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up to 16 vertices, 4-connected polyhedra with up to 15 vertices, non-Hamiltonian
polyhedra with up to 15 vertices, bipartite polyhedra with up to 24 vertices, and
bipartite trivalent polyhedra with up to 44 vertices. The results of the enumeration
were used to systematically search for certain smallest non-Hamiltonian polyhedral
graphs. In particular, the smallest non-Hamiltonian planar graphs satisfying certain
toughness-like properties are presented here, as are the smallest non-Hamiltonian,
3-connected, Delaunay tessellations and triangulations. Improved upper and lower
bounds on the size of the smallest non-Hamiltonian, inscribable polyhedra are also
given. © 1996 Academic Press, Inc.

1. INTRODUCTION

This paper describes the results of a computer enumeration of several
classes of polyhedra and a search for polyhedra with certain noteworthy
properties. It extends work done by many other researchers; references
are given in the appropriate sections. Among the classes of polyhedra
enumerated are:

Polyhedra with up to 13 vertices.

Simplicial polyhedra with up to 16 vertices.

Bipartite, trivalent polyhedra with up to 24 faces (44 vertices).

o 4-connected simplicial polyhedra with up to 17 vertices.

4-regular polyhedra with up to 22 vertices.
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¢ 4-connected and minimally 4-valent polyhedra with up to 15 vertices.
 Bipartite polyhedra with up to 24 vertices or 15 faces.

e Non-Hamiltonian polyhedra with up to 15 vertices, 27 edges, or 13
faces.

e Non-Hamiltonian simplicial polyhedra with up to 17 vertices.

These results are discussed in Sections 3-5. Section 3 describes the
enumeration of simplicial polyhedra, including a brief sketch of several
implementation details. Section 4 describes the various approaches used to
enumerate different classes of polyhedra, and contains enumeration of these
classes. In particular, this section contains a refinement of Tutte’s inductive
definition of 3-connected planar graphs that may be of independent
interest. Section 5 focuses on the generation of non-Hamiltonian polyhedra.

One goal of this research was to find smallest examples of non-
Hamiltonian polyhedra that satisfy certain additional graph-theoretical
properties.! The results are summarized in Table 1. The examples them-
selves, and the relevant definitions, appear in Section 6.

In Section 7, we turn our attention to inscribable polyhedra. We present
enumerations of inscribable and circumscribable simplicial polyhedra with
up to 16 vertices. We also exhibit the (unique) smallest polyhedron that is
neither inscribable nor circumscribable; it has 10 vertices and is self-dual.

In Section 8, the results of the earlier sections are applied to the problem
of finding smallest non-Hamiltonian Delaunay tessellations and triangula-
tions. In particular, the smallest non-Hamiltonian, 3-connected, Delaunay
tessellations have 13 vertices and 10 faces. There are four combinatorially
distinct tessellations with this property; two are isomorphic as graphs, but
have different outer faces in the plane embedding. The smallest non-
Hamiltonian, 3-connected Delaunay triangulations have 13 vertices and
21 faces (i.e., the nontriangular face is a quadrilateral); there are two com-
binatorially distinct smallest examples.

Section 9 contains some results concerning smallest non-Hamiltonian
inscribable polyhedra. Using the results of our enumeration, we have
determined that the number of vertices in the smallest simplicial non-
Hamiltonian inscribable polyhedra lies between 18 and 20, inclusive. There
are at least 11 combinatorially distinct simplicial non-Hamiltonian
inscribable polyhedra with 20 vertices. In the nonsimplicial case, there
are exactly three combinatorially distinct non-Hamiltonian inscribable
polyhedra with 19 vertices and 13 faces; we conjecture that these are the
smallest non-Hamiltonian inscribable polyhedra.

' We say graph G is smaller than graph H if either (1) G has fewer vertices than H, or (2)
they have the same number of vertices and G has fewer edges.
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TABLE 1

Summary of Smallest Non-Hamiltonian Planar Graphs Presented in Section 6

Size

Properties Count Vertices Faces Figure(s)
Planar, 1-supertough, 2 10 8 5(a)(b)
Non-1-Hamiltonian
Planar, 1-supertough, 1 10 (16) 5(c)
Non-1-Hamiltonian, simplicial
Planar, 3-connected, 1-tough, 1 13 10 6(a)
Non-Hamiltonian
Planar, 1-tough, 1 13 (22) 6(b)
Non-Hamiltonian, simplicial
Planar, 1-supertough, 1 15 11 7(a)
Non-Hamiltonian
Planar, 1-supertough, 1 15 (26) 7(b)

Non-Hamiltonian, simplicial

2. PRELIMINARIES

For the relevant background in combinatorial geometry and graph theory,
see [22, 5]. Throughout this paper, polyhedron means a 3-polyhedron.
We make implicit use of Steinitz’ theorem that a graph is realizable as a
3-polyhedron (polyhedral) if and only if it is planar and 3-connected. Two
polyhedra are combinatorially equivalent if they are isomorphic. In Sections
7 and 8, we will be concerned with embeddings of graphs in the plane in
which the identity of the outer (unbounded) face is important; in this con-
text, we will say that two plane graphs are combinatorially equivalent if
there is an isomorphism between them that preserves the identity of the
outer face. The equivalence classes induced by the relation of combina-
torially equivalence are called combinatorial types. A full stellation of a
plane graph G is obtained by choosing a face f of G, inserting a new vertex
inside £, and connecting the new vertex to all vertices of G on the boundary
of f. If the new vertex is connected to some (but not necessarily all) of the
boundary vertices of f, the resulting graph is called a partial stellation of G.

We use the following notation. &, denotes the class of simplicial
polyhedra with n vertices (i.e., polyhedra in which all faces are triangles.)
A polyhedron with n vertices and k faces is called an (n, k)-polyhedron; the
class of all (n, k)-polyhedra is denoted 2, ,. The class of (n, k)-polyhedra
is nonempty if and only if # <2k —4 and k < 2n — 4; if these inequalities are
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satisfied, we call (n, k) a feasible pair. We use |-| to denote cardinality,
with the following conventions: if G is a graph, S is a point set, and ¥ is
a class of polyhedra (e.g., &,), then |G|, |S|, and |¥| denote, respectively,
the number of vertices in G, the number of elements in S, and the number
of distinct combinatorial types in 4.

3. GENERATING SIMPLICIAL POLYHEDRA

The fundamental operation needed to generate %,, the simplicial
polyhedra with n vertices, is the operation augment(G, ¢, e,) illustrated
in Fig. 1. It is defined as follows. Given two distinct oriented edges e, = vw
and e, =vx with a common tail v, v is “stretched” into an edge uv, and
edges uw and ux are added. All neighbors of v that are between w and x
(moving counterclockwise about v) are then disconnected from v and
attached to u. (Note that there may not be any such neighbors, in which
case the new vertex u will have degree 3.) It is well known (see, for
example, [6]), that for n>4,. %, can be generated by applying the
augment operation to every member of &, _; in every possible way and
checking for duplicates, and that &, consists of a single graph (the
tetrahedron).

