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Abstract

An application in magnetic resonance spectroscopy quantification models a signal as a linear combination of nonlinear functions.
It leads to a separable nonlinear least squares fitting problem, with linear bound constraints on some variables. The variable projection
(VARPRO) technique can be applied to this problem, but needs to be adapted in several respects. If only the nonlinear variables
are subject to constraints, then the Levenberg–Marquardt minimization algorithm that is classically used by the VARPRO method
should be replaced with a version that can incorporate those constraints. If some of the linear variables are also constrained, then
they cannot be projected out via a closed-form expression as is the case for the classical VARPRO technique. We show how quadratic
programming problems can be solved instead, and we provide details on efficient function and approximate Jacobian evaluations
for the inequality constrained VARPRO method.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Separable nonlinear least squares fitting problems are minimization problems of the form

min
x,a

‖y − �(x)a‖2
2, (1)

where y is an m-dimensional given noisy data vector, x denotes an n-dimensional vector of nonlinear parameters, a is
a p-dimensional vector of linear parameters, and � is a nonlinear function that maps a vector x into an m × p matrix.

In the beginning of the seventies, the variable projection (VARPRO) method for solving separable least squares
problems appeared [7]. During the past 30 years, VARPRO received attention from theoreticians, as well as practi-
tioners.A recent review ofVARPRO and its applications is given in the paper [8].VARPRO uses the fact that the variable
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a that appears linearly in the model function �(x)a can be optimally expressed as a linear least squares solution
depending on the variable x: als(x)=�(x)†y, where † denotes the Moore–Penrose pseudo-inverse of a matrix. Therefore,
this closed formula of a can be plugged in into the original minimization problem, yielding the equivalent problem only
in x:

min
x

‖(Im − �(x)�(x)†)y‖2
2.

This problem can be solved with classical nonlinear (least squares) optimization methods, such as the Gauss–Newton
or the Levenberg–Marquardt algorithms. These methods require evaluation of the Jacobian with respect to x of the
functional inside the norm. An essential idea is found in [11] and bears the name of Kaufman’s simplification: it
involves computing an approximate Jacobian instead of the true Jacobian, trading-off a negligible loss of accuracy in
the Jacobian for a rather important computational time saving.

An interesting extension towards constrained VARPRO is the case when separable equality constraints appear in
the problem [12]. Another important related problem deals with having two separable classes of variables, without the
requirement that some of them appear linearly [21].

In this paper, we consider the classical linear/nonlinear variable separation and we analyze some extensions of the
separable nonlinear least squares problem and of the VARPRO technique when (inequality) constraints appear within
one or both classes of separable variables. These extensions are motivated by a biomedical application, namely the
quantification of metabolite concentrations from magnetic resonance spectroscopic signals. The extensions from the
classical VARPRO presented in this paper and needed in our application are shortly enumerated here, in increasing
degree of difficulty:

Complex data: The VARPRO technique can be extended to work with complex variables and data. This observation
helps us to address the computation of the residual and of the approximate Jacobian explicitly in the complex domain.
We transform to real data when solving the resulting minimization problem (only in the nonlinear variables), since all
classical nonlinear minimization implementations work with real data.

Constraints on the nonlinear variables: These constraints acting only on the nonlinear variables do not affect the
VARPRO idea of projecting out the linear variables. Thus, these constraints can be simply imported to the resulting
minimization problem only in x. However, the classical Gauss–Newton or Levenberg–Marquardt method that we used
in the unconstrained case must be replaced with a method that can take into account constraints. In our application, we
focus only on linear bounds for the variables; for this case, efficient methods are available (see the Netlib repository
www.netlib.org/opt/).

Constraints on the linear variables: Imposing general constraints to the linear parameters takes away the possibility
of projecting them out via a closed-form expression. Nevertheless, we would still like to keep the idea of solving an
outer minimization problem only in the nonlinear variables x, and solve the constrained linear least squares problem
in a in an efficient manner. In our application, we have non-negativity restrictions for some of the linear variables
(but linear bounds can be treated similarly). The inner problem in a can then be efficiently solved with a quadratic
programming type of method. In any case, we expect computational advantages and possible faster convergence rate
for this type of constrained VARPRO, compared to solving the initial problem (1) with additional constraints, using a
general nonlinear solver that does not distinguish between linear and nonlinear variables.

