blow up simultaneously while the others remain bounded up to time T ,
then (

Un−2(t), Un(t)
) ∼ (

(T − t)
− 1

2(pn−2−1) , (T − t)−
1

2(pn−1)
)
.

Proof. The proof is similar to the scale case [7]. We omit the detail here. �
By now, we get Proposition 3.2.
Finally, we consider the case for i = n and k = n − 1. Similarly to Proposition 3.1, we give the following proposition

without proof.

Proposition 3.3. If qn + 1 < pn and q1 + 1 < p1 , then there exist suitable initial data such that u1, un blow up simultaneously at
some time T while the others remain bounded up to T . Moreover,(

U1(t), Un(t)
) ∼ (

(T − t)
− 1

2(p1−1) , (T − t)
− p1−1−q1

2(p1−1)(pn−1)
)
.

At the end of this section, we give the result on n = 2.
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Theorem 3.2. Assume n = 2. If q1 + 1 < p1 and q2 + 1 < p2 , then there exist suitable initial data such that u1, u2 blow up simulta-
neously at some time T . Moreover, for N = 1,

(
U1(t), U2(t)

) ∼ (
(T − t)

− 1+q2−p2
2[q2q1−(1−p1)(1−p2)] , (T − t)

− 1+q1−p1
2[q2q1−(1−p1)(1−p2)] ).

Proof. Simultaneous blow-up of (u1, u2) can be proved similarly to the proof of Proposition 3.1. The blow-up rate estimates
can be followed by Theorem 2.1 [24]. �
Remark 3.1. By Theorems 3.1 and 3.2, one can check that all of the cases for the existence of the initial data such that only
two components blow up simultaneously with the other ones remaining bounded are discussed (i.e., the discussion on the
classification of n, i, and k is complete). Furthermore, qi + 1 < pi and qi−k + 1 < pi−k is the coexistent region. In fact, there
exist initial data such that ui (or ui−k) blows up alone (by Theorem 2.2), and there also exist initial data such that ui−k and
ui blow up simultaneously with the others remaining bounded by Theorem 3.1 (n � 3) and Theorem 3.2 (n = 2). All of the
blow-up rates for (ui−k, ui) are obtained. It is interesting that the representations of blow-up rates are quite different with
respect to different values of n, i, and k.

4. Non-simultaneous and simultaneous blow-up for every initial data

In this section, we will discuss the exponent regions where k (∈ {1,2, . . . ,n}) components blow up while the other
(n − k) ones remain bounded for every initial data.

Theorem 4.1. Fix i ∈ {1,2, . . . ,n} and define βi = 1
2(pi−1)

. Assume pm � 1 < pi (m = 1,2, . . . , i − 1, i + 1, . . . ,n).

(i) If k ∈ {0,1, . . . ,n − 2}, β j := 1
2 −q j+1β j+1

p j−1 > 0, p j < 1 ( j = i − 1, i − 2, . . . , i − k), qi−kβi−k < 1
2 , then ui−k, ui−k+1, . . . , ui blow

up simultaneously while the other (n − k − 1) components remain bounded for every initial data in V0 . Moreover,

(
Ui−k(t), Ui−k+1(t), . . . , Ui(t)

) ∼ (
(T − t)−βi−k , (T − t)−βi−k+1 , . . . , (T − t)−βi

)
. (4.1)

(ii) If k = n − 1, β j := 1
2 −q j+1β j+1

p j−1 , p j < 1 ( j = i − 1, i − 2, . . . , i + 1 − n), β j > 0 ( j = i − 1, i − 2, . . . , i + 2 − n), βi+1−n � 0, then

u1, u2, . . . , un blow up simultaneously for every initial data in V0 .