The procedure outlined in the preceding paragraph causes many redun-
dant candidate graphs to be generated. The total number of candidate
graphs generated can be considerably reduced by applying a few simple
observations.

1. Simplicial polyhedra with minimum degree 4 or 5 can be efficiently
generated using an inductive procedure defined in [3], so it is only
necessary to generate candidate graphs with minimum degree 3.

2. In view of Observation 1, it is only necessary to apply the opera-
tion augnent (el, e2) in situations where ¢, and e, are adjacent edges.

FiG. 1. The “vertex stretching” operation used to generate simplicial polyhedra.
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Indeed, it is shown in [ 6] that any simplicial polyhedron with degree 3 can
be generated by performing the augment operation on some pair of
incident edges in some graph &, .

3. Since e, and e, play symmetric roles in the definition of augment
(ey, e;), it is only necessary to apply the operation when e, is the clockwise
neighbor of e, about their common tail.

4. Define two oriented edges e and ¢ in graph G to be auto-
morphism-equivalent if there is an isomorphism of G onto itself mapping the
tail and head of e onto the tail and head (respectively) of ¢’. This relation
partitions the oriented edges of e into automorphism-equivalence classes.
The preceding observations imply that for each base graph, it is adequate
to choose one oriented edge e, from each automorphism-equivalence
class, let e, be the clockwise neighbor about its tail, and to then apply
augment (e,, e,) only to pairs of oriented edges e, and e, constructed in
this fashion. An efficient and practical procedure for constructing the auto-
morphism-equivalence classes for polyhedral graphs is described in [27].

In addition to the preceding optimizations, several implementation
details are worth noting. Duplicate graph detection could be performed
using the isomorphism-testing algorithm of [27], which is based on the
partitioning of oriented edges into automorphism equivalence classes
mentioned above. However, the simple isomorphism-testing algorithm
described in [ 6], while asymptotically slower than the algorithm of [27],
appears to be significantly faster for the small values of n relevant to this
paper.

Efficient searching for possible duplicates can be done using standard
chain-bucket hashing techniques [ 30]. The following hash function A( - ) is
invariant under isomorphism, can be computed rapidly, and seems to have
nice distribution properties. Let G be a simplicial polyhedron with n
vertices. For each vertex v;, let s(v;) be the sum of the squares of the
degrees of the neighbors of v;. Let s, ---5, be the n values of s(v;), sorted
in ascending order. The hash function for G is then given by

h(G)=) s;p'~' modyg, (3.1)

for suitably chosen primes p and ¢. In addition to its use for streamlining
the search for duplicates, this hash function is useful for producing large
catalogs when disk space is limited. Indeed, one can partition the range
0,1,..,4g—1 into k disjoint intervals and run the generating program k
times, once for each interval, each time ignoring all candidate graphs
whose hash function values fall outside the appropriate interval.
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The number of simplicial polyhedra of each order up to 16 is shown in
Table II. The third column shows the number of distinct degree sequences
that are realized by simplicial polyhedra of the given order. The fourth
column shows the number of simplicial polyhedra with minimum degree at
least 4. As indicated above, these were separately generated by a program
implementing Batagelj’s inductive definition of this subclass [ 3]. The final
column shows the number of 4-connected simplicial polyhedra. These were
obtained by testing each minimally 4-valent simplicial polyhedron for
4-connectivity.

Counts of simplicial polyhedra with up to 11 vertices can be found in
[22] (also, see [7]). Simplicial polyhedra with 12 vertices were first
enumerated by Bowen and Fisk [6]. The values in the above table up to
and including n = 14 have been independently confirmed by Warren Smith.
The values in the fourth column were previously computed by Holton and
McKay [26], and earlier by Hucher et al. for n<14 [28].

Table IIT contains the number of simplicial polyhedra with all vertices
having even degree, for n > 24. Equivalently, these are the counts of bipar-
tite, trivalent polyhedra having 44 or fewer vertices. These were generated
using an algorithm described in [ 3], modified to use efficiency techniques
discussed above. The entries up through n =22 were previously computed
by Holton, Manvel, and McKay [25].

TABLE 11

The Number of Nonisomorphic Simplicial Polyhedra and Distinct Maximal Planar Degree
Sequences for n < 15, and the Number of Nonisomorphic 4-valent and 4-connected Simplicial
Polyhedra for n <17

n Graphs Sequences Minimum degree >4  4-connected
3 1 1 1
4 1 1 1
5 1 1 1 1
6 2 2 1 1
7 5 5 1 1
8 14 13 2 2
9 50 33 5 4
10 233 85 12 10
11 1,249 199 34 25
12 7,595 445 130 87
13 49,566 947 525 313
14 339,722 1,909 2,472 1,357
15 2,406,841 3,713 12,400 6,244
16 17,490,241 7,006 65,619 30,926
17 ? ? 357,504 158,428
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TABLE III

Number of n-Vertex Simplicial Polyhedra with All Vertices
Having Even Degree, for n<24

n Count n Count
6 1 16 185
7 0 17 466
8 1 18 1,543
9 1 19 4,583
10 2 20 15,374
11 2 21 50,116
12 8 22 171,168
13 8 23 582,603
14 32 24 2,024,119
15 57

4. GENERATING POLYHEDRA

There are two different approaches to enumerating a class of polyhedra
2, 1, which we call the subtractive and additive approaches. Both have
their uses.

The subtractive approach generates 2, , from 2, , ., by systematically
deleting each edge from each Pe 2, , ., ,, verifying that the resulting graph
remains 3-connected and checking for duplicates. Two simple
improvements speed up the algorithm considerably: (1) deleting one edge
from each automorphism equivalence class (rather than deleting each edge
in the graph); and (2) generating candidate graphs only if the new face
would be a maximum-valence face (since otherwise the same candidate
graph will be generated from a different base graph). Since 2, ,, _,=%,,,
the subtractive approach can in principle be used to generate all polyhedra
with n vertices once &, has been computed.

The additive approach uses the theory of 3-connected graphs developed
by Tutte [48]. Tutte defined two basic operations, called face-splitting and
vertex-splitting. These two operations, which are illustrated in Fig. 2, are
dual to one another. The inverse operations are, respectively, called
face-merging and vertex-merging. An edge in a 3-connected graph is called
removable if deleting it (i.e., merging the two faces on either side of it)
preserves 3-connectivity. An edge in a 3-connected graph is called
shrinkable if shrinking it to a vertex (i.e., merging its two endpoints) would
not create a multiedge (a pair of edges with the same two endpoints).

Tutte proved that if n >4 and k >4, any graph in 2, _,, with one excep-
tion, can be obtained either by applying a face-splitting operation to a
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O See

Fi1G. 2. The two splitting operations: (a) Face-splitting. A face is split by adding an edge.
(b) Vertex-splitting. A vertex is split, the two new vertices are joined by an edge, and the edges
incident on the original vertex are apportioned between the two new vertices.

graph in 2, ,_, or by applying a vertex-splitting operation to a graph in
?,_1.r- The one exception is the wheel, W, consisting of n —1 vertices of
degree 3 arranged in a cycle about a hub vertex of degree n — 1. The follow-
ing theorem refines Tutte’s theorem by showing that, for fixed n and ., only
one of these two operations need be performed.

