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Abstract

In this paper we bring together results from a series of previous papers to prove the constructive
version of the Gelfand duality theorem in any Grothendieck toposE, obtaining a dual equivalence
between the category of commutative C∗-algebras and the category of compact, completely regular
locales in the toposE.
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1. Introduction

In this paper, we establish that Gelfand duality holds between the category of
commutative C∗-algebras and the category of compact, completely regular locales in any
Grothendieck topos. It should be remarked immediately that this result represents the
final step in a chain of preliminary papers that have appeared over a period of time.
Indeed, the work contained in these papers was originally presented at the International
Meeting on Categorical Topology held in Ottawa in 1980, of which the details were
published in a widely circulated preprint (Banaschewski–Mulvey [4]) several years later,
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the length of which made immediate publication difficult. In a sequence of papers that
followed (Banaschewski–Mulvey [3,5–7]), many of the results that provide the natural
components from which Gelfand duality is derived were published independently. With
some preliminaries to recall the conceptual framework within which the result is set and to
make this paper readable without continual reference to its predecessors, these are finally
hereassembled to prove the Gelfand duality theorem.

The Gelfand duality which is proved consists in the main of two results: firstly,
that any commutative C∗-algebra A is canonically isometrically *-isomorphic to the
commutative C∗-algebraC(Max A) of continuous complex functions on the compact,
completely regular locale MaxA that is its maximal spectrum; and secondly, that any
compact, completely regular localeM is canonically isomorphic to the maximal spectrum
Max C(M) of its commutative C∗-algebra of continuous complex functions. Evidently,
each of these assertions has to be set within the constructive context of the Grothendieck
topos within which we are working, with which the preliminary sections will be concerned.
The second of these results was effectively established earlier in considering one approach
to the construction of theStone–̌Cech compactification of a locale [3], togetherwith earlier
work on the maximal spectrum of a commutative C∗-algebra [19,20], although the details
adapted to the present situation will be given again here.

The constructivisation of the Gelfand theorem establishing the existence of the isometric
*-isomorphism

A→ C(Max A)

from any commutative C∗-algebra A to that of continuous complex functions on its
maximal spectrum MaxA occupies the principal part of the paper, building on the results
established in the sequence of preliminary papers. Its conceptual context is, nevertheless,
quite straightforward, and is worth outlining at this point before becoming involved
with the detail of theproof. The first thing to note is that the existence of the Gelfand
homomorphism is an immediate consequence of the construction, or more properly, one of
the constructions, of the spectrum MaxA of the commutative C∗-algebraA, as is thecase
classically. The form of the theory of multiplicative linear functionals onA that provides
this construction canonically assigns to each elementa ∈ A a continuous complex function

â : Max A→ C

on the spectrum ofA. Equally, this construction of the spectrum yields that the locale
obtained is compact and completely regular, by inheritance from the locale of bounded
linear functionals onA which is compact and completely regular by the constructive form
of Alaoglu’s theorem (Mulvey–Pelletier [26,27]).

To obtain that the Gelfand representation is an isometric *-isomorphism requires
establishing that the spectrum MaxA may be constructed equivalently by introducing
directly a theory of the maximal spectrum, constructivising its classical introduction as the
topological space of maximal ideals of the commutative C∗-algebra. That this classically
may be identified with the space of multiplicative linear functionals is a consequence
of the Gelfand–Mazur theorem, which shows that each maximal ideal of a commutative
C∗-algebra is the kernel of a multiplicative linear functional. The constructive form of
this result is exactly the equivalence of the theory of multiplicative linear functionals with
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that of the maximal spectrum of the commutative C∗-algebra, a resultestablished in any
Grothendieck topos in one of the preliminary papers (Banaschewski–Mulvey [6,7]).

Considering the commutative C∗-algebraC(Max A) as the global sections of the sheaf
of continuous complex functions on the compact, completely regular locale MaxA, it
may be shown first, by working with the theories defining the spectrum, that the Gelfand
representation

A→ C(Max A)

is necessarily isometric in any Grothendieck topos. By a further consequence of the
constructive form of the Gelfand–Mazur theorem it may be shown that finite partitions of
unity exist subordinate to any covering of the spectrum, in turn allowing the constructive
form of the Stone–Weierstrass theorem, established in another of the preliminary papers
(Banaschewski–Mulvey [5]), to be applied to show that the image of the Gelfand
representation is exactly the commutative C∗-algebraC(Max A), thereby establishing the
Gelfand theorem.

Finally, it may be remarked that the papers establishing the Gelfand–Mazur theorem and
the Stone–Weierstrass theorem have as a common and consistent theme that these results
concerning commutative C∗-algebras at the end of the day come down to establishing
certain facts about the topology of the complex numbers in a constructive context. In
the case of the Gelfand–Mazur theorem, this is just that within any bounded region of
the complex plane the topology defined by rational open rectangles coincides with that
defined by open rational codiscs. In the case of the Stone–Weierstrass theorem, it is that
the complex rationals are dense in the complex numbers, and hence that any closed subset
that contains them is necessarily the space ofcomplex numbers itself. For the way in which
these observations translate into the theoremsasserted, the interested reader is referred to
the papers concerned (Banaschewski–Mulvey [5–7]).

It may further be remarked that, although the proofs involved in the Gelfand–Mazur
theorem and in the isometricity of the Gelfand representation depend on the topos in which
weare working being a Grothendieck topos, allowing Barr coverings to be used, these were
subsequently shown by Mulvey and Vermeulen to admit constructive proofs, along the lines
of those outlined in the case of the Hahn–Banach theorem in [25]. The tragic death of Japie
Vermeulen has introduced a further delay into the publication of these results, to which it is
hoped to return. In the meantime, a constructive proof of the Gelfand theorem in the real,
rather than complex, case, in which many of the lattice-theoretic aspects are dealt with
explicitly in the axiomatisation introduced, rather than implicitly in the complex structure,
has been obtained by Coquand [10].

2. Preliminaries

In this section, we recall the principal concepts with which we shall be concerned, the
commutative C∗-algebras and the compact, completely regular locales between which we
shall establish the Gelfand duality theorem in a Grothendieck toposE. For a more detailed
introduction to these ideas, we refer to the earlier papers (Banaschewski–Mulvey [2,3,5–7],
Mulvey [18,23]), which also provide anextensive discussion of the motivation behind
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them and, in particular, concerning the constructive context of the Grothendieck topos
within which we shall be working. For the moment, we recall the critical observation that
this context is one in which in general neither the Axiomof Choice nor the Law of the
Excluded Middle holds, requiring the concepts concerned to be adapted thoughtfully to this
situation [18]. Nevertheless, the fact that we may work within a topos, albeit constructively,
in a way that is similar to that in which we work classically will be reflected in referring
throughout to the objects constructed as sets, even though this may be far from being the
case [15].

To begin with, noting that the concepts of norm and of completeness with respect to a
norm need to be made appropriate to this constructive context, we recall the following:

Definition 2.1. By a commutativeC∗-algebra A in a Grothendieck toposE is meant a
commutative Banach *-algebra inE satisfying the condition that:

a ∈ N(q) ↔ aa∗ ∈ N(q2)

for eacha ∈ A and each positive rationalq.

It should be recalled that by a*-algebra A is meant an algebra over the field of complex
rational numbers, together with an involution satisfying the conditions that:

(1) (a+ b)∗ = a∗ + b∗;
(2) (αa)∗ = ᾱa∗;
(3) (ab)∗ = b∗a∗;
(4) a∗∗ = a,

for eacha,b ∈ A and each complex rationalα. The*-algebraA is said to beseminormed
provided that there is given a mapping

N : Q+
E
→ Ω A

from the positiverationals in E to the set ofsubsets ofA satisfying the conditions that:

(1) ∃q ∈ Q+
E

a ∈ N(q);
(2) a ∈ N(q) ∧ a′ ∈ N(q′)→ a+ a′ ∈ N(q + q′);
(3) a ∈ N(q′)→ αa ∈ N(qq′) wheneverα ∈ N(q);
(4) 0∈ N(q);
(5) a ∈ N(q) ∧ a′ ∈ N(q′)→ aa′ ∈ N(qq′);
(6) a ∈ N(q)→ a∗ ∈ N(q);
(7) 1∈ N(q) wheneverq > 1;
(8) a ∈ N(q)↔ ∃q′ < q a ∈ N(q′),

for all a,a′ ∈ A, for each complex rationalα, and for all positive rationalsq,q′. Evidently
these conditions express the properties of a seminorm in terms of the open balls which
it classically would determine. In passing, it should be noted once again that although
we have referred to a mappingfrom the positive rationals to the set of subsets ofA, this
construction is to be interpreted within the context of the Grothendieck toposE, andhence
involves the objectΩ A of subobjects ofA.
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By a Cauchy approximationon a seminormed *-algebraA is meant amapping

C : NE → Ω A

which satisfies the following conditions:

(1) ∀n ∈ NE∃a ∈ A a ∈ Cn;
(2) ∀k ∈ NE∃m ∈ NE∀n,n′ ≥ m a∈ Cn ∧ a′ ∈ Cn′ → a− a′ ∈ N(1/k).

Intuitively, this describes a sequence of subsets ofA from which a Cauchy sequence could
arbitrarily be chosen, if the Axiom of Countable Choice were available to do the choosing.
A Cauchy approximationC on a seminormed *-algebraA is said to beconvergentto an
elementb ∈ A provided that

∀k ∈ NE∃m ∈ NE∀n ≥ m a∈ Cn→ a− b ∈ N(1/k),

and the seminormed *-algebraA is said to becompleteprovided that for each Cauchy
approximationC on the algebra A there exists aunique elementb ∈ A to which C
converges. Of course, the uniqueness incorporated in this definition then implies that the
seminorm onA satisfies the condition that:

(∀q ∈ Q+
E

a ∈ N(q))→ a = 0

for eacha ∈ A, which describes the property of the seminorm onA of actually being a
norm. A commutative seminormed *-algebraA is then said to be acommutative Banach
*-algebraprovided that it is complete, to which then is added the condition

a ∈ N(q) ↔ aa∗ ∈ N(q2),

for eacha ∈ A and each positive rationalq, that describes the characterising property of a
commutative C∗-algebra interms of theopen balls ofA.

As a fundamental example of a commutative C∗-algebra in the toposE we have the
algebraCE of complex numbers inE, together with the norm defined by setting

N(q) = {a ∈ CE | |a| < q}
for each positive rationalq. It may be remarked that, although a seminormed *-algebraA is
required only to be an algebra over the complex rationals in the toposE, by completeness
any Banach *-algebra is necessarily also an algebra over the algebraCE of complex
numbers inE in a canonical way induced by its structure as an algebra over the field of
complex rationals inE. In particular, any commutative C∗-algebraA in the Grothendieck
toposE is an algebra over that of the complex numbers inE.

The other notion with which we shall be concerned is that of acompact, completely
regular locale L in a Grothendieck toposE, which is recalled in the following:

Definition 2.2. By a locale L in a Grothendieck toposE is meant a complete lattice inE
satisfying the condition that

u ∧
∨

S=
∨
{u ∧ v ∈ L | v ∈ S}

for anyu ∈ L and any subsetS of L, in which∧ denotes binary meet and
∨

arbitrary
join.
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In any localeL the rather below relation is that defined by writingv � u whenever
there existsw ∈ L suchthat

v ∧ w = 0L and w ∨ u = 1L

(or equivalently u ∨ v∗ = 1L , in whichv∗ ∈ L denotes the pseudo-complement

v∗ =
∨
{w ∈ L | v ∧w = 0L}

of v ∈ L). Moreover, thecompletely belowrelation is then defined by writingv �� u
whenever there exists a family of elementsvq ∈ L, indexed by the rationals 0≤ q ≤ 1,
for which

v0 = v , vp � vq wheneverp < q , andv1 = u.