In Section 2, we give a short overview of the quantification of signals in magnetic resonance spectroscopy (MRS)
[5,9], with emphasis on the optimization problems that are obtained as mathematical formulations for this application.
The VARPRO method was already used in MRS problems [26,27]; a historical note on the application of VARPRO
to MRS data quantification can be read in Section 17 of the review paper [8]. The previous usage of VARPRO in
the mentioned papers was restricted to models of the type “sum of complex damped exponentials”. These models are
appropriate for fitting the so-called long echo-time MRS signals. Nowadays, the nuclear magnetic resonance scanners
record short echo-time signals that are richer in information because they display the responses of significantly more
metabolites (chemical substances). The model given by a sum of complex exponentials no longer holds, since the
response of each metabolite is spread out over the whole spectrum. However, spectra of metabolites that are relevant
in the human brain can be measured separately in vitro. Such measurements can be grouped together in a database of
metabolite signals. Then, a signal measured in vivo (from a region in the human brain) can be modeled as a combination
of individual metabolite signals in the database. In some cases, a baseline signal that accounts for the presence of some
non-predominant unknown macromolecules must also be added to the model.

http://www.netlib.org/opt/
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In Sections 3 and 4, the VARPRO extensions are presented in relation with the MRS application, and we summarize
the studied cases in the following table:

Linear variables Nonlinear variables MRS data model Section

Complex Real/complex Without/with baseline
unconstrained (un)constrained non-equal phases 3
Real Real/complex Without baseline
constrained (un)constrained equal phases 4.2
Real Real/complex With baseline
partially constrained/ (un)constrained equal phases 4.3
partially unconstrained

Finally, the numerical experiments in Section 5 aim to illustrate that an approximate Jacobian formula proposed for
the constrained linear variables case yields accurate results for the MRS data quantification problem with equal phases.

2. Quantification of magnetic resonance spectroscopic signals

For the quantification of short echo-time MRS signals, we assume that we are given a “metabolite database”, which is
a set {vk, for k =1, . . . , K} of complex-valued time series of length m, representing in vitro measured MRS responses
[5]. An in vivo measured MRS signal y is also a complex-valued time series of length m that will satisfy the model

y(t) = ŷ(t) + �t :=
K∑

k=1

�k(�k)
t (�k)

t2
vk(t) + b(t) + �t , t = t0, . . . , tm−1, (2)

where �k, �k, �k ∈ C are unknown parameters that account for concentrations of the metabolites in the database and for
the necessary corrections of the database signals vk , due to inherent differences in the acquisition technique [18,20,14].
In fact the complex amplitudes �k and the complex �k and �k can be written as (with j = √−1):

�k = ak exp(j�k),

�k =
{

exp(−dk + jfk) for Lorentzian and Voigt lineshapes,
exp(jfk) for Gaussian lineshapes,

�k =
{

exp(jek) for Lorentzian lineshapes,
exp(−gk + jek) for Gaussian and Voigt lineshapes,

where ak are the real amplitudes, �k are the phase shifts, dk are damping corrections, gk are Gaussian damping
corrections, fk are frequency shifts, and ek are eddy current correction terms [10,15].

Moreover, b(t) represents the chemical part that is not modeled, which is the response of the substances that are not
included in the database, and �t is an unknown noise perturbation with zero mean, for all t’s with indices from 0 to
m − 1.

The identification of complex amplitudes �k , and complex �k’s and �k’s, for k = 1, . . . , K , can be accomplished by
minimizing the least squares criterion:

∑
t=t0,...,tm−1

|y(t) − ŷ(t)|2.
The nuisance of incorporating the “baseline” term b is milded by the assumptions that can be made about it.

Physiologically, the “macromolecules” (the chemicals that are left out of the database and are not relevant for the
quantification) have some spectral characteristics in the MRS experiment, e.g., they are broadband, low amplitude
signals. In mathematical terms, we can say that b is characterized by the fact that its Fourier transformation should be
a smooth function. (Actually, the Fourier transform of the unknown continuous-time b should be a smooth function. In
practice, we work with discrete-time instants and with the discrete Fourier transform.)