Remark 4.1. For n � 2 and N � 1, Theorems 4.1(i) shows the exponent regions where non-simultaneous blow-up occurs with
only k (∈ {1,2, . . . ,n − 1}) components blowing up simultaneously for every initial data, which consists with Theorem 2.4(I)
of [25] (n = 2 and N = 1) for l11 = l12 = l21 = l22 = 0 and Theorem 1.6 of [2] (n = 2 and N = 1) for semilinear system;
Case (ii) gives the result on all of the components blowing up simultaneously for every initial data, which is compatible
with Theorem 2.1 for l11 = l12 = l21 = l22 = 0 in [25] (n = 2 and N = 1) and Theorem 1.1 for semilinear system in [2] (n = 2
and N = 1).

Without loss of generality, we prove the case i = n by three lemmas. So βn = 1
2(pn−1)

. The first lemma deals with the
case (i) for k = 0.

Lemma 4.1. If pm � 1 < pn (m = 1,2, . . . ,n − 1) and qnβn < 1
2 , then only un blows up while the others remain bounded for every

initial data in V0 . Moreover, Un(t) ∼ (T − t)−βn .

Proof. This proof consists of three steps.

Step 1. un must be the blow-up component. Otherwise, u1, u2, . . . , un−1 would remain bounded also for pm � 1 (m =
1,2, . . . ,n − 1). It is a contradiction.

Step 2. u1, u2, . . . , un−1 remain bounded and un � C(T − t)−βn . For pn > 1, we have un � C(T − t)−βn by Lemma 2.1. By
Green’s identity, for 0 < z < t < T ,

Un−1(t) � Un−1(z) + C U
pn−1
n−1 (t)(T − z)

1
2 −qnβn .

We claim that un−1 remains bounded up to blow-up time T . Otherwise, there would exist z j → T such that

C(T − z j)
1
2 −qnβn < 1

4 , Un−1(z j) > 1, Un−1(z j) → +∞ as j → +∞. Take t j such that Un−1(z j) = 1
2 Un−1(t j). We obtain a

contradiction: 1 Un−1(t j) < 1 Un−1(t j). Then um (m = n − 2,n − 3, . . . ,1) remains bounded for pm � 1, recursively.
2 4
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Step 3. Un(t) � c(T − t)−βn . As u1 remains bounded up to time T , it can be understood that the blow-up rate of un is
equivalent to that of the scalar case [7]. �

Next, we prove case (i) for k = 1. The other subcases k ∈ {2,3, . . . ,n − 2} can be obtained similarly.

Lemma 4.2. If pm � 1 < pn (m = 1,2, . . . ,n − 2), pn−1 < 1, βn−1 := 1
2 −qnβn

pn−1−1 > 0, and 1
2 − qn−1βn−1 > 0, then un−1 and un blow

up simultaneously while the other (n − 2) components remain bounded for every initial data in V0 . Moreover,(
Un−1(t), Un(t)

) ∼ (
(T − t)−βn−1 , (T − t)−βn

)
.

Proof. This proof is divided into four steps.

Step 1. Both un−1 and un are the blow-up components. We claim that un is the blow-up component. If not, the other
components would remain bounded for pm � 1 (m = 1,2, . . . ,n − 2) and pn−1 < 1, a contradiction. We say that un−1 is also
the blow-up component. Otherwise, u1, u2, . . . , un−2 would remain bounded. Let u1 � C . Then un satisfies ∂un

∂η � Cq1 upn
n for

(x, t) ∈ ∂ B R × (0, T ). By Green’s identity and (1.1), Un(t) � Un(z) + C(T − z)
1
2 U pn

n (t). Since un blows up, one can take z such
that 2Un(z) = Un(t) for t near T . Then Un(z) � c(T − z)−βn . So we have

1

2
Un−1(t) � c

t∫
0

(T − τ )−qnβn (t − τ )−
1
2 dτ .

The boundedness of Un−1 requires 1
2 > qnβn , and hence βn−1 < 0, which contradicts βn−1 > 0.

Step 2. The upper estimates of un−1 and un. We know from Lemma 2.1 that un � C(T − t)−
1

2(pn−1) . Combining Green’s
identity with the upper estimate for un , we have

Un−1(t) � Un−1(z) + C(T − z)
1
2 −qnβn U

pn−1
n−1 (t).