A locale L is then said to becompactprovided that any open covering ofL admits a
finite subcovering, that is, for any subsetS of L suchthat

∨
S= 1L , theunit, that is, top

element, ofL, there exists a finite subsetT of S for which
∨

T = 1L , andcompletely
regular provided that

u =
∨
{v ∈ L | v �� u}

for anyu ∈ L, in which�� denotes the completely below relation.

The compact, completely regular locales in a Grothendieck toposE are linked
functorially to the commutative C∗-algebras inE by assigning to each such localeM the
algebraC(M) of continuous complex-valued functions onM, in a sense that we now make
precise by recalling first the following:

Definition 2.3. By a map of locales

ϕ : L → M

in a Grothendieck toposE is meant amapping

ϕ∗ : M → L,

referred to as theinverse imagehomomorphism, whichpreserves finite meets and arbitrary
joins.

In the case of the locales of open subsets of topological spaces, the notion of a map
of locales coincides with that of a continuous mapping betweenthe topological spaces
concerned. In the constructive context of a Grothendieck topos, considering locales, rather
than topological spaces, allows the development of analytical topology to proceed in a
way that is recognisably that to which one is accustomed. For instance, we have already
remarked that in the commutative C∗-algebraCE of complex numbers in the Grothendieck
toposE it is not in general the case that the closed unit disc is compact. In a sense, this
may be viewed as a perfectly reasonable consequence of the constructivity of the context,
expressing a fundamental deficiency in the concept of topological space, as compared with
the naturality of that of locale. Instead, oneshould consider the locale of complex numbers
in the toposE, and with it a concept of continuous complex function on a locale, defined
in ways that we now recall [6]:
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Definition 2.4. By thepropositional geometric theoryof complex numbers inE is meant
that obtained by introducing for each pair(r, s) of rational complex numbers inE a
primitive proposition

z ∈ (r, s),
intuitively representing the assertion that the complex numberz being described lies in the
complex rational open rectangle

r

s�
�
�
�
� ��������

��������

�
�
�
�
�

together with the following axioms:

(C1) z ∈ (r, s) � false whenever(r, s) ≤ 0;
(C2) true�∨

(r,s) z ∈ (r, s);
(C3) z ∈ (r, s) � z ∈ (p,q) ∨ z ∈ (p′,q′) whenever(r, s) � (p,q) ∨ (p′,q′);
(C4) z ∈ (p,q) ∧ z ∈ (p′,q′) � z ∈ (r, s) whenever(p,q)∧ (p′,q′) � (r, s);
(C5) z ∈ (r, s) �∨

(r ′,s′)�(r,s) z ∈ (
r ′, s′

)
,

in which the conditions involved refer to theopen subsets of the complex rational plane,
defined in algebraic terms.

Then, by thelocaleC of complex numbersin E is meant that givenby the Lindenbaum
algebra of this theory, that is to say, the locale obtained by taking the propositions of the
theory, obtained by taking arbitrary disjunctions of finite conjunctions of the primitive
propositions, modulo provable equivalence in the theory, partially ordered by provable
entailment in the theory. Alternatively, this is just the locale inE obtained by taking the
primitive propositions as generators, and the axioms, with� interpreted as≤, as relations.
The localeC will also be referred to as thecomplex planein the toposE.

It may be remarked finally that the technique that we have used for constructing
the locale of complex numbers, namely that of considering the propositional geometric
theory of its classical points,namely the complex numbers, is one which has been used
extensively [3,6,7,14,19,20,25–27] to developanalytical and algebraic ideas within the
constructive context of a topos. In particular, it may be remarked immediately that the
sublocale of the locale of complex numbers in the Grothendieck toposE obtained by taking
those complex numbers of modulus≤ 1, effected simply by adding the axiom

(U) z ∈ (r, s) � false

whenever(r, s) lies strictly outside the unit disc in the complex rational plane, is always
a compact, completely regular locale. An explicit proof of this compactness, albeit in the
case of the closed unit square in the complex plane, rather than the closed unit disc, and
of the complete regularity which holds for the complex plane itself, may be found in [6].
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On a final notational point: although we have written the primitive propositions of the
theory of the complex plane in the form

z ∈ (r, s)
for each complex rational open rectangle,we shall from here onwards frequently write
simply

(r, s)

for the element of the localeC which it determines, referring to it as an open subset of the
complex planeC.

Finally, it may be recalled that by apoint of a localeL in the Grothendieck toposE is
meant a map of locales

x : 1E→ L

from the locale1E of which the underlyinglattice is the topologyΩE of the one-point space
in the toposE. In particular, taking the topological space of points of the complex planeC

in the toposE yields exactlythe algebraCE of complex numbers in the toposE, while that
of the sublocale that is the closed unit disc of the complex plane yields exactly the subspace
given by the closed unit disc ofCE. It may benoted that whilst the sublocale given by the
closed unit disc ofC is always a compact, completely regularlocale, the subspace given
by the closed unit disc ofCE is in general not a compact topological space, exemplifying
the necessity of the consideration of localesif mathematics is to develop as one expects.

An observation that may be considered converse to this is that the unit disc of the locale
C is exactly the dual locale of the underlying seminormed space of the commutative C∗-
algebraCE, in the sense described by Mulvey–Pelletier [26,27]. Indeed, this relationship
between the complex numbersCE as a commutative C∗-algebra and the complex planeC

as a locale will later be seen to be pivotal to the discussion of Gelfand duality.

3. The spectrum of a commutative C∗-algebra

Classically, the spectrum of a commutative C∗-algebraA may be constructed in either
of two ways, equivalent by the Gelfand–Mazur theorem. The first of these is by considering
the topological space of multiplicative linear functionals onA. In the constructive context
of a Grothendieck toposE, the spectrum in this form is obtained by considering the
propositional geometric theory of multiplicative linear functionals onA, obtained by
adapting that of linear functionals of norm≤ 1 on the seminormed spaceA introduced
by Mulvey–Pelletier [26,27] in a way that we now recall:

Given a commutative C∗-algebraA in a Grothendieck toposE, consider firstly the
propositional geometric theoryFn A in the toposE, determined by introducing for each
a ∈ A and each rational open rectangle(r, s) in the complex plane a proposition

a ∈ (r, s)
together with the following axioms:
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(M1) true� 0 ∈ (r, s) whenever 0∈ (r, s) , and
0 ∈ (r, s) � false otherwise;

(M2) a ∈ (r, s) � ta ∈ (tr, ts) whenever t > 0, and
a ∈ (r, s) � ia ∈ i (r, s) ;

(M3) a ∈ (r, s) ∧ a′ ∈ (r ′, s′) � a+ a′ ∈ (r + r ′, s+ s′);
(M4) true� a ∈ N (1) whenever a ∈ N (1) ;
(M5) a ∈ (r, s) � a ∈ (p,q)∨ a ∈ (p′,q′) whenever (r, s) � (p,q) ∨ (p′,q′);
(M6) a ∈ (r, s) �∨

(r ′,s′)�(r,s) a ∈ (
r ′, s′

)
.

It may be noted that in the axiom (M2) the symboli denotes the imaginary unit, and in the
axiom (M4) the expressiona ∈ N(1)within the entailment is used to denote the disjunction∨
(r,s)�N(1) a ∈ (r, s) of propositions indexed by those rational open rectangles(r, s) that

are rather below the open discN (1) of radius 1 centred on the origin in the complex plane,
a convention which will shortly be extended to other open subsets of the complex plane.

Denote by Fn A the Lindenbaum locale of this theory, that is, the locale of all
propositions derived from the primitive propositions by applying finite conjunctions and
arbitrary disjunctions, ordered by provable entailment in the theory, modulo provable
equivalence. This locale, introduced in Mulvey–Pelletier [26,27], is the constructive
equivalent of the unit ball of the dual of the seminormed spaceA in the weak* topology.
The axioms of the theoryFn A describe the conditions required to deduce that any model
of the theory, and hence any point of the locale which it determines, is exactly a linear
functional of norm≤ 1 on the seminormed spaceA.

Now consider the theoryMFn A in the toposE obtained by adjoining to those of the
theoryFn A the following additional axioms:

(M7) true� 1 ∈ (r, s) whenever 1∈ (r, s) , and
1 ∈ (r, s) � false otherwise;

(M8) a ∈ (r, s) � a∗ ∈ (r, s);
(M9) aa′ ∈ (r, s) �∨

i a ∈ (pi ,qi ) ∧ a′ ∈ (p′i ,q′i )
whenever

∨
i (pi ,qi )× (p′i ,q′i ) = µ∗(r, s),

which together require that the linear functional is indeed multiplicative. It may be noted
that in the axiom (M8) the bar denotes complex conjugation and in the axiom (M9) the
expressionµ∗ (r, s) denotes the inverse image of the rational open rectangle(r, s) under
the mapµ of locales determined by multiplication in the locale of complex numbers
in the toposE. Then, the locale MFnA is defined to be the locale obtained from this
theory, by ordering its propositions by provable entailment in the theory, modulo provable
equivalence. The locale MFnA is then that which is said to be thespectrum of the
commutativeC∗-algebra A.

By construction of the theory, the points of the spectrum MFnA of a commutative
C∗-algebraA are exactly the multiplicative linear functionals onA, sincethese are the
models of the theory. However, the existence of these points will depend on the particular
properties of the commutative C∗-algebraA and of the Grothendieck toposE in which it
lives. The spectrum MFnA, however, enjoys, as a locale, the properties that one would
expect. In particular, we note the following:
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Theorem 3.1. For any commutativeC∗-algebra A in a Grothendieck toposE, the spectrum
MFn A is a compact, completely regular locale.

Although the details of the proof may be found elsewhere [6], it will be helpful to recall
a couple of matters arising within it. Firstly, writing for anya ∈ A and open subsetU of
the complex plane

a ∈ U

for the proposition
∨
(r,s)� U a ∈ (r, s), it may be shown that for any open subsetsU,U ′

and any family of open subsets(Ui )i∈I of the complex plane

a ∈ U ∧ a ∈ U ′ � a ∈ U ∧U ′, and∨
i a ∈ Ui � a ∈∨

i Ui

are provable within the theory of the spectrum, an observation that will be referred to as
thecontinuity principle. Noting thattrue � a ∈ C anda ∈ ∅ � falseare also provable in
the theory, it follows that

a ∈ (r ′, s′) � a ∈ (r, s)
in the locale MFnA whenever(r ′, s′) � (r, s) in the complex plane, yielding the complete
regularity of the spectrum by the axiom (M6). On the other hand, the compactness of the
spectrum is proved by showing that it isa closed sublocale of the dual locale FnA of the
seminormed spaceA, which is compact by the constructive form of Alaoglu’s theorem
proved by Mulvey–Pelletier [27].