THEOREM 4.1. If 'k >=n, every graph in 2, ; (with the single exception of
the wheel W, if n=k, and otherwise without exception) can be generated by
applying a face-splitting operation to some graph in 2, ;. _,.

Proof. Assume n<k, Ge?, ,, and G is not a wheel. Let m denote the
number of edges in G. We show that G has a removable edge. The proof
is by induction on n. For n <5, the result is easily verified by inspection.
Indeed, there are only three polyhedra with five or fewer vertices: the two
wheels W, and W5, and the triangular bypyramid, which has a removable
edge.

For the induction step, we first note that since k£ > n, the average valence
of a face is less than 4 (this follows easily from Euler’s formula), so G has
at least one triangular face. Let T be this face, and let u, v, and w be the
three vertices on the boundary of 7. There are three cases, depending on
the number of boundary vertices that have degree 3.

Case 1. u,v, and w all have degree 3. Let x, y, and z be, respectively,
the neighbors of u, v, and w that are not in the triangle uvw. Notice that
X, y, and z must all be distinct. Indeed, if they were all the same, then G
would be the wheel W,. If two of them were identical (say x and y), then
removing x and w would separate uv from the rest of the graph, violating
3-connectivity.

Let G’ be the graph obtained by collapsing uvw to a single vertex, r (see
Fig. 3). It is easy to verify that G’ is 3-connected. Let k', n’, and m’ be,
respectively, the number of faces, vertices, and edges of G'. We have
k'=k—1,n"=n—2, and m'=m —3. Hence k' >n’ (so, in particular, G’ is
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FiG. 3. Case 1 in the proof of Theorem 4.1.

not a wheel), and m' <m. So by the inductive assumption, G’ has a
removable edge, say e. The edge e cannot be incident on r, since
degree(r)=3. Hence ¢ is a removable edge of G as well.

Case 2. At least two of the three vertices (without loss of generality,
assume u and v) have degree >4. Result (3.4) in [48, p. 446] may be
restated in our terminology as follows: if uvw is a triangle and neither edge
uv nor uw is removable, then either u or v has degree 3. It follows that
either edge uv or uw is removable.

Case 3. Two vertices (say u and v) have degree 3, the remaining vertex
(w) has degree >3. Let x (respectively, y) be the neighbor of u (respec-
tively, v) that is not a boundary vertex of 7. As in Case 1, x and y must
be distinct. Let G" be the graph obtained by collapsing the edge uv to a
single vertex r, with neighbors w, x and y, as illustrated in Fig. 4. We claim
that G’ is 3-connected. Assume for the moment that the claim is true. Let
n', k', and m' be, respectively, the number of vertices, faces, and edges of
G'. We have n'=n—1, k'=k—1, and m'=m—2. In particular, k' >n'.
Also, G’ is not a wheel (since, if it were, G would be a wheel with hub w).
By induction, G’ has a removable edge e. Since r has degree 3, r cannot be an
endpoint of e. It is not hard to see that e is also a removable edge of G.

It remains to show that G’ is 3-connected. We must show that given any
pair of distinct vertices in G’, there are 3 vertex-disjoint paths between
them. If w is not in the pair, this is straightforward to verify (since G is
3-connected). So assume one vertex is w, the other some vertex a. If a=r,
the verification is again straightforward, so assume a #r. Let F, (respec-
tively, F,) be the face opposite the edge uw (respectively, vw) from T in G,
and give the corresponding faces in G’ the same names. Assume that wux
forms part of a clockwise walk around the boundary of F, (see Fig. 4).
Since G is three-connected, there are three vertex-disjoint paths, I7,, I1,,
and 175, from w to a in G. Assume that one of these paths (I7,) uses the
edge wu and another path (/7,) uses the edge wv (otherwise, the paths

2 Result (3.4) in [48] is actually stated in a weaker form, using the stronger hypothesis that
neither uv nor uw is either removable or shrinkable. Nevertheless, Tutte’s proof of this result
uses only the assumption that neither uv nor uw is removable, so it may be stated in this
stronger form.
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FiG. 4. Case 3 in the proof of Theorem 4.1.

correspond naturally to three disjoint paths from w to @ in G’ and the
proof is complete).

Notice that 7, cannot contain a vertex on the boundary of F, other
than w (or possibly a, if ¢ is on the boundary of F;). Indeed, suppose it
contained a vertex p#w on the boundary of F,. Let H be the graph
obtained from G by placing a new vertex z inside face F;, and connecting
it to p, w, and u. Then H is planar. But H would then have a set of nine
vertex-disjoint paths connecting each of p, u, and w to each of z, a, and v
(namely: the three edges incident on z; the portion of 7, from p to a, the
portion of 7, from u to a, and I1;; and the portion of 11, from v to p and
the edges uv and wo). Since a planar graph cannot contain a K ; minor,
this is impossible. Similarly, /7, cannot contain a vertex on the boundary
of F, other than w (or possibly a). Also, since w has degree at least 4 and
G is 3-connected, a cannot be simultaneously on the boundary of F, and
the boundary of F;,.

Next, modify 775 as follows. Let b be the last vertex on the boundary of
either F, or F, encountered by I7; from w to a. If b=w, do nothing.
Otherwise, b cannot belong to both F, and F,. If b belongs to F, (respec-
tively, F,), replace the portion of I7; from w to b with the arc of the
boundary of F, (respectively, F,) from w to b that does not contain u
(respectively, v). After this modification, there is some ie {1, 2} such that
IT; does not contain any boundary vertex of F;. Assume, without loss of
generality, that i=1. Let ¢ be the last vertex on /7, that is also on the
boundary of F,. Since u has degree 3, ¢ # u. Since neither /7, nor I1; con-
tains any vertices of F; (other than w), we can “detour” /1, to go counter-
clockwise around the boundary of F, from w to ¢, thereby missing u. Now
the modified paths {/1,} correspond exactly to three disjoint paths in G’
from w to b (with r replacing v on I7,). This proves the claim, and hence
the theorem. ||

Since vertex-splitting and face-splitting are dual to one another, we also
have the following dual version of Theorem 4.1.

THEOREM 4.2. If n>k, every graph 2, , (with the single exception of
the wheel W, if n=k, and otherwise without exception) can be generated by
applying a vertex-splitting operation to some graph in 2, _, ;.
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Theorem 4.2 effectively halves the work required to generate 2, , for
n>k, since it says that we need only apply vertex-splitting to every vertex
in #,_, . There is a natural correspondence between possible vertex-
splitting operations and pairs of oriented edges (¢;, ¢,) with a common tail.
Hence the amount of work can be further reduced by choosing one oriented
edge e, from each automorphism class and only applying the corresponding
vertex-splitting operations. Also, it is only necessary to consider as
candidates for e, the first half of the edges that have the same tail as e,
moving clockwise about e,. This is because the remaining pairs will be
encountered with ¢, and e, playing opposite roles. Notice that it is impor-
tant for efficiency reasons to modify the hash function of Section 3 to take
face valences into account. We used the following modification of (3.1):

hWG)=7Y s;p’~' modgq.