A semiparametric model with smoothness constraint for MRS data quantification can be designed, which takes
into account the parametric part of the model, but treats the baseline non-parametrically [22,18–20,4,23]. For the
non-parametric reconstruction of the baseline, we construct a basis of splines [2,3] and put the discretized splines as
columns in a matrix A of size m × n, with n smaller than the number of data points m. Any nonlinear function can be
approximated as a linear combination of spline functions. The coefficients in this linear combination are the unknowns
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that must be identified. We denote these linear coefficients by c1, . . . , cn (or by c ∈ Cn, when stacked in a column
vector). Thus the discretization of a nonlinear function approximated with splines can be written in matrix notation
as Ac.

A regularization matrix D is defined to measure the smoothness of the baseline in the frequency domain. We can
take D as the discrete second-order differential operator,

D =
⎡⎣−1 2 −1 0

. . .
. . .

. . .

0 −1 2 −1

⎤⎦ ,

first-order differential operator,

D =
⎡⎣−1 1 0

. . .
. . .

0 −1 1

⎤⎦ ,

zero-order differential operator, the identity

D =
⎡⎣1 0

. . .

0 1

⎤⎦ ,

or some combination.
Since the goal is to reconstruct a smooth baseline in the frequency domain, while still fitting in the time domain,

we transform the basis matrix A to the time domain, with the discrete inverse Fourier transform. Thus A := F−1(A),
where the operator F−1 denotes the discrete inverse Fourier transform, applied to each column of a matrix. Finally,
we consider the regularized nonlinear least squares criterion

min
�1,...,�K∈C,c∈Cn

(�1,...,�K,�1,...,�K)∈�

1

m

tm−1∑
t=t0

∣∣∣∣∣y(t) −
K∑

k=1

�k(�k)
t (�k)

t2
vk(t) − (Ac)(t)

∣∣∣∣∣
2

+ 	2cHDHDc, (3)

where � denotes some constrained parameter space. � usually involves only linear equality and inequality constraints
on the real-valued parameters appearing in �k, �k . The role of possible equality constraints is to impose prior knowledge
relationships between corresponding parameters of related metabolites. The inequality constraints are, in fact, simple
bound constraints on the real-valued parameters.We expect that these corrections will be small, since all these parameters
are used to slightly correct the metabolite signals. Otherwise, the chemical meaning of the corrected metabolite profiles
will be lost.

In (3), 	 is a fixed regularization (penalty) parameter, and the whole term 	2cHDHDc is responsible for ensuring a
certain degree of smoothness to the baseline b. The value that we give to 	 controls also the degree of smoothness.

Note that in (3) the complex amplitudes �k are free variables. This translates into the fact that, when we look at their
polar representation in terms of the real amplitudes and the spectral phases, �k = ak exp(j�k), the phases �1, . . . ,�K

are free between −
 and 
, and the amplitudes a1, . . . , aK have positive values. In fact, the real amplitudes are the
most representative parameters for the MRS model, since they are the weights with which each metabolite appears into
the quantified signal; they, thus, yield the metabolite concentrations in the given brain region, and these concentrations
are indicative for the health status or tumor degree in that region [17,18].

3. Separable least squares with constraints on nonlinear variables

The motivation for the formulation in this section comes from the problem already described in Section 2, namely
the MRS data quantification with non-equal phases. We show that problem (3) can be easily turned into a separable
nonlinear least squares problem. The differences with respect to the classical separable problems solved by VARPRO
is that the linear parameters, as well as the residual under the norm, will be complex valued; moreover, simple equality
or inequality constraints are allowed in the MRS data quantification problem formulation (3), but they may only affect
the nonlinear (real-valued) variables.
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We divide the analysis into two parts: quantification with or without a baseline. We start with the simple case when
we ignore the baseline. This case gives us the opportunity to revisit the original ideas behind VARPRO, including
computational issues such as Kaufman’s simplification for Jacobian computation.

3.1. MRS data model without baseline

The nonlinear least squares problem formulation (3) simply becomes

min
�1,...,�K∈C

(�1,...,�K,�1,...,�K)∈�

1

m

tm−1∑
t=t0

∣∣∣∣∣y(t) −
K∑

k=1

�k(�k)
t (�k)

t2
vk(t)

∣∣∣∣∣
2

. (4)

Problem (4) is a separable problem, where linear parameters �k can be projected out of the least squares problem,
and only a smaller sized nonlinear least squares problem remains to be solved for the nonlinear variables �k , �k .
For the optimization over the (possibly constrained) set of parameter values for �k , �k , we choose for an iterative
minimization algorithm of the Levenberg–Marquardt type [16]. A trust-region implementation that allows imposing
bound constraints on the real variables is described in [6]. Without entering into the details of such an algorithm, we
continue our exposition by providing its necessary inputs: initial starting values, as well as procedures to evaluate the
function value and the corresponding Jacobian, at each arbitrary set of parameter values.