In the next section, it will be seen that the continuity principle recalled above is
the aspect of the spectrum of a commutative C∗-algebraA that provides the Gelfand
representation of A. However, to establish the isometricity of the representation we shall
need to identify the spectrum with the locale obtained from another theory. Classically,
the Gelfand–Mazur theorem states that every maximal ideal of a commutative C∗-algebra
A is the kernel of a unique multiplicative linear functional onA. Constructively, this
is interpreted by introducing the propositional geometric theory which describes, albeit
in a slightly roundabout way, the maximal ideals of a commutative C∗-algebraA. The
constructive form of the Gelfand–Mazur theorem is then obtained by showing that the
canonical interpretation of this theory in thetheory of multiplicative linear functionals on
A, corresponding classically to assigning to each multiplicative linear functional its kernel,
determines an equivalence between the theories, and hence a canonical isomorphism

MFn A→ Max A

to the locale MaxA obtained from the theory. It is the particular form of the theory of
the maximal spectrum MaxA that then allows us to work with the Gelfand representation
obtained to show that it is an isometric *-isomorphism.

Given a commutative C∗-algebraA in a Grothendieck toposE, consider [3,7,19] the
propositional geometric theoryMax A in the toposE, determined by introducing for each
a ∈ A and each non-negative rationalq a proposition

a ∈ A(q)
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together with the following axioms:

(A1) true� 1 ∈ A(q) whenever q < 1;
(A2) a ∈ A(q) � false whenever a ∈ N(q);
(A3) a ∈ A(q) � a∗ ∈ A(q);
(A4) a+ b ∈ A (r + s) � a ∈ A (r ) ∨ b ∈ A (s);
(A5) a ∈ A (r ) ∧ b ∈ A (s) � ab∈ A (rs);
(A6) ab∈ A (rs) � a ∈ A (r ) ∨ b ∈ A (s);
(A7) a ∈ A (r ) ∧ b ∈ A (s) � aa∗ + bb∗ ∈ A

(
r 2+ s2

)
;

(A8) a ∈ A(q) �∨
q′>q a ∈ A(q′).

Then denote by MaxA, the maximal spectrum of the commutative C∗-algebra A,
the Lindenbaum locale of this theory, thatis, the locale of propositions derived from
the primitive propositions of the theory by applying finite conjunctions and arbitrary
disjunctions, ordered by provable entailment in the theory, modulo provable equivalence.

By way of motivation, it may be recalled that in any commutative C∗-algebraA the
maximal ideals are exactly the prime ideals that are closed with respect to the norm.
Because we are working constructively these are naturally axiomatised in terms of their
complements: the theory described is thus more properly that of anopen primeof A, whose
complement is then a maximal ideal ofA. The primitive proposition

a ∈ A(q)

is therefore to be interpretedas asserting that the elementa ∈ A is to be assigned a
coseminorm that is> q, yielding contrapositively a seminorm onA of which the kernel is
a maximal ideal, for a more detailed discussion of which the reader is referred to [7].

Anticipating the assertion of the Gelfand–Mazur theorem, asserting constructively that
the quotient algebra determined by this seminorm is in fact the commutative C∗-algebra
CE of complex numbers in the Grothendieck toposE, the proposition

a ∈ A(q)

may therefore be consideredto assert that the elementa ∈ A will be mapped under the
quotient homomorphism into the complementA(q) in the complex plane of the closed
disc of radiusq, motivating the interpretation of the theoryMax A in the theoryMFn A
of multiplicative linear functionals onA which we now outline. Again, for a more detailed
discussion the reader is referred to [7].

So, consider the interpretation of the theoryMax A in the theoryMFn A obtained by
assigning to the primitive proposition

a ∈ A(q)

the proposition∨
(r,s)�A(q)

a ∈ (r, s)
for eacha ∈ A and non-negative rationalq. Observe inpassing that, by the notational
convention introduced in discussing the preceding theorem, this proposition is exactly that
asserting that the elementa ∈ A is mapped into the open subsetA(q) of the complex
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plane described above. In other words, this interpretation is intuitively a canonical one of
the theory of the maximal spectrum in that of the spectrum of the commutative C∗-algebra
A. Indeed, it may be verified that this interpretation validates the axioms ofMax A in the
spectrum ofA, andhence determines a map of locales

MFn A→ Max A

of which the inverse image homomorphism is that induced by the assignment. Concerning
this map of locales one then has the following constructive form of the Gelfand–Mazur
theorem:

Theorem 3.2. For any commutative C∗-algebra A in a Grothendieck toposE, the
canonical map

MFn A→ Max A

is an isomorphism of compact, completely regular locales in the toposE.

Again, the reader is referred to the earlier paper [7] for a detailed discussion of the
proof. It will suffice here to note that the proof given there depends on the existence of a
Barr covering for any Grothendieck topos, and hence is constructive only to that extent.
Subsequently a constructive proof has been outlined in work of Mulvey and Vermeulen,
depending on the observation concerning the geometry of the complex plane on which the
present proof also depends, namely that, in any bounded region of the complex plane, the
open subsets obtained by translation of those of the form

A(q)

into open codiscs centred on any complex rational point within the region also form a
subbasis for the topology of the complex plane. It is the geometric content of this argument,
involving the lattice structure on the self-adjoint elements of the commutative C∗-algebra
A, that may be found in the earlier paper [7], together with a proof, independently of that
given by the existence of this isomorphism, of the fact that the maximal spectrum MaxA
is a compact, completely regular locale.

For the moment, we note only that henceforth we shall identify the maximal spectrum
with the spectrum introduced earlier, denoting it throughout the remainder of the paper by

Max A.

It will be seen in what follows that Gelfand duality depends critically on the equivalence
of these descriptions of the spectrum, allowing the aspects which evolve out of the lattice
structure on the self-adjoint elements of a commutative C∗-algebra through the description
of the maximal spectrum to interact with the Gelfand representation which arises out
of the earlier description of the spectrum and the continuity principle to which it gave
rise. However, it may be observed once again before proceeding that this interaction itself
expresses the fundamental geometric fact that the topology of the complex plane may be
determined equivalently by nearness, in terms of the open subsets(r, s), andby awayness,
in terms of translates of theopen subsetsA(q) (cf. [9]).
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4. The Gelfand representation

Given a compact, completely regular localeM in the Grothendieck toposE, denote by
C(M) the set of maps of locales

α : M → C

from the localeM to the localeC of complex numbers inE. BecauseC is straightforwardly
seen to be a commutative *-algebra in the category of locales, it follows thatC(M) is also a
commutative *-algebra. Define a seminorm onC(M) by assigning to each positive rational
q the subset

N(q) = {α ∈ C(M) | 1M ≤ α∗(N(q))},
obtained by taking those continuous complex functions for which the inverse image of
theopen subsetN(q) of the complex plane is the top element of the localeM. It may be
verified straightforwardly that this makesC(M) into a commutative seminormed *-algebra
in the toposE. Noting thatC(M) is exactly the global sections of the sheafCM of complex
numbers (Mulvey [18]) in the topos of sheaves on the compact, completely regular locale
M overE, it follows thatC(M) is complete, by the completeness ofCM in the topos of
sheaves onM. Hence,C(M) is a commutative Banach *-algebra inE, whichcan then be
verified straightforwardly to be a commutative C∗-algebra inE.

Now, for any commutative C∗-algebra A consider the commutative C∗-algebra
C(Max A) of continuous complex functions on its spectrum MaxA. For eacha ∈ A,
define a map of locales

â : Max A→ C

by assigning to each rational open rectangle(r, s) of the localeC the proposition

a ∈ (r, s)
of the spectrum of the commutative C∗-algebraA. Observe that this indeed determines a
map of locales, for, by the continuity principle,

a ∈ U ∧ a ∈ U ′ � a ∈ U ∧U ′,∨
i a ∈ Ui � a ∈∨

i Ui , and

true� a ∈ C

are provable in the theory of the spectrum ofA.
Moreover, the mapping

ˆ : A→ C (Max A)

which assigns to eacha ∈ A its Gelfand transform is indeed a map of seminormed
*-algebras in the toposE. For the algebraic operations of the involutive algebraA, one
observes firstly that the axiomatization of the theory of MaxA allows one to prove
straightforwardly that zero, identity, involution, scalar multiplication and multiplication
are preserved by the Gelfand representation. Givena,a′ ∈ A, one sees, for instance, that
the Gelfand transform of their product is equal to the product of their transforms, by noting
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that for each rational open rectangle(r, s) of the complex plane, its inverse image in MaxA
under the transform ofaa′ ∈ A is given by the proposition

aa′ ∈ (r, s).
Now, by the axiom (M9) of the theory of MaxA, one has that

aa′ ∈ (r, s) �
∨

a ∈ (p,q)∧ a′ ∈ (p′,q′),
in which the disjunction is taken over all rational open rectangles for which

(p,q)× (p′,q′) � µ∗ (r, s) ,

with respect to the multiplication map

µ : C× C→ C

of the localeC. However, this disjunction is exactly that describing the inverse image
of (r, s) under the product of the Gelfand transforms ofa,a′ ∈ A. Hence, the Gelfand
representation is a multiplicative homomorphism. That the other algebraic operations of
A, with the exception of addition, are preserved follows similarly.

Algebraically, it remainsonly to show that the representation is an additive
homomorphism. For this, a little more subtlety is needed, because the axiomatisation of
additivity in the theory of MaxA is rather less explicit than that of multiplication. The
axiom which one has, which is to say (M3), implies that

a ∈ (p,q) ∧ a′ ∈ (p′,q′) � a+ a′ ∈ (r, s)
whenever

(p,q)× (p′,q′) � α∗ (r, s) ,

with respect to the addition map

α : C×C→ C

of the localeC. However, it is now necessary to show that taking the disjunction over all
pairs(p,q), (p′,q′) of rational open rectangles satisfying this condition with respect to
(r, s) allows this entailment to become a provable equivalence in the theory.

Given a,a′ ∈ A, we remark firstly that there exist positive rationalst, t ′ for which
a ∈ N (t), a′ ∈ N

(
t ′
)

in the seminormed *-algebraA. Applying axioms (M2) and (M4)
of the theory of MaxA, it follows that

true � a ∈ N (t) ,

and similarly

true � a′ ∈ N
(
t ′
)
.

Observing that these open discs in the complex plane lie inside open squares, and that
these open squares may be subdivided into smaller open squares of arbitrary mesh, one
may prove that

true �
∨

a ∈ (p,q),
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in which the disjunction is taken over open rectangles(p,q) � N(t) of size less than any
preassigned amount. Similarly, one has that

true �
∨

a′ ∈ (p′,q′)
in which each(p′,q′) � N(t ′) has size less than the required amount.

Now, given any rational open rectangle(r, s), one has that

a+ a′ ∈ (r, s) �
∨

(r ′,s′)�(r,s) a+ a′ ∈ (
r ′, s′

)

is provable, by axiom (M8). Taking any
(
r ′, s′

)
� (r, s), we observe that one may choose

ε > 0 to be such that any rational open rectangle(u, v) of length and breadth less thanε
will be disjoint from(r ′, s′), unless one has that

(u, v) � (r, s).

Intuitively, one choosesε > 0 to be the size of the gap between(r ′, s′) and (r, s), and
observes that the rather below relation amongst open rectangles in the rational complex
plane is describable algebraically in terms of the rationals, and hence is decidable.