Here, for each edge, we compute the sum of the squares of the degrees of
the two endpoints and a small multiple (we used 5) of the squares of the
valences of the two faces incident on the edge. The s,’s are these m com-
puted values, sorted into ascending order.

In the special case of generating the “diagonal” entries 2, , from
2, _1.,, further saving of work is possible. It follows from Theorem 4.2
that for any Ge 2, ,— {W,}, both G and its dual G* will be generated.
Hence, we introduce the notion of a representative of each dual pair. When-
ever we generate a candidate graph G, we determine whether it is the repre-
sentative. If it is the representative, we check whether it is a duplicate and
proceed accordingly; if it is not the representative, we eliminate it
immediately. This scheme saves disk space (since we only have to store one
representative of each dual pair) and work (since we save roughly half the
checks for duplicates).

To implement the representative scheme, we introduce a 2-variable selec-
tion function, s(x, y), with the properties that (1) the value of s(x, y) is
always either x or y, and (2) s(x, y) =s(y, x). Given a graph G for which
h(G)#h(G*), we say G is the representative of the pair if and only if
s(h(G), h(G*))=h(G). (Here h(-) is the hash function.) A more precise
description is as follows. For each candidate graph G, we compute A(G)
and h(G*). If h(G) #h(G*), we determine whether G is the representative;
if so, we check whether G is a duplicate, otherwise we discard it
immediately. If 4(G) = h(G*), we check whether G is a duplicate; if it is not,
we check whether G* is a duplicate.

Notice that if G is self-dual, we will only do the second check the first
time that G appears as a candidate graph. Otherwise, we do two duplicate
checks only in the (rare) case where G is not self-dual but A(G)=h(G*).
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TABLE V
Number of Polyhedra with Up to 26 Edges

m Total Self-dual Dual pairs
6 1 1 1
7 0 0
8 1 1 1
9 2 1

10 2 2 2

11 4 2

12 12 6 9

13 22 11

14 58 16 37

15 158 79

16 448 50 249

17 1,342 671

18 4,199 165 2,182

19 13,384 6,692

20 43,708 554 22,131

21 144,810 72,405

22 485,704 1,908 243,806

23 1,645,576 822,788

24 5,623,571 6,667 2,815,119

25 19,358,410 9,679,205

26 67,078,828 23,556 33,551,192

TABLE VI

Number of 4-Regular Polyhedra with Up to 22 Vertices

n 4-regular 4-connected
6 1 1
7 0 0
8 1 1
9 1 0
10 3 3
11 3 1
12 11 8
13 18 7
14 58 37
15 139 55
16 451 220
17 1,326 499
18 4,461 1,862
19 14,554 5,174
20 59,957 18,258
21 171,159 57,107
22 598,102 198,474
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Notice also that the selection function should be chosen so as not to skew
the uniform distribution of the hash function; for example, s(x,y)=
max(x, y) would be a bad choice. In our implementation, we chose

(x.7) max(x, y) if x+ymodriseven
s(x,y)=9 . .
min(x, y) otherwise

for a large prime r.

Table IV contains the values of |2, ;| for all feasible pairs with n<12
and for selected values with n<15. Question marks indicate unknown
values, blank entries indicate infeasible pairs.

With the exception of |24 15| = 17,490,241, not shown because of space,
the table implicitly contains all known values (since |2, ,|=|2; ,.|).

TABLE VII

The Number of Nonisomorphic Polyhedral Graphs Having n Vertices, k Faces,
and Minimum Degree at Least 4

kK 4 5 6 7 8 9 10 11 12 13 14 15 Total
4 0 0
5 0 0 0
6 o 0 0 0 0
7 0 0 0 0 O 0
8 1 0 0 0 0 O 0 1
9 o 0 0 0 O 0 0 0 0
10 1 1 0 0 O 0 0 0 0 2
11 1 1 0 0 0 0 0 0 2
12 2 4 3 0 0 0 0 0 9
13 4 10 3 0 0 0 0 17
14 5 25 36 11 0 0 0 71
15 17 107 119 18 0 0 261
16 12 159 580 456 58 0 1,265
17 89 1,095 2,815 1,714 139 5,852
18 34 1,089 7,562 14,102 6,678

19 491 10,096 47,890 67,651

20 130 7,485 85,805 288,534

21 2,806 87,124 651,596

22 525 51,844 870,969

23 16,534 712,861

24 2,472 355,286

25 98,587

26 12,400

Total 0 0 1 1 4 14 67 428 3,515 31,763 307,543 3,064,701
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Values for n<9 were first published in [21]. Values for n<10 and for
(11,11), (11,12), (11,13), and (12, 12) first appeared in [18]. The
remaining values for n<11 were first published in [20]. Values for
(12, 13), (12, 14), (12,15), (13, 13), (13, 14), and (14, 14) were first com-
puted by Duijvestijn [17]. The value for (13, 15) was independently
computed by Duijvestijn [ 17]. All other values appearing in Table IV are
new. Table V, included for completeness, contains the number of polyhedra
with m edges for all m <26.

We now present enumerations of certain subsets of 2, ;. Table VI shows
the number of 4-regular polyhedra with 22 or fewer vertices. These were
generated using the inductive algorithm given in [4]. By Euler’s formula,
a 4-regular polyhedron with n vertices has exactly n+ 2 faces. The third
column of Table VI contains the number of 4-connected 4-regular,
polyhedra with n vertices.

TABLE VIII

The Number of Nonisomorphic Polyhedral Graphs Having n Vertices, k Faces,
and Minimum Degree at Least 4

n

k4 5 6 7 8 9 10 11 12 13 14 15 Total
4 1 1
5 0 0 0
6 0 0 0 O 0
7 0 0 0 0 O 0
8 1 0 0 0 0 O 0
9 0o 0 0 0 o0 0 0 0 0

10 1 1.0 0 O 0 0 0 0 2

11 I 0 0 0 0 0 0 0 1

12 23 3 0 0 0 0 0 8

13 37 1 0 0 0 0 11

14 4 20 24 8 0 0 0 56

15 1370 70 7 0 0 160

16 10 112 366 252 37 0 771

17 60 686 1,591 867 55 3,259

18 25 700 4,416 7,497 3,207

19 307 5,897 25,912 33,539

20 87 4,401 47,030 146,823

21 1,616 47,640 335,055

22 313 28,289 449,468

23 8,875 366,007

24 1,357 181,118

25 49,504

26 6,244

Total 1 0 1 1 4 10 53 292 2224 18,493 167,504 1,571,020
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Table VII shows the number of (n, k)-polyhedra in which every vertex
has degree at least 4 for n<15. Each column was generated by applying
the subtractive method, starting with the minimally-4-valent simplicial
polyhedra with n vertices. Notice that applying the subtractive method is
clearly valid (since a polyhedron obtained by adding an edge to a
polyhedron with minimum degree 4 also has minimum degree 4), but the
additive method may not be. Table VIII shows the number of 4-connected,
(n, k)-polyhedra for n<15. It was generated by testing each polyhedron
with minimum degree 4 for 4-connectivity. (Notice that the tetrahedron is
a special case: it is 4-connected but has minimum degree 3.)

