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The determination of the quantum area spectrum of a black hole horizon by means of its asymptotic
quasinormal frequencies has been explored recently. We believe that for D-dimensional de Sitter horizon
we must study if the idea works. Thus taking into account the local description of the thermodynamics
of horizons proposed by Padmanabhan and the results of Hod, Kunstatter, and Maggiore we study the
area spectrum of the D-dimensional de Sitter horizon.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Supposing that the horizon area of a black hole is an adia-
batic invariant and taking into account Ehrenfest principle, in 1974
Bekenstein proposed that the horizon area of a black hole in equi-
librium has a discrete and equally spaced spectrum of the form
[1–4]

An = εh̄n, n = 0,1,2, . . . , (1)

where ε is a coefficient of order 1. There are several proposals for
the value of ε , among these ε = 8π and ε = 4 ln(k), where k is an
positive integer, frequently appear in the literature. See [5–30] for
some references.

The exact value of the quantity ε must be determined by a
quantum theory of the gravity. Nevertheless the computation of ε
by means of semiclassical methods has been previously explored.
In this research line, in Ref. [15] Hod suggested that in the semi-
classical limit the quantum of the black hole area can be deter-
mined from the asymptotic value of the real part of the complex
quasinormal frequencies (QNF).1 This proposal is usually known as
Hod’s conjecture.

E-mail address: alopezo@ipn.mx.
1 The QNF are the oscillation frequencies of a field that satisfies the radiation

boundary conditions of a spacetime. For extensive reviews on the computation and
application of the QNF in several research lines see Refs. [31–33].
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Using the spectrum of the quasinormal modes (QNM) [31–33]
and Bohr’s correspondence principle Hod was able to deduce the
value of 4 ln(3)h̄ for the quantum of area for four-dimensional
Schwarzschild black hole [15]. This value is according to a rigorous
statistical interpretation of its entropy [3–6,15,21]. Owing to these
facts, Hod’s proposal increases the interest in the search for a sta-
tistical derivation of the black hole entropy and in the quantization
of the corresponding horizon area. See for example Refs. [16–20]
where these ideas are explored.

Based on Hod’s conjecture, in Ref. [21] Kunstatter explains a
method that allows to fix the spacing of the area spectrum for
Schwarzschild black hole from the asymptotic value of its QNF.
Key points in Kunstatter’s analysis are Hod’s conjecture, the first
law of thermodynamics for the spacetime under study, and Bohr–
Sommerfeld quantization of a classical adiabatic invariant [21].

Nevertheless Hod’s conjecture has found some difficulties [22,
23]. For example, in Ref. [15] Hod considered transitions from the
ground state to excited states with large n [22]. Also the asymp-
totic value of the real part of the QNF is not universal, it can
depend on the field type and spacetime studied [22,23]. Another
problem is that for Kerr black hole it predicts a discrete but not
equally spaced area spectrum [16], however for this black hole we
expect an equally spaced area spectrum [1–4,8].

To overcome some of these difficulties, in Ref. [22] Maggiore
suggested that the QNM of a black hole can be described as a set
of damped harmonic oscillators. Based on this suggestion and on

https://core.ac.uk/display/82395599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:alopezo@ipn.mx
http://dx.doi.org/10.1016/j.physletb.2009.10.091
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


86 A. López-Ortega / Physics Letters B 682 (2009) 85–88
Hod’s ideas, Maggiore proposed that in the semiclassical limit the
quantum of area for black holes is determined by the sometimes
called the physical frequency (see below) [22]

ω0,n =
√

ω2
R,n + ω2

I,n, (2)

where ωR,n and ωI,n stand for the real and imaginary parts of the
QNF for the black hole. Using this proposal Maggiore found that
the area quantum of the Schwarzschild black hole is equal to 8π h̄
(that is ε = 8π , see below). This value coincides with that previ-
ously obtained by Bekenstein and others using different methods
[1–4,7–14,22,24–26].

Recently the consequences of Maggiore’s proposal have been
studied in the following spacetimes, a) four-dimensional Schwarz-
schild black hole [22,24], b) four-dimensional Kerr spacetime
[25,26], c) three-dimensional static BTZ black hole [24], d) five-
dimensional static Gauss–Bonnet black hole [24] (see also [30]),
e) four-dimensional near extreme Schwarzschild de Sitter black
hole [27], f) three-dimensional rotating black hole of the Ein-
stein–Maxwell-dilaton with cosmological constant theory [28],
g) three-dimensional and five-dimensional large anti de Sitter
black holes [29].