Choose now to consider only rational open rectangles(p,q), (p′,q′) of one half this
size, and observe that

true �
∨

a ∈ (p,q) ∧ a′ ∈ (p′,q′)
is provable in the theory, in view of the above remarks. Hence,

a+ a′ ∈ (
r ′, s′

) �∨
a ∈ (p,q) ∧ a′ ∈ (p′,q′),

taken over all these rational open rectangles. However, for any rectangles(p,q), (p′,q′),
one has that

(p,q)× (p′,q′) � α∗ (r, s)

is equivalent to

(p+ p′,q + q′) � (r, s).

Unless this condition is satisfied, it will follow that the rectangle obtained will be disjoint
from (r ′, s′), by the choice of the size of these rectangles. Now observe that

a ∈ (p,q)∧ a′ ∈ (p′,q′) � a+ a′ ∈ (p+ p′,q + q′)

by the axiom (M3), and that

a+ a′ ∈ (
r ′, s′

) ∧ a+ a′ ∈ (p+ p′,q + q′) � false

in the case that the rectangle(p+ p′,q + q′) is disjoint from (r ′, s′). However, this will
be the case unless one see that

(p,q)× (p′,q′) � α∗ (r, s) ,

by the remarks above. Hence, the entailment

a+ a′ ∈ (
r ′, s′

) �∨
a ∈ (p,q) ∧ a′ ∈ (p′,q′)
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remains provable when the disjunction is taken over only those rectangles which satisfy
this condition. Applying axiom (M6), one obtains that

a+ a′ ∈ (r, s) �
∨

a ∈ (p,q) ∧ a′ ∈ (p′,q′),
which completes the proof of the additivity of the Gelfand representation. One therefore
has that

ˆ : A→ C (Max A)

is indeed a map of commutative *-algebras in the toposE.
Observe now that the seminorm on the commutative C∗-algebraC (Max A) is defined

by taking the open ball̂N(q) of radiusq to consist of all maps

α : Max A → C

of locales, for which

1Max A ≤ α∗(N(q)),

in which N(q) denotes the open disc of radiusq in the complex plane. Then it follows that
one has that

â ∈ N̂(q) if, andonly if, true � a ∈ N(q)

is provable in the theory of the spectrum MaxA for anya ∈ A and any positive rationalq.
Noting that in the theoryMFn A one has that

true � a ∈ N(q)

is provable whenevera ∈ N(q), by axioms (M2) and (M3), we see that:

a ∈ N(q) implies â ∈ N̂(q).

Hence, theGelfand representation

ˆ : A→ C (Max A)

is a map of seminormed *-algebras, and so of commutative C∗-algebras, in the toposE,
concerning which may be proved the following:

Theorem 4.1. For any commutativeC∗-algebra A in a Grothendieck toposE, the Gelfand
representation

ˆ : A → C (Max A)

is an isometric *-homomorphism.

Proof. Evidently it remains only to prove the converse of the preceding remark, namely
that

true� a ∈ N(q) implies a ∈ N(q),
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for anya ∈ A and any positive rationalq, establishing the isometricity of the representa-
tion. To prove this assertion, we consider a Barr covering [8,15]

γ : B→ E

of the Grothendieck toposE by a Grothendieck toposB in which the Axiom of Choice,
and hence the Law of the Excluded Middle, is satisfied. For further details of this kind
of argument, in particular the observation that the inverse imageγ ∗A of the commutative
C∗-algebraA is then only a commutative pre-C∗-algebra in the toposB, we refer the reader
to the earlier papers [6,7]. The argument then runs in the following way: assume that

true� a ∈ N(q)

is provable in the theoryMax A. Thencertainly

true� γ ∗a ∈ N(q)

is provable in the theoryMax γ ∗A determined by the inverse image of the seminormed
*-algebraA. Consider now the canonical homomorphism

γ ∗A→ B

of the seminormed *-algebraγ ∗A into its completion, which is then a commutative
C∗-algebra inB. The canonical homomorphism induces a map

Max B → Max γ ∗A

of locales, along which one concludes that

true� γ ∗a ∈ N(q)

is provable in the theoryMax B.
For thecommutative C∗-algebraB in the toposB, in which the Axiom of Choice is sat-

isfied,one has that MaxB is exactly the lattice of open subsets of the spectrum ofB in the
classical sense. Hence, one may conclude thatγ ∗a ∈ N(q) in the commutative C∗-algebra
B, by the isometricity of the Gelfand representation in that context. However, the canonical
mapping fromγ ∗A into its completionB is isometric, so thatγ ∗a ∈ N(q) in the semi-
normed *-algebraγ ∗A. Hence, one has thata ∈ N(q) in the commutative C∗-algebraA,
because the seminormed structure on the inverse imageγ ∗A is the inverse image of that
on A. Thecondition that

true� a ∈ N(q) implies a ∈ N(q)

is therefore satisfied, so that the Gelfand representation

ˆ : A → C (Max A)

is necessarily isometric, which completes the proof. �

Hence, the Gelfand representation yields an isometric *-isomorphism fromA to a closed
*-subalgebra of the commutative C∗-algebraC (Max A) of continuous complex functions
on the compact, completely regular locale MaxA, concerning which we need now to make
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a number of observations. Before doing so, recall that, in proving the Gelfand–Mazur
theorem that the canonical map

MFn A → Max A

is an isomorphism of locales in the Grothendieck toposE, it wasobserved [3,7] that the
propositional geometric theory of the maximal spectrum could also be expressed in a way
that made it more exactly that of closed prime ideals of the commutative C∗-algebraA. To
make this explicit, denote for eacha ∈ A by

a ∈ P

the propositiona ∈ A(0) in the theory of MaxA, noting that once the notational
conventions following the proof of the Gelfand–Mazur theorem have been established this
notation equivalently expresses that the multiplicative linear functional corresponding to
any maximal ideal intuitively maps the elementa ∈ A into the open subsetP of the
complex plane obtained by removing zero.

Applying the axioms of the theory of MaxA it is straightforward to verify that the
following conditions relating these propositions are satisfied:

(P1) true� 1 ∈ P;
(P2) 0∈ P � false;
(P3) a+ b ∈ P � a ∈ P ∨ b ∈ P;
(P4) ab∈ P � a ∈ P ∧ b ∈ P,

which are exactly the axioms of the theory of the prime spectrum SpecA of the
commutative ringA, together with an additional axiom

(I) a ∈ P �
∨

q
a ∈ A(q),

where thedisjunction is taken over the positive rationalsq, relating these propositions to
those already considered, and intuitively requiring the prime ideal described to be closed.

In consequence, there is a canonical interpretation of the theory of SpecA in the theory
of Max A, and hence a canonical map of locales

Max A→ SpecA

which embeds the maximal spectrum of the commutative C∗-algebraA as a sublocale of
the prime spectrum of the commutative ringA, for which it may be shown that there exists
a map oflocales

SpecA→ Max A

giving a retraction, intuitively equivalent to assigning to each prime ideal ofA the maximal
ideal that is its closure.

Assigning to each elementa ∈ A the element

|a| = (
aa∗

) 1
2 ,

that is its absolute value, allows one to show that for any non-negative rationalq

a ∈ A(q) � |a| ∈ A(q)
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is provable in the theory. Moreover, for any element of the positive cone of the commutative
C∗-algebraA, one has that

a ∈ A(q) � (a− q1)+ ∈ P

is provable in the theory. Asa consequence, the theory of the maximal spectrum MaxA
may be expressed entirely in terms of propositions of the form

a ∈ P

for each elementa ∈ A. Indeed, since, by virtue of the axiom (P4), any finite conjunction
of these propositions is again a proposition of this form, it follows that any open subset of
the locale MaxA is obtained as a join of those corresponding to primitive propositions of
the forma ∈ P.

Now, denoting for eacha ∈ A theopen subset of MaxA obtained by taking the inverse
image under the Gelfand transform ofa ∈ A of the open subsetP of the complex plane by

D(a),

one may recall the following:

Definition 4.1. A subalgebraA of the commutative C∗-algebraC(M) is said to separate
the compact, completely regular localeM provided that each open setU of the locale may
be expressed in the form

U =
∨

D(a)

takenover those elementsa ∈ A for which D(a) is contained inU .

By the observations above, together with the constructive version of the Stone–
Weierstrass theorem (Banaschewski–Mulvey [5]) to which they lead, we therefore have
the following:

Corollary 4.2. For any commutativeC∗-algebra A in a Grothendieck toposE, the Gelfand
representation

ˆ : A→ C (Max A)

is an isometric *-isomorphism from A to the commutativeC∗-algebra C (Max A) of
continuous complex functions on the spectrumMax A.

Proof. Consider the inverse image along the Gelfand transform

â : Max A→ C

of the open subsetP of the complex plane obtained by removing zero. Since this open
subset is the join of those rational open rectangles(r, s) which do not contain zero, it
follows that the inverse image ofP is exactly the join of the inverse images of these
rectangles. However, by the Gelfand–Mazur Theorem the join of the inverse images
a ∈ (r, s) of these rational open rectangles is theopen subset determined by the proposition
a ∈ P of the theory MaxA, while the inverse image of theopen subsetP is by definition



B. Banaschewski, C.J. Mulvey / Annals of Pure and Applied Logic 137 (2006) 62–103 81

theopen subsetD(a). Hence,D(a) is the open subset determined by the propositiona ∈ P
of the theoryMax A.

But in the theoryMax A, it has already been proved that any proposition is provably
equivalent to the disjunction of those propositionsa ∈ P which entail it. Thus, each open
subsetU of Max A is the join of those open subsets which are contained in it. So, the
closed C∗-subalgebra that is the image of the isometric *-homomorphism

ˆ : A → C (Max A)

separates the compact, completely regular locale MaxA. Hence, by the Stone–Weierstrass
theorem proved constructively in [5], this closed C∗-subalgebra is exactly the commutative
C∗-algebraC (Max A), whichcompletes the proof. �

5. Gelfand duality

To each commutative C∗-algebraA in the toposE there has been assigned a compact,
completely regular locale MaxA in E. Consider now a map

ϕ : A→ B

of commutative C∗-algebras, which is to say a *-homomorphism with the property that

a ∈ N(q)→ ϕ (a) ∈ N(q)

for eacha ∈ A and each positive rationalq. Definea map

Maxϕ : Max B → Max A

of locales, by assigning to each proposition

a ∈ (r, s)
of the theory of MaxA the proposition

ϕ (a) ∈ (r, s)
of the theory of MaxB. Observe that it follows immediately from the fact thatϕ : A→ B
is a seminormed *-homomorphism that each axiom of the theory of MaxA is validated in
the locale MaxB under this interpretation. Moreover, it is immediate that the assignment
is functorial on the category of commutative C∗-algebras, yielding a functor

Commutative C∗-algebras→ Compact, completely regular localesop.

To each compact, completely regular localeM in the toposE there has been assigned a
commutative C∗-algebraC(M) in E. Consider a map

ψ : L → M

of compact, completely regular locales, and define a map

C(ψ) : C(M)→ C(L)



82 B. Banaschewski, C.J. Mulvey / Annals of Pure and Applied Logic 137 (2006) 62–103

of commutative C∗-algebras, by mapping each continuous complex function

α : M → C

to that defined onL by composition with the mapψ : L → M of locales. Because
the commutative C∗-algebraC(M) inherits its algebraic structure from the localeC, it is
immediate that this is a map of commutative *-algebras. Recalling that the seminorm on
C(M) is definedby requiring that

α ∈ N(q) if, andonly if, 1M ≤ α∗N(q)
it is immediate also that onehas a map of seminormed *-algebras. Moreover, one sees
that the assignment is evidently functorial on the category of compact, completely regular
locales, yielding a functor:

Compact, completely regular localesop→ Commutative C*-algebras.