Table IX shows the number of bipartite (n, k)-polyhedra for n < 24. The
values for each fixed n were computed by starting with the set of 4-regular
polyhedra with n — 2 vertices (and n face), computing their duals, and then
applying the subtractive method. This is valid because it is always possible
to add edges to any bipartite polyhedron to obtain a quadrangulation.

Table X shows the number of irreducible polyhedra, which we define to
be those polyhedra that do not have a removable edge. (In other words,
these are wheels plus the counterexamples to the statement obtained by

TABLE X

The Number of Nonisomorphic Irreducible Polyhedral Graphs Having n Vertices and k Faces

k

n 4 5 6 7 8 9 10 11 12 13 14 Total
4 1 1
5 1 0 1
6 1 1 0 0 2
7 2 1 0 0 0 3
8 2 6 1 0 0 0 0 9
9 8§ 10 1 0 0 0 0 0 19

10 5 44 2] 1 0 0 0 0 71

11 38 173 37 1 0 0 0 249

12 14 362 607 74 1 0 0 1,058

13 219 2,348 1,999 138 1 0 4705

14 50 3,073 12,611 6,370 275 1 22,380

15 1,404 28,885 58,753 20,025 ?

16 233 26,698 209,516 253,015 ?

17 9,714 329,165 1,274,772 ?

18 1,249 232,981 3,039,562 ?

19 70,454 3,569,749 ?

20 7,595 2,038,206 ?

21 527,235 ?

22 49,566 ?

Total 1 2 5 20 107 826 7,703 81,231 914,973 10,772,406
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substituting “k>n” in Theorem 4.1.) The irreducible polyhedra with n
vertices and k faces were generated by filtering the collection 2, . It is an
open question whether there is a more efficient way of generating them.

5. GENERATING NON-HAMILTONIAN POLYHEDRA

Table XI contains the number of non-Hamiltonian simplicial polyhedra
for n>11. Barnette and Jucocoviv have shown [2] that the count is 0 for
n<11. The values for n <16 were obtained by filtering .%,,. The value for
n=17 was obtained by applying the augment operation of Section 3 to
each polyhedron in &4 (using the optimizations discussed in Section 3,
but only keeping the candidate graphs that are not duplicates and are also
non-Hamiltonian).

We define a non-Hamiltonian simplicial polyhedron with n vertices to be
imprimitive if it can be obtained from some non-Hamiltonian simplicial
polyhedron by an application of the augment operation. A non-
Hamiltonian simplicial polyhedron is primitive if it cannot be so generated
(ie., if any polyhedron obtained by performing the inverse of the vertex-
strechting operation shown in Fig. 1 is Hamiltonian). The primitive non-
Hamiltonian simplicial polyhedra are counted in the third column of
Table XI. The following conjecture is suggested by our observations for
n<17.

Conjecture 5.1. Every primitive non-Hamiltonian simplicial polyhedron
has an odd number of vertices.

TABLE XI

Counts of Nonisomorphic, Non-Hamiltonian Simplicial Polyhedra

Primitive Non-Hamiltonian ~ Non-Hamiltonian
Non-Hamiltonian  non-Hamiltonian I-tough 1-supertough
simplicial simplicial simplicial simplicial
n polyhedra polyhedra polyhedra polyhedra
11 1 1 0 0
12 2 0 0 0
13 30 5 1 0
14 239 0 6 0
15 2,369 32 72 1
16 22,039 0 847 4
17 205,663 227 9,801 58
18 1,879,665¢ 0¢ 108,236 698¢

“ Assuming Conjecture 5.1 is true.
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We note that Observation 2, from the list in Section 3, no longer holds
when computing imprimitive simplicial polyhedra. The last two columns in
Table XI are discussed in the next section. The last row in Table XI was
obtained by computing the imprimitive non-Hamiltonian simplicial
polyhedra; hence, as indicated in the table, it is valid iff there are no
primitive simplicial polyhedra with 18 vertices (which would be true if
Conjecture 5.1 holds).

Table XII contains the number of non-Hamiltonian polyhedra with n
vertices and k faces for all n <15 and all £ < 13. Holton and McKay have
shown that there are no non-Hamiltonian trivalent polyhedra with n <38
[26]; these zero values are not all reflected in the table. Also, the values for
(16,28) and (17,30), which are not shown in Table XII, appear in
Table XI.

The non-Hamiltonian (#n, k)-polyhedra were computed using a combina-
tion of methods. The entries for which 2, , had been generated were com-
puted by filtering 2, .. The entries (14, k) for k> 14 were computed by
starting with the (14, 14) non-Hamiltonian catalog and then applying face-
splitting (and, of course, filtering for non-Hamiltonian graphs, and
eliminating duplicates). The (15, 14) non-Hamiltonian catalog was com-
puted by applying vertex-splitting, filtering, and duplicate elimination to
the entire catalog 2, 4. The remaining (15, k) entries (for k>15) were
then obtained in succession by starting from the (15, 14) non-Hamiltonian
catalog and applying face-splitting, filtering, and elimination of duplicates.

It is not, in general, possible to compute all non-Hamiltonian (n, k)-
polyhedra by starting with all non-Hamiltonian simplicial polyhedra with
n vertices, applying face merging, and filtering for non-Hamiltonicity
and 3-connectedness. The problem is that there exist nonsimplicial, non-
Hamiltonian (n, k)-polyhedra with the property that applying any possible
face-splitting operation makes the polyhedron Hamiltonian. Examples of
such polyhedra with 19 vertices and 33 faces are given in Section 9. We do
not know if these are the smallest such examples.

6. SOME MINIMUM NON-HAMILTONIAN POLYHEDRA

Using the generated catalogs of polyhedra discussed above, we were able
to find several smallest examples of polyhedra with interesting Hamiltonian
properties. We present them here without proofs.

A graph is k-Hamiltonian if deleting any k vertices leaves a Hamiltonian
graph. Thomassen has given an example of a planar graph with 105 ver-
tices that is 1-Hamiltonian but not Hamiltonian [44]. It is shown in [16]
that for k>1, any k-Hamiltonian planar graph is (k—1)-Hamiltonian
(note that k=2 and k=3 are the only non-vacuous cases).
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(2) (b) (c)
FiG. 5. Three smallest 1-supertough graphs that fail to be 1-Hamiltonian: (a), (b) are the
two smallest polyhedra with this property; (c) is the smallest simplicial polyhedron with this
property.

A graph is 1-tough if ¢(G—S)<|S| for all nonempty S < V(G). Here
G — S denotes the graph obtained by deleting S and all incident edges
from G, and ¢( - ) denotes the number of components. A graph is 1-super-
tough if deleting any vertex leaves a l-tough graph. Any 1-tough graph
is 2-connected, and any 1-supertough graph is 3-connected (so a planar,
1-supertough graph is polyhedral).