We set all initial values for the real-valued nonlinear parameters to zero. This is a reasonable starting point, since it
means that we start the optimization with no spectral corrections to the signals in the database, which corresponds to
an ideal situation.

3.1.1. Function evaluation
We rewrite (4) as

min
�,x∈�

1

m
‖y − �(x)�‖2

2, (5)

where y is a column vector containing y(t0), . . . , y(tm−1), � is a complex K-dimensional column vector containing the
complex amplitudes, x is a vector formed from all nonlinear variables (preferably, the real-valued dk , fk , gk , ek), and
the m × K complex-valued matrix �(x) has elements of the form

�ik = (�k)
ti (�k)

t2
i vk(ti)

=
⎧⎨⎩

exp((−dk + jfk)ti + jekt
2
i )vk(ti) for Lorentzian lineshapes,

exp(jfkti + (−gk + jek)t
2
i )vk(ti) for Gaussian lineshapes,

exp((−dk + jfk)ti + (−gk + jek)t
2
i )vk(ti) for Voigt lineshapes.

(6)

As mentioned in the Introduction, the optimal linear coefficients �ls(x), for some fixed values of the nonlinear coeffi-
cients, x, can be plugged in such that the residual that we need to compute is the following VARPRO functional

y − �(x)�ls(x) = (I − �(x)�(x)†)y.

Clearly, we only need a basis for the column space of the matrix �(x) in order to evaluate the projection matrix
I − �(x)�(x)†. This basis can be obtained from the QR decomposition of �(x):

�(x) = [Q1 Q2 ]

[
R1
0

]
,

where R1 ∈ CK×K , Q1 ∈ Cm×K , and Q2 ∈ Cm×(m−K). Then, the residual (I −�(x)�(x)†)y becomes Q2Q
H
2 y. Since

only the norm of this residual is in fact needed in the optimization algorithm, we can further simplify the definition of
our residual by ignoring the multiplication with Q2 (which has orthonormal columns), and simply compute QH

2 y at
each function evaluation.
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3.1.2. Jacobian evaluation
The gradient of the residual QH

2 y is also needed by the Levenberg–Marquardt type nonlinear least squares solver.
Note that in the residual QH

2 y, the nonlinear parameters appear implicitly through Q2.
Consider again the original VARPRO functional f (x) = (I − �(x)�(x)†)y. The Jacobian of f with respect to any of

the scalar variables xk (here denoted by ∇kf ) can be derived with the following manipulations:

∇kf = − (∇k�)�†y − �(∇k(�
†))y = −(∇k�)�†y − �∇k((�

H�)−1�H)y

= − (∇k�)�†y + �(�H�)−1[(∇k�)H� + �H(∇k�)](�H�)−1�Hy

= − (∇k� − (�†)H(∇k�)H� − ��†(∇k�))�†y.

Kaufman’s simplification [11] proposes that only the part

−(∇k� − ��†(∇k�))�†y = −(I − ��†)(∇k�)�†y

should be used to compute an approximate Jacobian, yielding a computational saving that is more important than the
loss of accuracy in the Jacobian, which is negligible.

If we take into account the definition (6) of � for the MRS data model, the matrix ∇k� can be computed using the
formulas

��ik

�dk

= −ti�ik,
��ik

�fk

= jti�ik,
��ik

�gk

= −t2
i �ik,

��ik

�ek

= jt2
i �ik . (7)

Note here that the variable dk (or fk , or gk , or ek) only appears in the column k of �. Therefore, all other columns of
∇k� different from the column k are identically zero:

��il

�dk

= 0,
��il

�fk

= 0,
��il

�gk

= 0,
��il

�ek

= 0 for l �= k.

To fix the ideas, the matrix ∇k�, which represents the derivative of the matrix � with respect to the kth variable xk

(that is, either dk , or fk , or gk , or ek), is an m × K matrix that has the following structure:

∇k� =

⎡⎢⎢⎢⎢⎣
0 0

��1k

�xk

0 0

...
...