Take z such that Un−1(z) = 1
4 Un−1(t). Then Un−1(t) � C(T − t)−βn−1 .

Step 3. The boundedness of u1, . . . , un−2 . This part is similar to Step 2 of Lemma 4.1.

Step 4. The lower estimates for un−1, un. Assume u1 � C . Then by Green’s identity and (1.1), Un(t) � c(T − t)−βn . Combining
the lower estimate of Un with (1.1), we have

Un−1(t) � c

t∫
z

U
pn−1
n−1 (τ )(T − τ )−βnqn− 1

2 dτ .

Define J (t) = ∫ t
z U

pn−1
n−1 (τ )(T − τ )−βnqn− 1

2 dτ , then J ′(t) � c J pn−1 (t)(T − t)−βnqn− 1
2 , so

J−pn−1(t) J ′(t) � c(T − t)−βnqn− 1
2 .

Integrating the above inequality from z to t and taking z = 2t − T , we have U
1−pn−1
n−1 (t) � c J 1−pn−1 (t) � c(T − t)

1
2 −βnqn , and

hence Un−1(t) � c(T − t)−βn−1 . �
Then we prove case (ii).

Lemma 4.3. If β j := 1
2 −q j+1β j+1

p j−1 , p j < 1 < pn ( j = 1,2, . . . ,n − 1), and β1 � 0, β j > 0 ( j = 2,3, . . . ,n − 1), then u1, u2, . . . , un

blow up simultaneously for every initial data in V0 .

Proof. Due to pn > 1, the solution of (1.1) must blow up for every initial data. We claim that un is the blow-up component.
Otherwise, un−1, un−2, . . . , u1 would remain bounded. Next, we prove that un−1 also blow up. If not, un−2, un−3, . . . , u1
would be bounded up to blow-up time T . Let u1 � C . It is easy to get from Green’s identity that Un(t) � c(T − t)−βn .

Combining the lower estimate of Un with Green’s identity, we have Un−1(t) � c
∫ t

0 (T − τ )− 1
2 −qnβn dτ . The boundedness

of Un−1 requires that 1
2 > qnβn , so βn−1 < 0, a contradiction. Then un−1 must blow up. By Step 4 of Lemma 4.2, we

have Un−1(t) � c(T − t)−βn−1 . By the similar method, we obtain that um must be the blow-up component and Um(t) �
c(T − t)−βm (m = n − 2,n − 3, . . . ,2). For β1 � 0, u1 also blows up at time T , similarly. That means u1, u2, . . . , un must blow
up simultaneously. �

So Theorem 4.1 is proved.
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Remark 4.2. As for βi−k = 0 (k � 1) in Theorem 4.1(i), we can also obtain that ui−k , ui−k+1, . . . , ui blow up simultaneously
while the other (n − k − 1) components remain bounded for every initial data in V0, but fail to obtain (4.1) here. In fact,
without loss of generality, we only prove i = n and k = 1. We can easily obtain that both un−1 and un are the blow-up
components by changing βn−1 > 0 to βn−1 = 0 in the last line of Step 1 in Lemma 4.2. And then by Green’s identity, one

can obtain Un−1(t) � C(ln 1
T −t )

1
1−pn . Then

Un−2(t) � Un−2(z) + C∗U
pn−2
n−2 (t)

t∫
z

(
ln

1

T − τ

) qn−1
1−pn

(t − τ )−
1
2 dτ . (4.2)

We claim un−2 remains bounded. Otherwise, there would exist z j such that z j → T , 1 < Un−2(z j) → +∞ as j → +∞,

(ln 1
T −τ )

qn−1
1−pn � (T − τ )− 1

4 for τ ∈ (z j, T ), 4C∗(T − z j)
1
4 < 1

4 . Take t j such that Un−2(t j) = 2Un−2(z j). Then (4.2) turns into
1
2 Un−2(t j) � 1

4 Un−2(t j), a contradiction. So un−2 remains bounded. Due to pm � 1 (m = n − 3,n − 4, . . . ,1), we can obtain
the boundedness of un−3, un−4, . . . , u1 recursively.