Some of the results obtained in Refs. [22,24–26] are the fol-
lowing, a) the quantum of area is equal for four-dimensional
Schwarzschild and Kerr black holes [22,24–26], b) for three-
dimensional static BTZ black hole the quantum of area depends on
the cosmological constant [24], c) the quantum of area for black
hole horizons can be different for gravity theories distinct from
general relativity [24].

The de Sitter spacetime is a maximally symmetric solution to
Einstein’s equations. This simple solution has been studied thor-
oughly (see for example the reviews [34,35]), and it is known that
the de Sitter spacetime has a horizon. According to Gibbons and
Hawking the de Sitter horizon, like to the black hole horizon, is
endowed with a temperature and entropy [36]. Nevertheless the
de Sitter horizon, unlike to the black hole horizon, is observer de-
pendent and the observer is located “inside the horizon” [34,35].

Owing to the observer dependence of the de Sitter horizon, it is
usually believed that the de Sitter spacetime does not satisfies the
analogous to the laws of black hole thermodynamics. Nevertheless,
according to Padmanabhan some thermodynamical properties of
the de Sitter and black hole horizons can be studied on the same
basis, for example, their temperatures, their entropies, and the first
law of thermodynamics [37–39]. For our aims we only comment
that the local description of the thermodynamics of horizons given
in Refs. [37–39] provides a consistent interpretation of the relation
T dS = dE + P dV in de Sitter spacetime, and we use this formula-
tion in Sections 2 and 3.

In this Letter, taking into account the suggestion that the
asymptotic QNF determine the area spectrum of a horizon we cal-
culate the area quantum corresponding to the de Sitter horizon.
In order to compute this quantum of area we use Padmanabhan’s
results on the first law of thermodynamics in de Sitter spacetime
[37–39], Hod’s ideas [15], Kunstatter’s method [21], and Maggiore’s
proposal [22].

Among the reasons we have to study this question we enumer-
ate the following, a) to investigate if the ideas by Hod, Kunstatter,
and Maggiore work for de Sitter horizon, which in some details
is different from the black hole horizon, b) if these suggestions
work, then to find the quantum of area for de Sitter horizon and
compare it with the quantum of area corresponding to black hole
horizons, c) to study if the quantum of area for de Sitter spacetime
depends on the value of the cosmological constant, d) to analyze if
the quantum of area for de Sitter spacetime depends on the space-
time dimension.
The remainder of the Letter is organized as follows. Following
Refs. [37–39] in Section 2 we expound a consistent form of the
first law of thermodynamics for de Sitter spacetime. In Section 3
we use the ideas by Hod, Kunstatter, and Maggiore to calculate the
quantum of area corresponding to the de Sitter horizon. Finally in
Section 4 we discuss the obtained results.

2. First law of thermodynamics for de Sitter spacetime

In this Letter we calculate the area spectrum of the D-
dimensional de Sitter horizon, hence here we enumerate some
physical properties of this spacetime. In static coordinates the D-
dimensional de Sitter metric takes the form2 [34,35]

ds2 = −
(

1 − r2

L2

)
dt2 +

(
1 − r2

L2

)−1

dr2 + r2 dΩ2
D−2, (3)

where dΩ2
D−2 is the line element of the unit (D − 2)-dimensional

sphere, L is known as the curvature radius and is related to the
cosmological constant Λ by the expression

L2 = (D − 1)(D − 2)

2Λ
. (4)

As is well known in de Sitter spacetime (3), an observer at r = 0 is
surrounded by a horizon located at r = L [34,35].

For de Sitter horizon we use the formulation of the first law
of thermodynamics expounded in Refs. [37–39], because it pro-
vides consistent definitions of temperature, entropy, and energy
for de Sitter spacetime. According to Padmanabhan the first law
of thermodynamics for de Sitter horizon takes the form [37–39]

T dS = dE + P dV , (5)

where T is the Hawking temperature [36]

T = h̄

2π L
, (6)

S stands for de Sitter entropy, that according to Bekenstein–
Hawking area-entropy law is related to the area A by [34,35]

A = 2π(D−1)/2

�( D−1
2 )

LD−2 = 4h̄S, (7)

V is the volume of the accessible region to an observer in de Sitter
spacetime

V = π(D−1)/2

�( D+1
2 )

LD−1, (8)

P is the constant pressure, and E is the energy

E = −π(D−3)/2(D − 2)

8�( D−1
2 )

LD−3. (9)

We notice that �(x) stands for the gamma function.
The term P dV in the thermodynamical relation (5) is added

for consistency because the de Sitter spacetime is a non-vacuum
solution to the equations of general relativity with a source having
nonzero pressure [37–39].