...
...

...

0 0
��mk

�xk

0 0

⎤⎥⎥⎥⎥⎦ .

Thus, the column corresponding to xk in the approximate Jacobian equals

∇̃kf = −(I − ��†)(∇k�)�†y = −(I − ��†)

⎡⎢⎢⎢⎢⎣
��1k

�xk

...
��mk

�xk

⎤⎥⎥⎥⎥⎦ �ls
k , (8)

where we used the fact that �ls = �†y. The complete approximate Jacobian ∇̃f is obtained by putting next to each
other all columns of type (8), one column for each nonlinear variable in our optimization.

For stable and efficient computation of the Jacobian, we make use of the QR decomposition of �, as introduced
before. Thus, �ls =R−1

1 QH
1 y and I −��† =Q2Q

H
2 . Since we ignore the factor Q2 in the function evaluation, we must

also do the same thing in what concerns the Jacobian.
In the end, the approximate Jacobian using Kaufman’s simplification is

∇̃f = −QH
2 ��, (9)
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where �� for the MRS data model in its most general formulation is

with k going from 1 to K. In cases when not all variables among dk , gk , fk , ek are estimated in the model, or when
we impose prior knowledge in the form of linear equalities between some variables of the same sort (leading to
eliminations), the formula above simplifies by deleting the not-needed columns.

3.2. MRS data model with baseline

Little is changed in the VARPRO implementation, when we augment the optimization criterion (4) to the regularized
version (3). In fact, using the notation from (5), the minimization (3) can be written as

min
�∈CK,x∈�,c∈Cn

1

m

∥∥∥∥[y
0

]
−
[
�(x)� + Ac√

m	Dc

]∥∥∥∥2

2
,

which is also a separable nonlinear least squares problem, where the linear variables are � and c, and the nonlinear
ones are x.

For the function evaluation, we use the QR decomposition of the matrix[
A �(x)√
m	D 0

]
= [Q1 Q2 ]

[
R1
0

]
,

with R1 ∈ C(n+K)×(n+K), and Q1, Q2 of appropriate sizes. The function value is QH
2

[ y
0

]
, and the projected linear

variables have the expression[
cls

�ls

]
= R−1

1 QH
1

[
y
0

]
.

For approximate Jacobian evaluation, the only difference comes from the fact that we have augmented �(x) with
some blocks that do not depend on the nonlinear parameters. This translates into the fact that the new Jacobian is
also extended with zero blocks of corresponding dimensions. All completely zero columns can be ignored in the
implementation.

4. Separable least squares with bound constraints on linear variables

4.1. Motivation: MRS data quantification with equal phases and non-negativity constraint for the amplitudes

In this section, we are concentrating on the problems introduced by requiring equal phase corrections for all metabo-
lites (�1 = · · · = �K =: �0). Remember that the phases entered into the problem in the previous sections through the
complex amplitudes �k = ak exp(j�k), which were the complex linear parameters in the VARPRO method.

Requiring equal phase corrections is a reasonable approximation, since the phase distortions between different
metabolites within an in vivo signal are negligible. Moreover, it was noticed in experiments with the non-equal phases
version presented in Section 3 that in some cases (when the metabolite database contains signals with overlapping
resonant frequency regions) there is a tendency for overlapping metabolites to compensate for each other by having
opposite phases. In other words, these metabolites partially cancel each other, and thus their amplitudes are unreliably
computed, although the residual is small. As an illustration, see the reconstructed signal, together with the database of
corrected metabolite profiles, in Fig. 1. Anticipating the method in this section, Fig. 2 shows the fitting results when
the equal phase constraint is used. The reconstructed signals are very similar in the two figures, but, noticeably, there
are no longer artifacts from interchangeable metabolites in Fig. 2. All the plots show real parts of the signals in the
frequency domain.
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0.511.522.533.54
ppm

original signal
reconstructed signal

Fig. 1. Fit with non-equal phases. Upper plot shows all the corrected metabolites spectra, which should be summed up in order to yield the
reconstructed signal; bottom plot shows the noisy spectrum and the reconstructed spectrum (the less noisy thick line).

0.511.522.533.54
ppm

original signal
reconstructed signal

Fig. 2. Fit with equal phases. The upper and bottom plots contain the same elements as in Fig. 1. Note that the canceling effect around the value
1.3 ppm is not present, as opposed to Fig. 1.