Theorem 4.1(i) gives the results on k + 1 (k ∈ {0,1, . . . ,n − 2}) components blowing up while the other (n − k − 1) ones
remaining bounded for every initial data. In the following theorem, if we restrict k ∈ {0,1, . . . ,n − 3}, then pi+1 can be
extended from pi+1 � 1 to 1 < pi+1 � qi+1 + 1.

Theorem 4.2. Fix i ∈ {1,2, . . . ,n} and define βi = 1
2(pi−1)

. Assume pm � 1 < pi (m = 1,2, . . . , i − 1, i + 2, . . . ,n) and 1 < pi+1 �

qi+1 + 1. If k ∈ {0,1, . . . ,n − 3}, β j := 1
2 −q j+1β j+1

p j−1 > 0, p j < 1 ( j = i − 1, i − 2, . . . , i − k), qi−kβi−k < 1
2 , then ui−k, ui−k+1, . . . , ui

blow up simultaneously while the other (n − k − 1) ones remain bounded for every initial data in V0 . Moreover,

(
Ui−k(t), Ui−k+1(t), . . . , Ui(t)

) ∼ (
(T − t)−βi−k , (T − t)−βi−k+1 , . . . , (T − t)−βi

)
.

We use two lemmas to prove it. Without loss of generality, we only give the proof for i = n − 1. So βn−1 = 1
2(pn−1−1)

.
First, we deal with the subcase k = 0.

Lemma 4.4. Assume pm � 1 < pn−1 (m = 1,2, . . . ,n − 2). If qn−1βn−1 < 1
2 and 1 < pn � qn + 1, then only un−1 blows up for every

initial data in V0 . Moreover, Un−1(t) ∼ (T − t)−βn−1 .

Proof. Firstly, we will show that non-simultaneous blow-up happens with u1, u2, . . . , un−2 remaining bounded up to blow-
up time T for every initial data in V0. One can prove that Un−1(t) � C(T − t)−βn−1 . Also by Green’s identity,

Un−2(t) � Un−2(z) + C∗U
pn−2
n−2 (t)(T − z)

1
2 −qn−1βn−1 .

We claim that un−2 is bounded up to time T . If not, there would exist z j → T such that Un−2(z j) > 1, Un−2(z j) → +∞ as

j → +∞, and C∗(T − z j)
1
2 −qn−1βn−1 < 1

4 . Take t j such that Un−2(t j) = 2Un−2(z j). So 1
2 Un−2(t j) < 1

4 Un−2(t j), a contradiction.
Considering pm � 1 (m = 1,2, . . . ,n − 3), one can obtain the boundedness of un−3, un−4, . . . , u1, recursively.

Secondly, we will prove that un also remains bounded up to time T . Assume that un blows up at T . By the boundedness

of u1, we obtain Un(t) � C1(T − t)−
1

2(pn−1) . So un−1 satisfies that ∂un−1
∂η � Cqn

1 (T − t)−
qn

2(pn−1) u
pn−1
n−1 , (x, t) ∈ ∂ B R × (0, T ).