The notion of toughness of a graph was originally defined by Chvatal as
a weak form of Hamiltonicity [ 8]. It is noted in [ 8] that any Hamiltonian
graph is I-tough. It follows immediately that any 1-Hamiltonian graph is
1-supertough and, hence, that any 1-Hamiltonian graph is 1-tough. The
converses of these statements do not hold; here, we give smallest counter-
examples for polyhedra and simplicial polyhedra.

The smallest polyhedron that is not 1-Hamiltonian is the cube, and the
smallest simplicial polyhedron that is not I-Hamiltonian is the fully
stellated tetrahedron. Both these graphs are 1-tough, but not 1-supertough.

There are two nonisomorphic smallest 1-supertough planar graphs that fail
to be 1-Hamiltonian. They have 10 vertices and 8 faces and are shown in
Figs. 5(a) and (b). The (unique) smallest 1-supertough simplicial polyhedron
that fails to be 1-Hamiltonian is shown in Fig. 5(c); it also has 10 vertices.

The smallest 1-tough, non-Hamiltonian polyhedron is the 13-vertex,
10-face example shown in Fig. 6(a). The significance of the markings on
the figure will become apparent in Section 8. The smallest 1-tough, non-
Hamiltonian simplicial polyhedron is the 13-vertex graph shown in
Fig. 6(b). This graph has been independently discovered by Tkac [46].
Previously, Nishizeki gave a 19-vertex example [32].

The shortness exponent of a class of graphs was introduced in [23] as a
measure of the non-Hamiltonicity of the class. Let 4(G) denote the length
of the longest cycle in a graph. Then for any class 4 of graphs, the short-
ness exponent is defined by

. logh(G,)
T)=1 f ——=
() Pt log |G, |’
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A\ A\

Fi1G. 6. (a) The smallest 1-tough, non-Hamiltonian, polyhedron. (b) The smallest 1-tough,
non-Hamiltonian, simplicial polyhedron.

where the liminf is taken over all sequences of graphs in 4 for which
|G, | = oo. By applying the construction of [12] to the graph of Fig. 6(b),
it can be shown that the shortness exponent of the class of 1-tough simpli-
cial polyhedra is at most logs 5. This observation, also made independently
by Tkac in [46], improves the bound of log, 6 given in [12].

The smallest 1-supertough, non-Hamiltonian planar graph has 15 ver-
tices and 11 faces. It is shown in Fig. 7(a). The smallest 1-supertough,
non-Hamiltonian simplicial polyhedron has 15 vertices and is shown in
Fig. 7(b). The 1-tough and I-supertough non-Hamiltonian, simplicial poly-
hedra with up to 17 vertices are enumerated in the last two columns of
Table XI.

The structure of the simplicial examples described in this section
becomes clearer if we look at the “building blocks” of Fig. 8. The smallest

(a) (®)

FiGg. 7. (a) The smallest 1-supertough, non-Hamiltonian, planar graph. (b) The smallest
1-supertough, non-Hamiltonian, simplicial polyhedron.




POLYHEDRA OF SMALL ORDER 109

(a) (b)

FiG. 8. Two building blocks for non-Hamiltonian simplicial polyhedra.

simplicial graph that is not l-supertough (the stellated tetrahedron) is
obtained by stellating the outer face of Fig. 8(a). The smallest simplicial
graph that is 1-supertough but not 1-Hamiltonian (Fig. 5(c)) is obtained
by stellating the outer face of Fig. 8(b). The 11-vertex smallest non-
Hamiltonian simplicial polyhedron of [2] consists of two copies of the
graph of Fig. 8(a), pasted together along a common face. The graphs of
Fig. 6b and Fig. 7b consist, respectively, of one copy of Fig. 8(a) and one
of Fig. 8(b), and two copies of Fig. 8(b), pasted together along a common
face.

We have given the smallest examples of planar 3-connected graphs, both
simplicial and non-simplicial, that remain 1-tough when j vertices are
removed but fail to be k-Hamiltonian for j, k € {0, 1}. The next logical class
of graphs to consider in the progression starting with 1-tough and 1-super-
tough would be those graphs that remain 1-tough when two vertices are
removed. However, the planar graphs with this property are exactly the
4-connected planar graphs [13, 40]. These graphs are Hamiltonian [47,
4971 and 1-Hamiltonian (see [45]). Recently, Thomas and Yu have shown
that all 4-connected planar graphs are 2-Hamiltonian [43], proving a
long-standing conjecture of Plummer [34].

7. INSCRIBABLE GRAPHS AND DELAUNAY TESSELLATIONS

A polyhedron is inscribable if it has a (combinatorially equivalent)
realization as the edges and vertices of the convex hull of a noncoplanar
set of points on the surface of a sphere in 3-space. A polyhedron is circum-
scribable if it has a (combinatorially equivalent) realization as a
polyhedron each of whose faces is tangent to a common sphere. It is shown
in [22] that a polyhedron is circumscribable if and only if its dual is
inscribable.

A Delaunay tessellation is a 2-connected plane graph such that (1) the
boundary vertices of the outer face are exactly the vertices of the convex
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hull; (2) the boundary vertices of every interior face are cocircular; and
(3) no circumcircle about a face contains any vertices in its interior.
A Delaunay triangulation is a Delaunay tessellation in which all interior
faces are triangles and the boundary vertices of the outer face are exactly
the extreme points of the vertex set.> For a more conventional definition of
Delaunay triangulations and tessellations as duals of Voronoi diagrams
and for a systematic exposition of their fundamental properties, see [1, 19,
35]. The word nondegenerate is sometimes used to distinguish Delaunay
triangulations as we have defined them here. (A degenerate Delaunay tri-
angulation is a triangulation obtained by adding edges to a Delaunay
tessellation that is not a Delaunay triangulation.)

We state without proof several results about inscribable polyhedra,
Delaunay triangulations, and the relations between them.

THEOREM 7.1 (Rivin [36]; also see [24, 38, 39]). A polyhedron is
inscribable if and only if weights w can be assigned to its edges such that:

(W1) For each edge e, 0 <w(e) <1/2.

(W2)  For each vertex v, the total weight of all edges incident on v is
equal to 1.

(W3)  For each noncoterminous cutset C = E(G), the total weight of all
edges in C is strictly greater than 1.

THEOREM 7.2 [15]. A plane graph G is realizable as a Delaunay
tessellation, with a given face f as the unbounded face and with a subset S of
the boundary vertices of f as its extreme vertices, if and only if the graph G’
obtained by partially stellating face f, connecting the stellating vertex to the
vertices of S, is inscribable. In particular, a plane graph G is realizable as a
Delaunay triangulation, with a given face f as the unbounded face, if and only
if the graph G' obtained from G by fully stellating f is simplicial and
inscribable.

THEOREM 7.3. The following properties hold:

(a) Every 1-Hamiltonian, planar graph is inscribable [ 16].

(b) Every inscribable graph is 1-tough [11].
(c) Every nonbipartite inscribable graph is 1-supertough [ 14].
(d) Every nonbipartite Delaunoy tessellation is 1-tough [11].