Concerning these functors one has the following:

Theorem 5.1. In any Grothendieck toposE, the functors

Commutative C*-algebras −−→←−− Compact, completely regular localesop

determine a duality between the category of commutativeC∗-algebras in E and the
category of compact, completely regular locales inE.

Proof. It will be proved that the duality is in fact an adjoint duality. For any commutative
C∗-algebra A, the adjunction

A→ C (Max A)

is the Gelfand representation. It may be remarked that this is natural. For, given any map

ϕ : A→ B

of commutative C∗-algebras,the diagram

A −−→ C (Max A)

ϕ

�
�C(Max ϕ)

B −−→ C (Max B)

is commutative. To eacha ∈ A, one now assigns firstly the continuous complex function

â : Max A→ C,

then its composite with the map

Max ϕ : Max B→ Max A
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of locales. The inverse image of a rational open rectangle(r, s) of the localeC is firstly
a ∈ (r, s), and thenϕ (a) ∈ (r, s). This is exactly the inverse image of the rational open
rectangle(r, s) under the map

ˆ
ϕ (a) : Max B→ C

of locales obtained by passing round the diagram the other way. Hence, the Gelfand
representation

A→ C (Max A)

is natural in the commutative C∗-algebraA. Of course, the map is actually an isometric
*-isomorphism for each commutative C∗-algebraA, by the Stone–Weierstrass theorem
applied in the corollary to the theorem of the previous section; hence, one has that the
natural map is actually a natural isomorphism.

Now, for any compact, completely regular localeM, considerthe map

M → Max C(M)

of locales, defined by assigning to each propositionα ∈ (r, s) determined by a continuous
complex function

α : M → C,

the inverse imageα∗ (r, s) of the rational open rectangle(r, s) along this continuous
complex function. It will be shown firstly that this indeed determines a map of locales.
For each axiom of the theory of the locale MaxA, it will be shown that the corresponding
relation is satisfied in the localeM:

(A1): It must be proved that

1M ≤ 1∗(A(q))

for all q < 1, in which the identity element of the commutative C∗-algebraC(M) is given
by the map

1 : M → C

of locales defined by

1∗ (r, s) =
{

1M whenever 1∈ (r, s) ,
0M otherwise.

But wheneverq < 1, one has 1∈ A(q), andhence there exists a rational open rectangle
(r, s) for which 1∈ (r, s) ≤ A(q). Thus, 1M ≤ 1∗(A(q)), sinceA(q) is the join of those
rational open rectangles contained in it.

(A2): Conversely, it must be shown that

a∗(A(q)) ≤ 0M
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whenever the continuous complex functiona ∈ C(M) lies in theopen ballN(q) of the
seminormed algebraC(M). But a ∈ N(q) means thata∗(N(q)) = 1M . However, one has
that N(q) ∧ A(q) = 0 in the localeC of complex numbers, and hence that

a∗(N(q)) ∧ a∗(A(q)) = 0M

in the localeM. Hence,a∗(N(q)) = 0M in the localeM.

(A3): For any continuous complex functiona ∈ C(M), one has that

a∗(A(q)) ≤ ā∗(A(q))

for each positive rationalq, in which the involution of thecommutative C∗-algebraC(M)
is denoted by conjugation. But, for each rational open rectangle(r, s) ≤ A(q), it is also
the case that(r, s) ≤ A(q). Hence, because conjugation is defined by requiring that
ā∗ (r, s) = a∗(r, s) for each rational open rectangle(r, s) in the localeC, the required
inequality holds in the localeM.

(A4): It must next be shown that

(a+ b)∗ (A (r + s)) ≤ a∗ (A (r )) ∧ b∗ (A (s))

for all a,b ∈ C(M) and any positive rationalsr, s. Again, this will be deduced from an
equivalent assertion concerning the map

α : C× C→ C

defining addition on the localeC, namely that

α∗ (A (r + s)) ≤ A (r )× C ∨ C× A(s)

for all a,b ∈ C(M) and any positive rationalsr, s. To prove this, we remark firstly that its
dual form, that

N (r )× N (s) ≤ α∗ (N (r + s)) ,

may be proved directly by expanding in terms of rational open rectangles. Specifically, it
may be shown that∨

(p,q)× (p′,q′) ≤
∨
(u, v)× (

u′, v′
)
,

in which the first disjunction is taken over all(p,q) ≤ N(r ) and(p′,q′) ≤ N(s), while in
the second one consider all rectangles for which(u, v) + (

u′, v′
) ≤ N (r + s).

It may be remarked that the inequalities considered are those provable algebraically
concerning the lattice of subsets of the space of rational complex numbers, in this case
by requiring that the vertices of the rectangles concerned have moduli less than the given
positive rationals, while the operation of addition introduced is thatdefined algebraically
on rational complex numbers. However, one then has that (p,q) + (p′,q′) ≤ N (r + s)
whenever(p,q) ≤ N(r ) and(p′,q′) ≤ N(s). Hence, each term in the disjunction on the
left of the inequality appears also on the right-hand side, establishingthe required condition
in the localeC×C.
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Now, to deduce the inequality forα∗ (A (r + s))which isdual to this, observe that given
anyr ′ > r, s′ > s, one has that

N
(
r ′

) ∨ A (r ) = 1 and N
(
s′

) ∨ A (s) = 1

in the localeC. From these, it follows that

N
(
r ′

)×C ∨ A (r )× C = 1 and C× N
(
s′

) ∨ C× A (s) = 1

in the localeC×C. Taking the meet of the second with the first term of the first, one
obtains that

N
(
r ′

)× N
(
s′

) ∨ N
(
r ′

)× A (s) ∨ A (r )× C = 1.

Sinceone has thatN
(
r ′

)× A (s) ≤ C× A (s), one then obtains that

1= N
(
r ′

)× A (s) ∨ A (r )× C ∨ C× A(s)

in the localeC×C. However, one has also thatN
(
r ′ + s′

)∧ A
(
r ′ + s′

) = 0 in thelocale
C, from which it follows that

α∗
(
N

(
r ′ + s′

)) ∧ α∗ (
A

(
r ′ + s′

)) = 0

in the localeC×C, andhence that

N
(
r ′

)× N
(
s′

) ∧ α∗ (
A

(
r ′ + s′

)) = 0

by the inequality already established. Taking the meet ofα∗
(
A

(
r ′ + s′

))
with the

expression already obtained for the identity ofC× C, weobtain finally that

α∗
(
A

(
r ′ + s′

)) ≤ A (r )× C ∨ C× A(s).

Taking the join of the expression over allr ′ > r, s′ > s, andobserving that∨
r ′>r,s′>s

A
(
r ′ + s′

) = A (r + s) ,

the required condition follows on applying the inverse image of

α : C×C→ C,

together with the inequality just established. Hence,

α∗ (A (r + s)) ≤ A (r )× C ∨ C× A(s)

for all positive rationalsr, s. Finally, applying the inverse image of the map

M → C× C

into the product locale, determined by the pair of continuous complex functionsa,b ∈
C(M), yields the required inequality in the localeM.

(A5): It is required to prove that

a∗ (A (r ))× b∗ (A (s)) ≤ (ab)∗ (A (rs))
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for anya,b ∈ C(M) and any positive rationalsr, s. Once again, it is enough to prove an
equivalent fact for the localeC×C, in thiscase, that

A (r )× A (s) ≤ µ∗ (A (rs))

for all positive rationalsr, s, in which

µ : C× C→ C

denotes the multiplication of the locale of complex numbers. However, this may be proved
directly, rather than by dualising first, by expanding in terms of rational open rectangles
and noting that

(p,q) · (p′,q′) ≤ A (rs)

whenever(p,q) ≤ A(r ) and (p′,q′) ≤ A(s). Again, these are inequalities considered
algebraically in the lattice of subsets of the rational complex plane, proved using the
properties of the modulus of a complex number. Applying the inverse image of the
map fromM to the product localeC×C, induced by the continuous complex functions
a,b ∈ C(M), onededuces the required inequality from that already obtained.

(A6): The fact that

(ab)∗ (A (rs)) ≤ a∗ (A (r )) ∨ b∗ (A (s))

in the localeM is deduced from the equivalent assertion that

µ∗ (A (rs)) ≤ a∗ (A (r )) ∨ b∗ (A (s))

in the localeC×C, which isproved in turn from its dual assertion, that

N (r )× N (s) ≤ µ∗ (N (rs)) ,

in a manner identical to that argued already in the case when addition replaced
multiplication.

(A7): It must now be proved that

a∗ (A (r ))× b∗ (A (s)) ≤ (aā+ bb̄)∗
(

A
(
r 2+ s2

))

for all continuous complex functionsa,b ∈ C(M). Once again, this corresponds to an
equivalent fact about the map

γ : C× C→ C

of locales which, intuitively, assigns to eachpair of complex numbers the sum of the
squares of their moduli. In this case, it is that

A (r )× A (s) ≤ γ ∗
(

A
(
r 2 + s2

))

for all positive rationalsr, s. The proof of this inequality again is found straightforwardly
by expanding in terms of rational open rectangles and noting that

(p,q)⊕ (p′,q′) ≤ A
(
r 2+ s2

)



B. Banaschewski, C.J. Mulvey / Annals of Pure and Applied Logic 137 (2006) 62–103 87

whenever(p,q) ≤ A(r ) and (p′,q′) ≤ A(s), in which ⊕ denotes the operation of
summing squares of moduli. Applying the inverse image of the map

M → C× C

of locales determined by the continuous complex functionsa,b ∈ C(M) then yields the
required result.

(A8): Finally, it must be shown that

a∗(A(q)) =
∨

q′>q
a∗(A(q′))

for eacha ∈ C(M), which follows from the observation that

A(q) =
∨

q′>q
A(q′)

in the complex plane on applying the inverse image of the continuous complex function
a ∈ C(M), whichcompletes the proof of this part of the result.

It may be remarked that the map

M → Max C(M)

thus defined is natural in the compact, completely regular localeM. For, given any map

ϕ : L → M

of compact, completely regular locales, the diagram

L −−→ Max C(L)

ϕ

�
�Max C(ϕ)

M −−→ Max C(M)

may be seen to commute. Considering the inverse images of the maps involved, one sees
that on the one hand any proposition

a ∈ (r, s)
of the theory of MaxC(M) is mapped firstly to the elementa∗(r, s) of the localeM, and
thence to the elementϕ∗a∗(r, s) of the localeL, while, on the other hand, the proposition
is mapped firstly to that of the theory of MaxC(L) obtained by composing the continuous
complex function with the map

ϕ : L → M

of locales, then taking the inverse image of the rational open rectangle(r, s) in the localeC
along the continuous complex function onL which results. One again obtains the element

ϕ∗a∗(r, s)

of the localeL. The diagram therefore commutes, since the inverse image mappings
concerned agree on the propositions which generate the locale MaxC(M).
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It will now be shown that the map

M → Max C(M)

is actually an isomorphism in the category of compact, completely regular locales. To
prove this, it is enough to show that the map is a dense embedding, given that the locales
concerned are compact, completely regular. To show that it is an embedding, it must be
proved that the inverse image mapping is surjective. Given any open subsetU of the locale
M, by complete regularity one has that

U =
∨

V��U
V.