Conceptually, imposing equal phases makes the model simpler, but practically, the method for solving the problem
becomes a bit more complicated. In the next subsection, we shall see that the fact that we want to have equal phases
implies that we can no longer use the VARPRO technique with complex linear variables. We must switch to a version
where the linear variables are only the real amplitudes, and introduce the unique phase variable �0 among the nonlinear
variables. However, the real amplitudes must be non-negative in order to be meaningful.

The method developed here can be easily applied in the case when other constraints for the linear variables are
imposed. One simple generalization involves linear bound constraints for each individual linear variable; the non-
negativity condition is a particular case thereof.
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4.2. MRS data model without baseline

4.2.1. The problem formulation is a separable nonlinear least squares with non-negative linear variables
The nonlinear least squares problem formulation (3) becomes

min
a1,...,aK∈[0,∞),�0∈(−
,
),

�1,...,�K,�1,...,�K∈�

1

m

tm−1∑
t=t0

∣∣∣∣∣y(t) −
K∑

k=1

ak exp(j�0)(�k)
t (�k)

t2
vk(t)

∣∣∣∣∣
2

. (10)

Problem (10) shows a mix of real and complex variables. For practical optimization, we need to transform everything
to real and to optimize only with respect to real parameters:

min
a1,...,aK∈[0,∞),

�0∈(−
,
),

(dk ,fk ,gk ,ek )∈�

1

m

tm−1∑
t=t0

⎧⎨⎩
(

real(y(t)) −
K∑

k=1

ak real(exp(j�0)(�k)
t (�k)

t2
vk(t))

)2

+
(

imag(y(t)) −
K∑

k=1

ak imag(exp(j�0) (�k)
t (�k)

t2
vk(t))

)2
⎫⎬⎭ ,

where �k and �k will be substituted with their formulas depending on dk , fk , gk and ek . The set � is used to impose
simple linear (in)equality constraints on the nonlinear parameters dk , fk , gk and ek .

We rewrite the minimization problem in the following compact form, which emphasizes the fact that the parameters
a1, . . . , aK appear linearly in the objective function:

min
a�0,x∈�

1

m
‖y − �(x)a‖2

2, (11)

where y is a column vector containing real(y(t0)), imag(y(t0)), . . . , real(y(tm−1)), imag(y(tm−1)), a is the
K-dimensional column vector containing the positive amplitudes a1, . . . , aK , x denotes the vector obtained from
all the rest of the real parameters dk , fk , gk , ek and �0, and the 2m × K matrix �(x) has elements of the form

�(2i−1),k = real(exp(j�0)(�k)
ti (�k)

t2
i vk(ti)),

�(2i),k = imag(exp(j�0)(�k)
ti (�k)

t2
i vk(ti)), (12)

with

exp(j�0)(�k)
ti (�k)

t2
i vk(ti)

=

⎧⎪⎨⎪⎩
exp(j�0 + (−dk + jfk)ti + jekt

2
i )vk(ti) for Lorentzian lineshapes,

exp(j�0 + jfkti + (−gk + jek)t
2
i )vk(ti) for Gaussian lineshapes,

exp(j�0 + (−dk + jfk)ti + (−gk + jek)t
2
i )vk(ti) for Voigt lineshapes.

Note that without the non-negativity constraint on a, problem (11) is a separable least squares problem, where the
optimal linear coefficients als(x) have a closed-form expression als(x) = �(x)†y.

However, the non-negative least squares (NNLS) problem (11), with x fixed, does not have closed-form solution for
a. An effective method for solving NNLS problems is given in [13, Chapter 23]. The algorithm is very much linked
to linear-quadratic programming theory and it is an iterative active set primal-dual method where convergence occurs
when all elements of the dual vector become negative. Starting with a set of possible primal solutions (basis vectors),
the algorithm computes an associated dual vector, and selects at each iteration the worst basis vector solution to be
exchanged from the basis set, corresponding to the maximum (positive) element of the dual vector.