Consider the auxiliary problem⎧⎪⎪⎨
⎪⎪⎩

(un−1)t = �un−1, (x, t) ∈ B R × (0, T n−1),

∂un−1

∂η
= Cqn

1 (T − t)−
qn

2(pn−1) u
pn−1
n−1 , (x, t) ∈ ∂ B R × (0, T n−1),

un−1(x,0) = un−1,0(x), x ∈ B R ,

(4.3)

where un−1,0(x) satisfies the compatibility conditions and �un−1,0(x) � 0, un−1,0(x) � un−1,0(x) for x ∈ B R . Then we have
un−1 � un−1 and T � T n−1 by the comparison principle. But problem (4.3) means T n−1 � T . Hence T n−1 = T . By Green’s
identity,

U n−1(t) � c

t∫
0

U
pn−1
n−1 (τ )

(T − τ )
1
2 + qn

2(pn−1)

dτ = cW (t). (4.4)

It is easy to see that W (t) blows up at time T . By (4.4),

W −pn−1 (t)W ′(t) � c(T − t)−( 1
2 + qn

2(pn−1)
)
.
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Integrating the above inequality from T
2 to t , we obtain that

1

pn−1 − 1

(
W 1−pn−1

(
T

2

)
− W 1−pn−1 (t)

)
� c

t∫
T
2

(T − τ )
−( 1

2 + qn
2(pn−1)

) dτ = I(t). (4.5)

For pn � qn + 1, I(t) → +∞ as t → T . It is a contradiction to the boundedness of the left part of (4.5). So un still remains
bounded up to time T . Then only un−1 blows up. The blow-up rate estimates can also be followed by the scale case
(see [7]). �

Second, we consider subcase k = 1. The other subcases of k can be proved similarly.

Lemma 4.5. If pm � 1 < pn−1 (m = 1,2, . . . ,n − 3), pn−2 < 1, 1 < pn � qn + 1, βn−2 := 1
2 −qn−1βn−1

pn−2−1 > 0, qn−2βn−2 < 1
2 , then un−2

and un−1 blow up simultaneously while the other (n − 2) components remain bounded for every initial data in V0 . Moreover,(
Un−2(t), Un−1(t)

) ∼ (
(T − t)−βn−2 , (T − t)−βn−1

)
.

Proof. We claim that whether un−2 is bounded or not, u1 always remains bounded. If un−2 is bounded up to time T ,
then un−3, un−4, . . . , u1 are bounded also. Assume that un−2 blows up at time T . Since pn−1 > 1, we have Un−1(t) �
C(T − t)−βn−1 . Combining Green’s identity with the upper estimate of un−1, we have

Un−2(t) � Un−2(z) + C U
pn−2
n−2 (t)(T − t)

1
2 −qn−1βn−1 , 0 < z < t < T .

Take z such that Un−2(z) = 1
4 Un−2(t). Then Un−2(t) � C(T − t)−βn−2 . By Green’s identity,

Un−3(t) � Un−3(z) + C U
pn−3
n−3 (t)(T − z)

1
2 −qn−2βn−2 .

Similarly to Step 2 of Lemma 4.1, we obtain that un−3 is bounded. Then un−4, un−5, . . . , u1 are bounded for pn−4, pn−5,

. . . , p1 � 1.
By the similar method used in Lemma 4.4, one can check that un also remains bounded up to time T . It is easy to see

that un−1 is the blow-up component. In fact, if un−1 remains bounded up to time T , then un−2 will be bounded also for
pn−2 < 1, a contradiction with at least one component blowing up. By the method of Lemma 4.2, we obtain the blow-up
property of un−2 and the blow-up rates of un−2 and un−1. �

In the following, we show another result on n (� 2) components blowing up simultaneously.

Theorem 4.3. If p1, p2, . . . , pn � 1 and
∏n

j=1 q j − ∏n
j=1(1 − p j) > 0, then u1, u2, . . . , un blow up simultaneously for every initial

data.

Proof. Without loss of generality, assume that un would remain bounded up to the blow-up time T . Then the others would
be bounded also for pi � 1 (1 � i � n − 1). Due to

∏n
j=1 q j − ∏n

j=1(1 − p j) > 0, it contradicts to Theorem 2.1. �
Similarly to Theorem 4.1 of [7] or Theorem 4.8 of [9], we have the following result.

Theorem 4.4. If ui blows up with Ui(t) � C(T − t)−α for any i ∈ {1,2, . . . ,n}, then the blow-up only can occur on the boundary.
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