However, given anyopen subsetV �� U , there exists an interpolation by open subsets
(Vq) indexed by the rationals 0≤ q ≤ 1, for which

Vp � Vq

wheneverp < q, and for which

V = V0 and V1 = U.

By the idea central to the proof of Urysohn’s Lemma, one may then find a continuous
complex function

aV : M → C

for which a∗V (Wq) = Vq for each 0≤ q ≤ 1, in which Wq denotes the open left half of
the complex plane determined by the rationalq. In particular,a∗V (W) = V , in which W
denotes the open left half-plane ofC. Then, since

U =
∨

V��U
V,

it follows that

a ∈ U �
∨

V��U
aV ∈ W

in the theory of MaxC(M). The map

M → Max C(M)

is therefore an embedding.
It is also dense, in the sense that an open subset of MaxC(M) is the zero element of

the locale MaxC(M) exactly if its inverse image is zero in the localeM. Observing that it
is enough to prove this for a base of open subsets of MaxC(M), it may be remarked that
we have shown that the propositions

a ∈ P

of the theoryMax C(M) for eacha ∈ C(M) together determine such abase of open
subsets for the locale MaxC(M). It suffices therefore to prove that

a ∈ P � false
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is provable in the theoryMax C(M) whenevera∗P ≤ 0M in the localeM. But, recalling
that P denotes the open complement of zero in the complex plane, one has that exactly
implies that

α : M → C

is the zero function. Then

a ∈ P � false

because 0∈ P in the localeC. The map

M → Max C(M)

is therefore dense.
But any dense embedding of compact, completely regular locales is necessarily an

isomorphism, because the image of a compactlocale in a completely regular locale is
closed (Banaschewski–Mulvey [3]). The map of locales

M → Max C(M)

is therefore an isomorphism in the category of compact, completely regular locales, which
establishes that the functors

Commutative C*-algebras −−→←−− Compact, completely regular localesop

yield the duality asserted.
Finally, for any compact, completely regular localeM, the canonical map

C(M)→ C(Max C(M))→ C(M)

sends a continuous complex function

a : M → C

to the map of locales

M → MaxC(M)
â→ C.

For each rational open rectangle(r, s), one has that its inverse image along this map is
that of the propositiona ∈ (r, s) along the canonical map

M → Max C(M),

which yields exactlya∗(r, s). Hence, one obtains the continuous complex function onM
given exactly by the given map

a : M → C.

The composite considered is, therefore, the identity map on the commutative C∗-algebra
C(M).

Equally, for any commutative C∗-algebraA, the canonical map

Max A→ MaxC(Max A)→ Max A
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is also the identity map on the locale MaxA. For its inverse image assigns to each
propositiona ∈ (r, s) of the theoryMax A, firstly the proposition̂a ∈ (r, s) of the theory
MaxC(Max A), and thenthe inverse image of(r, s) along the map

â : Max A → C.

However, this is exactly the element of MaxA determined by the propositiona ∈ (r, s) of
the theory Max A, by thedefinition of the Gelfand transform of anya ∈ A, which shows
that the canonical map of locales is indeed the identity on the locale MaxA.

Together, these identities establish the adjointness of the functors involved in the
Gelfand duality, which completes the proof of the theorem.�

It is interesting to note that the proofs that the adjunction and the coadjunction of this
adjointness are isomorphisms each have depended on an argument involving density of
onekind or another. In the first case, the Stone–Weierstrass theorem depends ultimately
on the complex rationals being dense in the complex numbers, while in the second it
is the denseness of the canonical map from a locale to its compactification which gave
the required result, depending itself finally on the denseness of the open subsetP in the
complex plane.

Finally, one may remark that the Gelfand duality proved extends that known classically:

Corollary 5.2. In any Grothendieck toposE in which the Axiom of Choice is satisfied, the
duality

Commutative C*-algebras −−→←−− Compact, completely regular localesop

is exactly that between the category of commutativeC∗-algebras and the category of
compact Hausdorff topological spaces.

Proof. The concept of commutative C∗-algebras is then the canonical one, for in the
presence of the Axiom of Choice the seminorm may again be expressed in terms of a
function

‖ ‖ : A→ RE

satisfying the seminorm conditions, whilst the concept of Cauchy approximation is
equivalent to that of Cauchy sequence, by applying countable dependent choice to choose
a sequence from an approximation. Moreover, every compact, completely regular locale is
isomorphic to the lattice of open subsets of its space of points, which is indeed compact
Hausdorff, and every compact Hausdorff topological space arises in this way for a unique
compact, completely regular locale.�

6. Applications

In this last section, we shall outline some of the consequences of the existence of
Gelfand duality, omitting many of the details concerned, either referring to existing results
in the classical situation which may be adapted to the present context, or leaving a more
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detailed discussion to another place. We begin with a result which establishes categorically
the algebraic nature of the maximal spectrum of a commutative C∗-algebra.

It was remarked earlier that it may be proved (Banaschewski–Mulvey [3]) that:

For any commutative C*-algebra A in a Grothendieck toposE there exists a retraction

SpecA→ Max A

from the prime spectrum of A to the maximal spectrum of A.

This will now be shown, depending on the Gelfand duality just established for commu-
tative C∗-algebras in the toposE which allows us to assume thatA is actually the algebra
C (Max A) of continuous complex functions on MaxA. Beforedoing this, we remark that
the corresponding statement for commutative C∗-algebras classically is equivalent to the
fact that the maximal ideal space is Hausdorff.

Indeed, this condition applied to commutative rings more generally is equivalent to the
existence of a representation of a kind which generalises the Gelfand representation of a
commutative C∗-algebra, leading to considerable insights into the categories of modules
over Gelfand rings (de Marco–Orsatti [12], Mulvey [22]).

It may also be remarked before beginning the proof that classically the condition
for commutative rings generally is equivalent to requiring that any prime ideal ofA be
contained in a unique maximal ideal. That this is the case for commutative C∗-algebras is
because the closure of any prime ideal is a maximal ideal of the algebra. This motivates the
description of the retraction which is now given in the context of any Grothendieck toposE.

Firstly, we recall that the inclusion

Max A→ SpecA

of the retraction is that determined by assigning to each proposition

a ∈ P

of the theory of the locale SpecA the corresponding proposition of the theoryMax A.
It has already been established that the axioms of the theorySpec A are satisfied by
this interpretation within the theoryMax A, and hence one obtains a map of locales,
which identifies the locale MaxA to be the sublocale of SpecA obtained by adjoining
the propositions

a ∈ A(q)

for positiverationalsq, together with the axioms ofMax A involving these propositions.
It may be recalled that the closedness of the primeP defined by the theoryMax A is
described by the axiom which requires that:

a ∈ P �
∨

q
a ∈ A(q)

for eacha ∈ A and for positive rationalsq. Moreover, itwill be remembered that the
propositiona ∈ A(q) is provably equivalent in the theory to the proposition

(|a| − q.1)+ ∈ P



92 B. Banaschewski, C.J. Mulvey / Annals of Pure and Applied Logic 137 (2006) 62–103

in which the element(|a|− q.1)+ ∈ A is definable algebraically in terms ofa ∈ A and the
positive rationalq. In particular, the theoryMax A therefore satisfies the condition that:

a ∈ P �
∨

q
(|a| − q.1)+ ∈ P

for eacha ∈ A. It will now be shown that forcing this axiom to hold for a primeP is
equivalent to converting it to a model of the theoryMax A.

Explicitly, define the map of locales

SpecA→ Max A

by assigning to each propositiona ∈ P of Max A the proposition

(|a| − q.1)+ ∈ P

of the theory of the locale SpecA. Observing that the propositionsa ∈ P generate the
locale Max A, to show that this is a map of locales it suffices to prove that each axiom of
the theory Max A is provable in the theorySpecA under this interpretation. That this is the
case follows by arguments of which the details may be found elsewhere (Banaschewski–
Mulvey [3]), given that the commutative C∗-algebraA is isomorphic to that of continuous
complex functions on the locale MaxA, yielding the required map of locales

SpecA→ Max A.

This map of locales provides a retraction of the inclusion of MaxA in the locale SpecA,
since the inverse image of each proposition of the theory of MaxA of the form

a ∈ P

is given in SpecA by the proposition

(|a| − q.1)+ ∈ P,

of which the inverse image in MaxA is again this proposition. But it has already been
remarked that this is provably equivalent to the proposition

a ∈ P

which establishes the required identity. The locale MaxA is therefore a retract of
the locale SpecA. It may be remarked further that the locale MaxA is actually the
complete regularisation of the locale SpecA, as in the classical situation. In particular,
the commutative C∗-algebraC(Max A) of continuous complex functions on MaxA is
canonically isomorphic to that on the locale SpecA.

The existence of this retraction may now be used to obtain the Gelfand–Mazur
theorem for commutative C∗-algebras in a more conventional form. It may be recalled
(Lawvere [17]) that a commutative ringA in a toposE is said to belocal provided that

∀a∈A a ∈ Inv (A) ∨ 1− a ∈ Inv (A) ,

in which Inv(A) denotes the subset

Inv (A) = {a ∈ A | ∃ b ∈ A ab= 1}
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consisting of the invertible elements ofA. It may be verified that this is equivalent to the
subset Inv(A) being a prime of the ringA, in the sense already defined. Of course, it is
equivalent classically to the ringA having a unique maximal ideal, namely the complement
of the subset of invertible elements.

Applying the Gelfand duality theorem, one may now obtain the following form of the
Gelfand–Mazur theorem:

In any Grothendieck toposE, let A be a commutative C*-algebra which is local. Then
A is isometrically *-isomorphic to the fieldCE of complex numbers ofE.

It may be remarked that any commutative C∗-algebra which is local is classically a
field, so that this result is equivalent to the Gelfand–Mazur theorem in that situation. In
the present context, the theorem is proved by showing firstly that the subset of invertible
elements ofA yields a model of the theoryMax A, andhence a point

1→ Max A

of the maximal spectrum ofA. It is then straightforwardly deduced that this map of locales
is actually an isomorphism, and hence thatA is isometrically *-isomorphic by the Gelfand
isomorphism to the algebraC(Max A) of continuous complex functions on the locale1,
which is evidently the fieldCE.

To obtain the existence of this point of the locale MaxA, we consider firstly that of
the locale SpecA obtained by taking the subset ofA consisting of its invertible elements.
Since the commutative C∗-algebraA is assumed to be local, one has that this subset is
indeed a prime of A, andhence determines a model of the theorySpecA, yielding apoint

1→ SpecA

of the locale which it determines. Observe that any primeP of A yields a primeMP which
is a model of the theoryMax A, by composition with the retraction

SpecA→ Max A.