3Here we use the definition of a triangulation commonly accepted in computational
geometry [35], namely a 2-connected plane graph in which every face except possibly the
unbounded face is bounded by a triangle.
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(e) If a bipartite Delaunoy tessellation is not 1-tough, then all the
extreme vertices of the tessellation are in the same subset with respect to the
bipartition [ 11].

(f) If G is inscribable and nonbipartite, any graph obtained from G by
connecting two nonadjacent vertices on a common face is inscribable [15].

Table XIII contains the number of noncircumscribable and non-
inscribable simplicial polyhedra for small values of n. (By duality, these
numbers equal the number of inscribable and circumscribable trivalent,
polyhedra with 2n —4 vertices). Both classes of polyhedra were computed
by applying filters to the collection of simplicial polyhedra. The polyhedra
were tested for circumscribability using the linear-time algorithm of [ 14].
The simplicial noninscribable polyhedra were computed using the following
“triage” procedure. By Theorem 7.3.(a), any 1-Hamiltonian polyhedron is
inscribable. By Theorem 7.3(c), any simplicial polyhedron that fails to be
1-supertough is noninscribable. The remaining polyhedra (i.e., those that are
1-supertough but not 1-Hamiltonian) were then tested using an algorithm
due to Rivin, based on Theorem 7.1 (See [37] for details). The counts
for 1-supertough and non-1-Hamiltonian simplicial polyhedra are also
included in Table XIII. All 1-supertough simplicial polyhedra with up to
14 vertices are inscribable. However, there are six noninscribable 1-super-
tough, simplicial polyhedra with 15 vertices. One of them is the graph of
Fig. 7(b); for an explicit proof of this fact, see [14]. Smith has given

TABLE XIII

The Number of Noncircumscribable and Noninscribable Simplicial Polyhedra with n Vertices

1st, 1st,

Not Not Not not Not not

n EA circ 1-Ham Ist 1-Ham inscr inscr
4 1 0 0 0 0 0 0
5 1 0 0 0 0 0 0
6 2 0 0 0 0 0 0
7 5 1 0 0 0 0 0
8 14 2 1 1 0 1 0
9 50 8 1 1 0 1 0
10 233 35 10 9 1 9 0
11 1,249 168 53 48 5 48 0
12 7,595 999 383 343 40 343 0
13 49,566 6,340 2,809 2,466 343 2,466 0
14 339,722 43,133 21,884 18,905 2,979 18,905 0
15 2,406,841 305,271 172,214 146,264 25,950 146,270 6
16 17,490,241 2,231,377 1,374,908 1,150,135 224,773 1,150,197 62
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F1G. 9. A noninscribable, self-dual graph with 10 vertices.

bounds on the number of inscribable and circumscribable simplicial
polyhedra [42].

The smallest noninscribable simplicial polyhedron is the fully stellated
tetrahedron, and the smallest noncircumscribable simplicial polyhedron is
the dual of the “clipped cube” (the polyhedron obtained by slicing off a
corner of the cube with a plane, turning it into a triangle). The smallest
polyhedron that is neither inscribable nor circumscribable is the self-dual
polyhedron shown in Fig. 9. This polyhedron is noninscribable because it
is not 1-supertough, as can be seen by deleting the four white vertices.

8. SMALLEST NON-HAMILTONIAN DELAUNAY TRIANGULATIONS AND
TESSELLATIONS.

The question of whether all nondegenerate Delaunay triangulations are
Hamiltonian was posed in [ 31, 33] and, in a closely related form, in [41].
Counterexamples are known [9, 10, 29]. Here we discuss their minimality
and present (new) smallest counterexamples under the additional assump-
tion of 3-connectivity.

The smallest non-Hamiltonian graph realizable as a Delaunay tessel-
lation is the graph obtained by deleting a vertex from the cube; its
minimality follows from the fact that the cube is the smallest non-1-
Hamiltonian polyhedron. This example first appeared in [29]. The smallest
non-Hamiltonian Delaunay triangulation is the example of [9]. This graph
may be obtained by deleting one of the degree-7 vertices from the graph in
Fig. 5(c). The minimality of the example of [9] follows from Theorem 7.2,
Theorem 7.3(c), and the fact that the graph of Fig. 5(c) is the smallest
I-supertough, non-1-Hamiltonian, simplicial planar graph. Both the
preceding examples fail to be 3-connected. A 3-connected, non-Hamiltonian
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Delaunay triangulation with 25 vertices was constructed in [ 10], but this
example is not minimal.

There are exactly four combinatorially distinct smallest 3-connected,
non-Hamiltonian plane graphs that can be realized as Delaunay tessella-
tions. The four graphs, each of which have with 13 vertices and 10 faces,
are the two bipartite plane graphs shown in Fig. 10 and the two nonbipar-
tite graphs shown in Fig. 11. Note that here, and throughout this section,
the drawings are not Delaunay tessellations; rather, they are representa-
tions of plane graphs that have combinatorially equivalent realizations as
a Delaunay tessellation.

Figure 11(a) and (b) are both isomorphic to the graph of Fig. 6(a).
Figure 11(a) (respectively, (b)) is a reembedding of the graph of Fig. 6(a)
such that the face marked « (respectively, ), becomes the outer face. In
both Fig. 11(a) and Fig. 11(b), the outer faces can be stellated to obtain an
inscribable polyhedron either by a full stellation or by a partial stellation
in which the stellating vertex is connected to the two dark vertices and one
of the two white vertices. The partial stellation can be done in two different
ways in Fig. 11(a), but only one in Fig. 11(b).

The minimality of the graphs of Figs. 10 and 11 can be argued as
follows. We saw in Section 6 that the smallest 1-tough non-Hamiltonian
polyhedron is the graph of Fig. 6(a). Hence, by Theorem 7.3(d) and (e),
if there is a 3-connected, non-Hamiltonian, Delaunay tessellation G
smaller than those represented in Figs. 10 and 11, then G is bipartite, and
all the extreme vertices are in the same half of the bipartition. Let G’ be
the graph obtained by adding a new vertex in the outer face of G and
connecting it to the extreme vertices of G. Then G’ is bipartite, inscribable
(by Theorem 7.2), and hence 1-tough (by Theorem 7.3(b)). Also, G’
must have the property that deleting some vertex yields a 3-connected,

FiGg. 10. The two combinatorially distinct 3-connected, non-Hamiltonian, bipartite plane
graphs with 13 vertices and 10 faces that are realizable as Delaunay tessellations.
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(2) (b)

Fic. 11. The two combinatorially distinct 3-connected, non-Hamiltonian, nonbipartite
plane graphs with 13 vertices and 10 faces that are realizable as Delaunay tessellations.

Hamiltonian graph. A computer scan of the bipartite polyhedra shows that
there are exactly two bipartite polyhedra with these properties and 14 or
fewer vertices; these are the two polyhedra obtained by partially stellating
the outer faces of the graphs in Fig. 10, connecting the stellating vertices to
the dark vertices on the outer faces.