Notice that in Refs. [37–39] is studied the four-dimensional
de Sitter spacetime. Here following Section 2 of Ref. [40] we write
the results for D-dimensional de Sitter spacetime. For D = 4 the
formulas (7)–(9) reduce to those of Refs. [37–39].

2 Notice that the static coordinates cover the region of the de Sitter spacetime
that an observer can probe.
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3. Quantum of area for D-dimensional de Sitter horizon

In this section our aim is to use the ideas by Hod, Kunstat-
ter, and Maggiore to find the quantum of area for D-dimensional
de Sitter horizon, hence we note that the QNF of the gravitational
perturbations (GP) in D-dimensional de Sitter spacetime are equal
to [41,42]

ω = − i

L
(l + D − 1 − q + 2n),

ω = − i

L
(l + q + 2n), (10)

where n = 0,1, . . . , q = 0 for tensor type GP, q = 1 for vector type
GP, q = 2 for scalar type GP, and l is the orbital angular momentum
number.3 From the previous formulas for the QNF of the de Sitter
background we find that ωR,n = 0, hence we believe that Hod’s
conjecture does not work in this spacetime.

It is convenient to note that for odd-dimensional de Sitter
spacetimes the first formula in Eqs. (10) gives the QNF that already
produced the second formula, thus these formulas are redundant
in odd dimensions. For even-dimensional de Sitter spacetimes the
two formulas in Eqs. (10) produce different QNF, thus in even di-
mensions we have two sets of QNF.

For even and odd dimensions, in the asymptotic limit n → ∞,
the QNF of the de Sitter spacetime (10) have identical behavior
and reduce to

ω ≈ −i
2n

L
. (11)

Thus we find that for de Sitter spacetime the physical frequency
ω0,n of the formula (2), in the asymptotic limit, is given by

ω0,n = 2n

L
. (12)

First, taking into account that the area of the de Sitter horizon
is an adiabatic invariant [47], Hod’s ideas [15], and Maggiore’s pro-
posal [22] here we calculate the quantum of the de Sitter horizon
area spectrum. According to Maggiore, under a perturbation, the
change in the mass of a black hole �M is given by �M = h̄�ω,
where �ω is identified with the difference between adjacent phys-
ical frequencies ω0,n of the formula (2) in the asymptotic limit
n → ∞.

Hence we propose that a change in the parameters of the
de Sitter spacetime is determined by

dE + P dV = h̄�ω, (13)

where we include the additional term P dV in left-hand side of
the formula (13) because we expect that a variation in the energy
of the de Sitter spacetime also include a work term. Similar to
the black holes, in de Sitter spacetime we propose that �ω is the
difference between adjacent physical frequencies in the asymptotic
limit. Therefore from the formula (12) we get

�ω = ω0,n+1 − ω0,n = 2

L
= 4π T

h̄
. (14)

3 The QNF of the boson and fermion fields in D-dimensional de Sitter spacetime
for D � 3 were calculated exactly in Refs. [41–46]. It is convenient to notice that
in Ref. [41] it was stated that the QNF of the de Sitter spacetime are well defined
only in odd dimensions (see also Appendix A of Ref. [43]). In Refs. [42,44] it was
shown that the QNF of the de Sitter spacetime are well defined in odd and even
dimensions. Also we point out that the formulas (10) determine the QNF for the
massless Klein–Gordon field (q = 0), the mode II of the electromagnetic field (q = 1),
and the mode I of the electromagnetic field (q = 2) [42].
From the thermodynamical relation (5), and the formulas (7),
(13), and (14) we get

h̄
2

L
= T

dA

4h̄
= 1

2π L

dA

4
. (15)

Therefore, following Hod and Maggiore, we find that the quantum
of area for D-dimensional de Sitter horizon is equal to

�A = 16π h̄, (16)

thus ε = 16π for D-dimensional de Sitter horizon.
Now with Kunstatter’s method and Maggiore’s proposal we cal-

culate the quantum of area for de Sitter horizon, but before we
expound the case of the four-dimensional Schwarzschild black hole
to show how it works [22,24]. It is well known that for a system
of energy E and characteristic frequency �ω the quantity

I =
∫

dE

�ω
, (17)

is an adiabatic invariant [21]. Also, in the semiclassical limit, Bohr–
Sommerfeld quantization states that an adiabatic invariant has an
equally spaced spectrum

I = nh̄. (18)

From the expression for the asymptotic QNF of the Schwarz-
schild black hole [48–50], for the difference between adjacent
physical frequencies in the asymptotic limit we get [22–24]