Moreover, the primeMP obtained is contained in the primeP: for the extent to which
a ∈ MP for eacha ∈ A is the join of theextents to which

(|a| − q.1)+ ∈ P � a ∈ P

taken over positive rationalsq, by thedefinition of the retraction.
Within the theory of SpecA, one has that

(|a| − q.1)+ ∈ P � a ∈ P

is provable. Hence, the extent to whicha ∈ MP is contained in that to whicha ∈ P. But
the primeP considered presently consistsof all invertible elements ofA. Hence, the prime
MP obtained consists of invertible elements ofA. But any primecontains all invertible
elements ofA, andhence the primeP coincides with the primeMP obtained. So the prime
P of invertible elements of the commutative C∗-algebraA is a model ofMax A, andhence
determines a point

1→ Max A,

which is now asserted to be an isomorphism in the category of locales.
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For the inverse image of this map of locales assigns to the propositiona ∈ P of the
theoryMax A the extent[[a ∈ P]] to which the elementa ∈ A is invertible. To verify that
this map of locales is an isomorphism it suffices to prove that this inverse image mapping
is bijective. It is clearly surjective, since the identity element ofA of any given extent is
invertible to that extent. To see that it is also injective, observe that because the locales
involved are compact, completely regular, it is enough to prove that if the inverse image of
an element of the locale MaxA is zero, then the element concerned is the zero of the locale.
Moreover, it suffices to prove this for elements chosen from a basis of the locale MaxA.
But the propositionsa ∈ P form such a basis, since it has been shown that these generate
the theory Max A, yet are closed under finite conjunctions by virtue of the axiom (P4) of
the theory Spec A. However, if[[a ∈ P]] = 0, thena = 0: for if an element of the ring
of continuous complex functions on a locale,which by Gelfand duality the commutative
C∗-algebraA may be taken to be, is nowhere invertible then it is zero. It follows thata ∈ P
is provably false, by the axiom (P2), as required. The canonical map

1→ Max A

is therefore an isomorphism of locales. Then, by the Gelfand isomorphism ofA with
C(Max A) it follows that A is isometrically*-isomorphic toCE, which completes the
proof.

The Gelfand representation of commutative C∗-algebras in the Grothendieck toposE

extends to one of any C∗-algebraA in E over the maximal spectrum of its centre Z(A),
by constructions analogous to those considered in the case of the topos of sets [11,24].
Besides depending on the existence of non-negative partitions of unity in the commutative
C∗-algebra Z(A), theproof relies on one other important fact concerning the C∗-algebra
A, namely that it is locally convex over itscentre. To show that the open ballN(q) of
radiusq of A is closed under convex linear combinations determined by elements of its
centre Z(A), one may argue by taking the inverse image of the C∗-algebraA along a Barr
covering

γ : B→ E

of the toposE. The pre-C∗-algebraγ ∗(A) obtained in the toposB admits an isometric
*-homomorphism into its completion inB, which will be a C∗-algebra in the toposB. By
the density of this homomorphism into the completion, the centre ofγ ∗A is mapped into
the centre of the completion. By the fact that the order relation on the self-adjoint part
of a commutative C∗-algebra is determined algebraically, non-negative partitions of unity
in the centre ofγ ∗A are mapped to non-negative partitions of unity in the centre of the
completion. Hence the required conclusion is reached since it is true of a C∗-algebra in
the toposB in which the Axiom of Choice is satisfied, by the classical arguments used to
establish this fact.

The Gelfand representation is then obtained by observing that the centre Z(A) of the
C∗-algebraA is a commutative C∗-algebra which admits a Gelfand representation

Z(A)→ CMax Z(A)(Max Z(A))
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into the commutative C∗-algebra of continuous complex functions on the locale Max Z(A),
considered here to be the algebra of sections of the sheaf of continuous complex functions
on Max Z(A). This extends canonically to the existence of adjoint functors

Mod Z(A) −−→←−− ModMax Z(A) CMax Z(A)

between the category of modules over Z(A) in the toposE and the category of sheaves of
modules over the sheafCMax Z(A) in the topos of sheaves inE over the locale Max Z(A).

The existence of finite partitions of unity over Max Z(A) in the commutative C∗-algebra
C(Max Z(A)) implies that these adjoint functors establish an equivalence of categories
(Mulvey [21]). In particular, the sheafAMax Z(A) assigned to the C∗-algebraA, considered
to be a module over its centre Z(A), is canonically an involutive algebra over the sheaf
CMax Z(A) of continuous complex functions on Max Z(A), in such a way that the canonical
map

A→ AMax Z(A)(Max Z(A))

is a *-isomorphism.
The *-algebraAMax Z(A) obtained may be given a seminorm by assigning to each

positive rationalq over Max Z(A) the subsheaf consisting over each open set of Max Z(A)
of those sections which are locally the restrictions of Gelfand transforms of elements ofA
lying in the open ball of radiusq. It may beobserved that the seminorm induced on the
*-algebraAMax Z(A)(Max Z(A)) of sections over Max Z(A) is given by taking its open ball
of radiusq to consist of those elements which are locally given by the Gelfand transforms
of elements from the open ball ofA of radiusq. In particular, the canonical *-isomorphism

A→ AMax Z(A)(Max Z(A))

is immediately seen to be contractive.
With these observationsone may now state the following generalisation of the classical

result (Dauns–Hofmann [11], Mulvey [24]) concerning the representation of C∗-algebras
over the maximal spectrum of their centres:

For any C*-algebra A in a Grothendieck toposE, the canonical map

A→ AMax Z(A)(Max Z(A))

is an isometric *-isomorphism into the algebra of sections of a C*-algebra in the topos of
sheaves inE over the maximal spectrum of the centre of A.

That the canonical map is isometric may be proved by observing that whenever the
Gelfand transform ofa ∈ A has seminorm less thanq one may find a finite open covering
(Ui )i=1, ... ,n of Max Z(A) together with for eachi = 1, . . . ,n an elementai ∈ A lying
in the open ball ofA of radiusq, of which the Gelfand transform coincides with that of
a ∈ A over theopen setUi . Choosing a non-negativepartition of unity (pi )i=1, ... ,n in
Z(A) subordinate to this open covering, one may conclude that

a =
∑

i
pi ai .
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Then one observes that the convexity of the open balls of the C∗-algebraA with respect to
its centre Z(A) implies that the convex linear combination

a =
∑

i

pi ai

of these elements of the open ball ofA of radiusq again lies in that open ball, establishing
the isometricity of the Gelfand representation. Now, the seminormed structure obtained on
the involutive algebraAMax Z(A) is such that its algebra of sections over Max Z(A) satisfies
the condition required of a C∗-algebra with respect to its involution, and is necessarily
complete, by virtue of this isometry with the C∗-algebraA. But, againby the existence of
finite non-negative partitions of unity in Z(A) over the locale Max Z(A), it then follows
that the involutive algebraAMax Z(A) is actually a C∗-algebra in the topos of sheaves inE

over the locale Max Z(A), by arguments entirely similar to those in the classical situation.
It may be remarked that, as in the classical context, the purpose of this representation

is to obtain from the C∗-algebra A a topos in which it is represented isometrically
*-isomorphically by a C∗-algebra AMax Z(A) of which the centre is the commutative
C∗-algebraCMax Z(A) of complex numbers in the topos. In analogous ways to those usually
pursued one may equally obtain a duality between the category of C∗-algebras in the topos
E and the category consisting of compact, completely regular locales inE together with
C∗-algebras defined over their algebras of continuous complex functions.

Consider now another consequence of theGelfand representation, namely its
application to commutative C∗-algebras which admit a single generator. Classically, it is
this which provides the link between the spectrum of a C∗-algebra and that of a normal
operator on a Hilbert space, by considering the commutative C∗-algebra generated by the
operator within the C∗-algebra of bounded operators on the space. Once again the classical
situation carries over completely into the context of a Grothendieck topos, although the
greater generality achieved by doing so then allows rather more to be concluded from the
result obtained. To begin with we have the following:

For any commutative C*-algebra A in a Grothendieck toposE, consider an element
a ∈ A. Then its Gelfand transform

â : Max A → C

provides an embedding of the maximal spectrum as a bounded closed sublocale ofC

exactly to the extent that a∈ A existsand generates the commutativeC∗-algebra A.

Of course, the spectrum of the elementa ∈ A may then be considered to be the maximal
spectrum of the commutative C∗-algebra which it generates, yielding that this is a closed
bounded sublocale of the localeC of complex numbers in the Grothendieck toposE.

To prove this it suffices to consider the case of an elementa ∈ A which is defined and
generates the C∗-algebraA globally. By Gelfand duality, one has thatA is isomorphic to
C(M) for M the maximal spectrum MaxA, and thatthe Gelfand transform ofa ∈ A is a
map

â : M → C

of locales which globally generatesC(M). Now, consider the factorisation
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â ��

π
��

��
��

��
� C

F

ι

���������

in which F is a compact, completely regular locale. By Gelfand duality, the canonical map

C(π) : C(F) → C(M)

is an embedding, and, since the Gelfand transform is the image of the continuous complex
functionι : F → C under this canonical map, one has that the image ofC(π) contains the
Gelfand transform̂a, making it equal toC(M) by hypothesis. HenceC(π), and therefore
π , is an isomorphism. The converse, that the extent to which the Gelfand transform
provides an embedding of the spectrum as a closed sublocale of the localeC is equal
to the extent to which the elementa ∈ A exists and generates the commutative C∗-algebra
A, is obvious.

Note that, in the above, the statement thata ∈ A generates the commutative C∗-algebra
A means that each subalgebraB of A equalsA to the extent thata ∈ B. The fact that
a ∈ A generates the commutative C∗-algebraA in this sense does not imply that A is
singly generated, in the sense that there exists an element which generatesA, except in
the case that the elementa ∈ A has global extent. This somewhat subtle point may be
illuminated by the following example:

Let S be the Sierpinski topos, that is, the topos of sheaves on the Sierpinski space, or
equivalently the topos of maps in the category of sets. Then, the natural embedding

C→ C(D)

of the complex number field in the category of sets into the algebra of continuous complex
functions on the unit discD is a C∗-algebraA in S. Further, ifz ∈ C(D) is the identical
embedding ofD into D, then z ∈ A, considered as an element of non-global extent,
generates the commutative C∗-algebraA because it generatesC(D). Now, if A were singly
generated, that is, if it were true that there exists a generating element ofA, then Sierpinski
space would be covered by open sets on each of which the restriction ofA has a generating
element. Since Sierpinski space has no non-trivial covers, this would imply thatA has a
generating element of global extent. However, any global element ofA already belongs to
the smallest subalgebra ofA, namely the identity mapping

C→ C,

and hence cannot generateA.
It may be remarked that this example also shows that a C∗-algebra may have an element

generating it globally without having a generating element of global extent. Finally, note
that Max A is just

(Open(D))� → Open(D) ,
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in which ( )ᵀ signifies addition of a new top element and the map just identifies the old
and the new top elements. As a space, this is just the embedding

D→ D•,

in which ( )• denotes the addition of a new pointwhose only neighbourhood is the whole
space. Then, clearly,D → D• cannot be embedded into the spaceC→ C of complex
numbers inS because any continuous mapD• → C is constant. Hence, MaxA cannot,
globally, be embedded into the locale of complex numbers.

In a similar fashion, one can give examples, for instance in the topos of sheaves on
the unit circle, which show that a singly generated C∗-algebra need not have any global
generating element.

We now turn to a substantial generalisation of the proposition proved above. For this,
we first need to remark that the concept of element which one considers in a topos is that
generalisedto allow consideration of any map

a : X → A

into the objectA with which we are concerned from an arbitrary objectX. In particular,
any elementa ∈ A of this kind of a commutative C∗-algebraA has a Gelfand transform,
which may be viewed explicitly as a map of locales

â : Max A → CX

from the maximal spectrum ofA into the locale obtained by exponentiating the localeC

by the discrete locale determined byX, in other words given by the object of subobjects of
X. With this in mind it is then clear that we have also proved the following:

For any commutative C*-algebra A in a Grothendieck toposE, the Gelfand transform
of any element

a : X → A

which generates A provides an embedding of the maximal spectrumMax A as abounded
closed sublocale of the localeCX. In particular, there is a canonical embedding

Max A → CA

of the maximal spectrum onto a bounded closed sublocale of the power of the localeC

indexed by the commutative C*-algebra A.