There are exactly two combinatorially distinct smallest 3-connected,
non-Hamiltonian plane graphs that can be realized as Delaunay triangula-
tions. These two graphs, which have 13 vertices and 21 faces, are shown in
Fig. 12. Their minimality can be argued as follows. Let G’ be the graph
obtained by stellating the outer face of a 3-connected, non-Hamiltonian
Delaunay triangulation. By Theorem 7.2 and Theorem 7.3(c), G’ must be
simplicial, 1-supertough, and have the property that removing some vertex
leaves a 3-connected, non-Hamiltonian graph (so, in particular, G’ cannot
be 1-Hamiltonian). The only two simplicial polyhedra with at most 14

O O a®

FiG. 12. The two minimal 3-connected, non-Hamiltonian triangulation that are realizable
as Delaunay triangulations (13 vertices, 21 faces).
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vertices that have these properties are the two 14-vertex graphs obtained by
fully stellating the outer faces of the graphs of Fig. 12.

9. SMALL NON-HAMILTONIAN INSCRIBABLE POLYHEDRA

A 25-vertex, non-Hamiltonian, inscribable simplicial polyhedron was
constructed in [10]. It follows from Theorem 7.3(a) that Thomassen’s
example of a 105-vertex planar graph that is I-Hamiltonian but not
Hamiltonian [44] represents an earlier discovery of a non-Hamiltonian
inscribable polyhedron, although it was not so identified at the time. Here
we present improved lower and upper bounds for the size of the smallest
non-Hamiltonian inscribable polyhedra, both in general and in the simpli-
cial cases. We deal with the unrestricted case first.

There are three non-Hamiltonian, inscribable polyhedra with 19 vertices
and 13 polyhedra (Fig. 13). We have verified that there are no non-
Hamiltonian inscribable polyhedra for any other value of n and k that has
a nonempty entry in Table XII. We have also verified that there are no
non-Hamiltonian bipartite inscribable polyhedra with 24 or fewer vertices;
indeed, there are no 1-tough, non-Hamiltonian, bipartite polyhedra with 24
or fewer vertices. We conjecture that the three examples of Fig. 13 are the
smallest examples.

For the remainder of this section, let N denote the number of vertices
in the smallest non-Hamiltonian, inscribable, simplicial polyhedron. We
have determined that 18 <N<20, and we conjecture that the true
answer is 20.

The bound N <20 holds because there are at least 11 nonisomorphic
non-Hamiltonian, inscribable, simplicial polyhedra with 20 vertices. They
are shown in Fig. 14. They were constructed by looking for “partner
graphs” that could be “pasted” together with the 9-vertex “building block”

Fi1G. 13. Schlegel diagrams of the three non-Hamiltonian, inscribable polyhedra with 19
vertices and 13 faces.
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FiG. 14. Eleven non-Hamiltonian, inscribable, simplicial polyhedra with 20 vertices.

of Fig. 8(b) (which we temporarily call 7) to obtain a non-Hamiltonian
inscribable simplicial polyhedron, in the same way that pasting T,
together with itself, creates the non-Hamiltonian, 1-supertough, simplicial
planar graph of Fig. 7(b). Let K be such a “partner graph,” and let f be the
boundary of the face along which K is to be pasted. Assume that the orien-
tation is such that fis the outer face of K. Clearly K must be simplicial. It
can be shown that K must also have the following properties (i.c., they are
necessary, but perhaps not sufficient):
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Fi1G. 14—Continued

1. K must have the property that for any two vertices of f, any path
between the two vertices that visits all vertices inside f must also visit the
third vertex of f. (Otherwise, the pasted graph would be Hamiltonian.)

2. K must have the property that when f is stellated, the resulting
graph is 1-supertough. (Otherwise, the pasted graph would not be 1-super-
tough.)

3. Define a Delaunay labeling of a simplicial polyhedron to be a
labeling of the interior angles so that (1) the angles about each interior
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vertex sum to 360, (2) the angles about each triangle sum to 180, (3) all
angles are positive, and (4) the sum of two angles facing a common edges
is less than 180. K must have a Delaunay labeling in which the three angles
facing the three outer edges have a total value less than 450.

We filtered ¥, for polyhedra with these properties. We found none with 13
or fewer vertices, but 11 with 14 vertices. Each of the 20-vertex polyhedra
obtained by pasting one of these 14-vertex “partner graphs” with T is,
indeed, non-Hamiltonian, inscribable, and simplicial. These 11 simplicial
polyhedra are shown in Fig. 14.

The bound N > 17 was determined by examining the non-Hamiltonian,
1-supertough, simplicial polyhedra with n <17 (see column 5 of Table XI)
and verifying that none were inscribable.

As indicated in Table XI, there are 698 imprimitive, non-Hamiltonian,
I-supertough, simplicial polyhedra with 18 vertices. None of these are
inscribable. So if Conjecture 5.1 is true, then N > 18.

The conjecture that N> 19 is based on the following experiment. We
applied the augment operation in every possible way to the imprimitive
non-Hamiltonian, 1-tough simplicial polyhedra with 18 vertices. In this
fashion, we generated 9232 19-vertex, non-Hamiltonian, I-supertough,
simplicial polyhedra. None of these were inscribable. So we could conclude
that N> 19 (and, hence, that there are no examples smaller than those of
Fig. 14) if we could establish Conjecture 5.1 and the following conjectures.

Conjecture 9.1. Every imprimitive, non-Hamiltonian simplicial poly-
hedron with an odd number of vertices fails to be 1-tough.

Conjecture 9.2. Every non-Hamiltonian, 1-supertough simplicial poly-
hedron with n vertices can be generated by applying the augment opera-
tion in some way to some non-Hamiltonian, 1-tough simplicial polyhedron
with n— 1 vertices.

Both these conjecture are true for up to n <17 vertices. In fact, a some-
what stronger statement than Conjecture 9.1 holds for these values of n:
every imprimitive, non-Hamiltonian simplicial polyhedra with n=2j+1
vertices has an independent set of size j+ 1. Also, if Conjecture 5.1 holds
for n =18, then so does Conjecture 9.2, as every one of the 698 imprimitive
non-Hamiltonian, 1-supertough, 18-vertex simplicial polyhedron can be
generated by applying the augment operation to some non-Hamiltonian,
1-tough, 17-vertex simplicial polyhedron.

We conclude with one more collection of relevant counterexamples. We
generated, for each k>13, all non-Hamiltonian (19, k)-polyhedra that
could be obtained by starting with the three graphs of Fig. 13 and applying
sequences of face-splitting operations. By Theorem 7.3(f), all polyhedra
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Fi1G. 15. Six non-Hamiltonian, inscribable polyhedra with 19 vertices and 33 faces.

obtained in this way are inscribable. This process ultimately produced the
six non-Hamiltonian inscribable (19, 33)-polyhedra shown in Fig. 15. These
polyhedra are inscribable triangulations, but they have one quadrangular
face so they are not simplicial. In each case, adding a diagonal to the
outer face (to make them simplicial) also makes them Hamiltonian. These
examples justify the remarks made at the end of Section 5.
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