�ω = 1

4M
. (19)

In the semiclassical limit the adiabatic invariant I satisfies the for-
mula (18), hence we get

I = A

8π
= nh̄, (20)

and finally that the quantum of area for Schwarzschild black hole
is equal to [22,24]

�A = 8π h̄, (21)

as we previously mentioned.
Using Maggiore’s proposal [22] and the ideas by Kunstatter [21]

we calculate the quantum of area for de Sitter horizon as follows.
From the results of Padmanabhan on the thermodynamics of the
D-dimensional de Sitter horizon previously expounded in Section 2
and following Setare and Vagenas [16], Vagenas [25], and Med-
ved [26], for de Sitter spacetime the analogous to the adiabatic
invariant I of the formula (17) is

I =
∫

dE + P dV

�ω
, (22)

where we take �ω as in the formula (14).
From the formulas of E , P , and V for D-dimensional de Sitter

spacetime given in Section 2 we obtain that the postulated adia-
batic invariant (22) is equal to

I = π(D−3)/2(D − 2)

4�( D−1
2 )

1

2

∫
LD−3 dL

= 1

16π

2π(D−1)/2LD−2

�( D−1
2 )

. (23)

Taking into account the expression for the area of the D-dimen-
sional de Sitter horizon (7) we find
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I = A

16π
, (24)

and therefore, from the formula (18), we get that the area spec-
trum of the de Sitter horizon is equal to

An = 16π h̄n. (25)

Thus, from this formula, we find that the spacing of the area
spectrum for D-dimensional de Sitter spacetime takes the same
form given in the formula (16), already calculated with Hod’s pro-
posal and Maggiore’s suggestion. Similar to the Schwarzschild and
Kerr black holes [22,24–26], both methods give identical results for
the quantum of area for D-dimensional de Sitter spacetime. Owing
to Bekenstein–Hawking area-entropy law (7), the spacing of the
entropy spectrum for D-dimensional de Sitter horizon is

�S = 4π. (26)

Notice that the expression (16) for the quantum of area for D-
dimensional de Sitter horizon does not depend on the spacetime
dimension. In Ref. [24] it was found that for three-dimensional
static BTZ black hole the quantum of area depends on the cosmo-
logical constant.4 For D-dimensional de Sitter horizon the quan-
tum of area (16) is independent of the cosmological constant.

As we commented before, for Schwarzschild black hole was
found that the quantum of area takes the form (21). Comparing
this result with the expression (16) we get that the area quantum
for D-dimensional de Sitter horizon is twice as big as the cor-
responding to the horizon of the four-dimensional Schwarzschild
black hole.

4. Discussion

We find that Hod’s ideas, Maggiore’s suggestion, and Kunstat-
ter’s method work in de Sitter spacetime and allow us to calculate
the area spectrum of the de Sitter horizon. The computed value of
the area quantum of the de Sitter spacetime (16) is twice as big
as the corresponding to the Schwarzschild black hole (21). Also
its value does not depend on the spacetime dimension and on
the cosmological constant. Our result for the quantum of area for
de Sitter spacetime points out that in general relativity the quan-
tum of area is different for de Sitter and black hole horizons.

For calculating the physical frequencies ω0,n of the de Sitter
spacetime instead of taking the asymptotic limit of the QNF as in
Section 3, we can use the exact results of the QNF (10), with l
fixed. From these exact values we get that for all n the difference
between adjacent physical frequencies is also given by the formula
(14). Thus we get the same value of �ω previously calculated in
the asymptotic limit. In Section 3 we take the asymptotic limit in
order to use Bohr’s correspondence principle [15], however if the
previous fact has other implications deserves detailed study.

In Ref. [27] for near extremal Schwarzschild de Sitter black hole
the value of its area quantum was calculated with the second
method used in the previous section (see also [18]). The computed
value in Ref. [27] for the quantum of area is �A = 24π h̄ (which
is the sum of the area quantums corresponding to Schwarzschild
and de Sitter spacetimes). However it has been shown that the
near extremal charged black holes and the near extremal rotating
black holes are highly quantum objects [8–10]. If the near extremal
Schwarzschild de Sitter spacetime behaves in a similar way to the
near extremal charged or rotating black holes deserves detailed
study to support the results of Ref. [27].

4 In Ref. [24] for three-dimensional static BTZ black hole was calculated an

area spectrum of the form An = 2π h̄n/
√

Λ, hence the quantum of area is �A =
2π h̄/

√
Λ, where Λ denotes the three-dimensional cosmological constant.
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