In the latter case,the embedding is that induced by the generic element of the
commutative C∗-algebraA, namely the identity mapping onA.

For any compact, completely regular localeM, this yields theobservation thatM is
embedded inCC(M) by the Gelfand transform of the identity map onC(M), applying the
Gelfand isomorphism betweenM and MaxC(M). Of course, one can also show directly,
as in the classical case, that the natural map fromM to CC(M) is an isomorphism.

In another direction, the present proposition further implies that any elementa ∈ A
defined on a subobjectU of the terminal object 1 and generating the commutative
C∗-algebraA determines an embedding

Max A→ CU
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into the localeCU . This locale may be considered to be the locale of complex numbers
localised to the extent ofU .

Finally, returning to the case of a commutative C∗-algebraA with a single, globally
defined generatora ∈ A, it may be remarked that the theory of the maximal spectrum
Max A is then that of the localeC of complex numbers together with the following
additional axioms:

(i) a ∈ A(q) � falsewhenevera ∈ N(q), which ensures boundedness, and
(ii) a ∈ (r, s) � false,

for certain rational open rectangles(r, s) which are determined by, and determine, the
particular properties of the elementa ∈ A concerned. In particular, observing that the
spectrum of a bounded normal linear operatorT on a Hilbert space is given by the maximal
spectrum of the C∗-algebra generated byT , this allows the spectrum of the operator to be
described in terms of a theory given by propositions of the form

T ∈ (p,q).
In the context of the foundation of quantum mechanics this suggests one way in which
an observable might be represented constructively by allowing a theory of the observable
to determine directly its spectrum instead of the usual approach of first representing the
observable as an operator on a Hilbert space.

Regarding Gelfand duality in general, we note that, although the nature of commutative
C∗-algebras is reasonably transparent in an arbitrary Grothendieck topos, this is rather
different for compact, completely regular locales in general and for the construction of
the maximal spectrum of a commutative C∗-algebra in particular. There are, however, two
situations in which these are well understood, namely that of the topos of sheaves on a
compact Hausdorff spaceX and that of the topos ofG-sets for a groupG. We shall now
discuss these in some detail.

In the case of sheaves on a compact Hausdorff spaceX, thecategory of commutative
C∗-algebras inSh X is equivalent to the category of commutative C∗-bundlesπ : A→ X,
where the latter may be defined as follows (Hofmann–Keimel [13], Burden–Mulvey [9]):
for eachx ∈ X the fibreπ−1(x) of the continuous mapπ carries the structure of a
C∗-algebra such that the algebraic operations are continuous overX, the norm topology
coincides with the subspace topology in the total spaceA, the norm is upper semi-
continuous onA, and for eachx ∈ X the continuous sections on neighbourhoods of
x ∈ X meetπ−1(x) densely. A map between two such bundles is a continuous fibre
preserving map between the total spaces, inducing C∗-algebra homomorphisms on each
fibre. From commutative C∗-bundles overX to commutative C∗-algebras inSh X, the
equivalence takes eachπ : A → X to the sheaf of continuous sections ofπ , with the
obviousdefinition of C∗-algebra structure. On the otherhand, the compact, completely
regular localesM in Sh X result, up to isomorphism (Johnstone [16]), from the compact
Hausdorff spaces overX, that is, the continuous mapsϕ : K → X, K compact Hausdorff,
by letting M (U) = Open(ϕ−1 (U)) for each open subsetU of X. Alternatively, this says
that M = ϕ∗(ΩK ) for the subobject classifierΩK of the toposSh K and the functor
ϕ∗ : Sh K → Sh X induced byϕ. Further, the locale mapsϕ∗ (ΩK ) → ϕ′∗ (ΩK ′)
for suchϕ : K → X andϕ′ : K ′ → X correspond exactly to the continuous maps
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f : K → K ′ over X, the map corresponding tof taking each openV ⊆ (ϕ′)−1 (U) to
f −1 (V) ⊆ ϕ−1 (U). Hence the category of compact, completely regular locales inSh X
is equivalent to the category of compact Hausdorff spaces overX.

This description permits the following elucidation of the functorC( ) of Gelfand duality
in Sh X:

The complex number object inSh X is the sheafCX of complex-valued continuous
functions onX or, alternatively, the sheaf of continuous sections of the initial C∗-bundle,
that is, the projectionp : X× C→ X. Further, the locale of complex numbers is the locale
of open subsets ofCX, which may be described asp∗(ΩX×C), the sheaf which associates
Open(U × C) with theopen subsetU of X. It follows that, for any compact regular locale
M = ϕ∗ (ΩK ), ϕ : K → X a compact Hausdorff space overX, theobject of locale maps
from M to the locale of complex numbers is the sheaf assigning to each open setU in X
the set of locale maps (ϕ|ϕ−1 (U))∗ : Ωϕ−1(U ) → ΩU×C in the topos of sheaves onU ,
the latter being essentially the same as the locale maps Open(ϕ−1 (U))→ Open(U × C),
which in turn correspond exactly to the continuous mapsϕ−1 (U) → C, by the soberness
of the spaces involved. This shows thatC(M) = ϕ∗(CK ). Further, it iseasily checked that
locale mapsM → M ′ determine precisely the expected mapsϕ′∗(CK ′) → ϕ∗(CK ).

In all, we now have thefollowing results:

For any compact Hausdorff space X, Gelfand duality in Sh X determines an
equivalence between the category of C*-bundles over X and the category of compact
Hausdorff spaces over X. The C*-algebras inSh X are exactly theϕ∗(CK ), for compact
Hausdorff spacesϕ : K → X over X.

There is an obvious alternative approach to the duality of compact Hausdorff spaces
overX, based on classical Gelfand duality by which the correspondence

K
ϕ→ X �→ C(K )

C(ϕ)← C(X)

makes compact Hausdorff spaces overX equivalent to the category of all C∗-algebra
homomorphismsC(X) → A, for A any C∗-algebra, which we shall call the C∗-algebras
over C(X), thesebeing the C∗-algebras which are equipped with an appropriateC(X)-
algebra structure. This duality is clearly different from that described in the above
proposition and leads to the following observation:

The category of commutative C*-bundles over a compact Hausdorff space X is
equivalent to the category of commutativeC∗-algebras overC(X) by the functor taking
each commutativeC∗-bundle A

π→ X to the C*-algebra of its global sections.

Note that this can also be obtained directly, by familiar arguments concerning
C∗-bundles and C∗-sheavesover X. Also, it is the commutative C∗-algebra counterpart of
the equivalence between Banach bundles overX and locally convex Banach modules over
C(X), for a compact Hausdorff spaceX (Burden–Mulvey [9], Hofmann–Keimel [13]).

Interpreting now our Gelfand duality in the particular case of the topos ofG-sets, for an
arbitrary groupG, leads to the following observations:

The compact completely regular locales are exactly the locales of open sets of compact
Hausdorff spacesX with G acting on X continuously (and hence as automorphisms),
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the G-action induced by that onX in the obvious manner. Similarly, the maps between
compact completely regular locales are the maps induced by continuousG-maps
(= equivariant maps), and hence there is a category equivalence between the category
of compact completely regular locales and the category

Compact Hausdorff spaces/G

of compact Hausdorff spaces withG-action and continuousG-maps. Thisidentifies one
side of Gelfand duality. The other side is given by the category

Commutative C*-algebras/G

of commutative C∗-algebras with G-action by automorphisms and equivariant C∗-algebra
homomorphisms. Gelfand duality now asserts there is a dual equivalence between these
two categories. To analyse the functors involvedthe following facts are needed:

The complex number object in the topos ofG-sets is just the usual complex number
fieldC with trivial G-action, as one readily sees by tracing through the general definition of
complex number (or, perhaps, more conveniently, real number) objects (Banaschewski [1]).
Furthermore, the locale of complex numbers is the locale Open(C) because this is the case
in the topos of sets in which theG-sets are taken. Asa result, for any compact completely
regular localeM, C(M) is, as an object, the object of locale mapsM → Open(C), and
if M equals Open(X) for someX in compact Hausdorff spaces/G, this is then the object
of all locale maps Open(X) → Open(C). Now, by the soberness of the spaces involved,
the latter is exactly the usual set of all continuous mapsX → C. Taking into account the
G-action and the C∗-algebra structure, we see thatC(M) is the usual C∗-algebraC(X) of
all complex-valued continuous functions onX with G-action

(s f) (x) = f
(
s−1x

)

for s ∈ G, f ∈ C(X), andx ∈ X. Furthermore, the functoriality of the correspondence
M �→ C(M) is exactly analogous to that of the correspondenceX �→ C(X).

On the other hand, for any C∗-algebraA, the spatial locale MaxA, whose points are
exactly the homomorphismsA→ C, is the locale Open(MaxG A), where MaxG A is the
usual maximal ideal space ofA with G-action inducedin the obvious way by theG-action
on A. Moreover, the functoriality ofA �→ Max A andA �→ MaxG A correspond to each
other. In all, this leads to the following result:

For G-sets, Gelfand duality takes the form of a dual equivalence

Commutative C*-algebras/G � Compact Hausdorff spaces/G

given by A �→ MaxG A and X �→ C(X).

We note that this is, indeed, the same equivalence obtained by taking classical Gelfand
duality and consideringG-sets as set-valued functors onG. The principle involved is
that, for the functor category between two categories and the formation( )op of the dual
category, one has that

Funct(K , L)op = Funct(K op, Lop),

together with the fact thatGop∼= G (by s �→ s−1).
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The latter argument has an obvious analogue, taking into account that there may not be
an isomorphism with the dual, for arbitrary monoids or, indeed, any small category. How
the resulting alternative duality is related to that given by general Gelfand duality we have
not yet decided.

We conclude with some conjectures concerning the true nature of Gelfand duality. The
form in which that duality is presented here has an obvious asymmetry: on one side, one
deals with locales, but on the other the objects involved, C∗-algebras, are spaces. It seems to
us there ought to be a further duality, extendingthat considered here, in which the objects
on either side are of the same kind, and hence locales. This presupposes that there is a
notion, yet to be properly defined, of a localic C∗-algebra; we expect this to be related to
C∗-algebras in somewhat the same manner in which the complex number locale is related
to the complex number object in a topos. On the other hand, we speculate that compact
regular locales will takethe place of the compact completely regular locales in the present
duality.

The two contravariant functors giving the dual equivalence of the two categories thus
indicated should then be (i) an appropriate version of the present Max, and (ii) given
by taking each compact regular localeM to the localic C∗-algebraCM obtained by
exponentiation.

Finally, the present duality should be a consequence of this new one because of the
following conjectures:

(i) For any compact regular localeM, CM is spatial if, and only if,M is completely
regular.

(ii) For any localic C∗-algebraA, Max A is completely regular if, and only if,A is spatial.
(iii) The C∗-algebras are given exactly by taking the objects of points of localic C∗-

algebras.

We hope to return to the discussion of these matters in due course.
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