If, in other applications, linear bounds or other types of simple constraints on the linear parameters need to be
imposed, then the NNLS solver discussed above must be replaced by an appropriate method for the corresponding
constrained linear least squares problem. For many practical cases (such as linear or quadratic inequality constraints),
efficient methods and software implementations are available in the literature.
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We denote the optimal non-negative solution of (11) by annls(x). It seems preferable to optimize (11) only over
the variables in x, while estimating a at every iteration as annls(x). A conceptual advantage of this approach must be
emphasized: if a were however included together with x as nonlinear variables into the nonlinear least squares solver,
then any value close to zero in a would cause an almost zero column in the Jacobian of the objective function, leading
to possibly unreliable numerical computations. The implementation that optimizes only on x and uses annls(x) at each
iteration does not suffer from this numerical problem.

The case of almost zero amplitudes is important in our application, since a practitioner might want to use a database
of metabolites that has more elements than the actual number of chemicals significantly present in the signal to be
quantified. Thus, identifying almost zero metabolite concentrations is an important case that should not be affected by
numerical errors.

4.2.2. Function and pseudo-Jacobian evaluation
The nonlinear least squares solver needs implementations for the specific objective function and Jacobian evaluations.
As explained before, the function evaluation is performed by computing the NNLS solution at the current value of

x, annls(x); then, the residual vector is computed simply as y − �(x)annls(x).
Unfortunately, the lack of closed-form expressions for annls(x) implies that we do not have an expression for the true

Jacobian of the residual with respect to x. For computational efficiency, we propose to use an adequate pseudo-Jacobian,
instead of numerical differentiation methods.

Consider the function f (x) = y − �(x)annls(x). The Jacobian of f with respect to any of the scalar variables xk (here
denoted ∇kf ) has the formula

∇kf = −(∇k�(x))annls(x) − �(x)(∇kannls(x)). (13)

While the matrix ∇k�(x) is easily computable, the gradient ∇kannls(x) cannot be computed explicitly. At this point,
a numerical differentiation technique can be used in order to estimate the matrix ∇annls(x). In Section 5, we show
experimental results that are obtained with this approach for Jacobian computation, as well as with the approach
described next, using another approximate Jacobian that is cheaper to compute.

Since annls(x) is in many cases close to the least squares solution als(x) = �(x)†y, we can approximate the gradient
of annls(x) with the one of als(x), yielding

∇kf ≈ − (∇k�)annls − �∇k((�

�)−1�
)y

= − (∇k�)annls + �(�
�)−1[(∇k�)
� + �
(∇k�)](�
�)−1�
y

≈ − (∇k� − (�†)
(∇k�)
� − ��†(∇k�))annls.

Moreover, Kaufman’s simplification [11] proposes to avoid the complicated computation of (�†)
(∇k�)
� and thus
only the part

−(∇k� − ��†(∇k�))annls = −(I − ��†)(∇k�)annls

can be used to compute an approximate Jacobian.
For more details on how to compute the elements of ∇k� we refer to Section 3 or [24]. The only addition is that we

have a new column in the Jacobian, corresponding to the variable �0, which is equally treated as a nonlinear parameter.
The gradient with respect to �0 is easily computable, since �0 only appears in the factor exp(j�0).

In order to obtain the Jacobian matrix needed in the optimization process, all columns of the type (∇k�)annls should
first be stacked into a matrix ��. To complete the Jacobian computation, the product (I − ��†) · �� should be
evaluated. For stable and efficient computation, we make use of the QR decomposition of �,

� = [Q1 Q2 ]

[
R1
0

]
,

where R is upper triangular, Q is an orthogonal matrix, R1 ∈ RK×K , Q1 ∈ R2m×K , and Q2 ∈ R2m×(2m−K). Thus,
I − ��† = I − Q1Q



1 = Q2Q



2 , and then (I − ��†)�� = Q2Q



2 ��.
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4.3. MRS data model with baseline

4.3.1. The minimization problem formulation
In this case, we augment the optimization criterion (10) to the regularized version that takes into account a smooth

baseline reconstructed by penalized splines:

min
a1,...,aK∈[0,∞),�0∈(−
,
),

�1,...,�K,�1,...,�K∈�,c∈Cn

1

m

tm−1∑
t=t0

∣∣∣∣∣y(t) −
K∑

k=1

ak(�k)
t (�k)

t2
vk(t) − (Ac)(t)

∣∣∣∣∣
2

+ 	2cHDHDc, (14)

where A ∈ Cm×n is an inverse Fourier transformed spline matrix, the vector c ∈ Cn denotes the spline coefficients,
	 is a fixed regularization (penalty) parameter, and the whole penalty term 	2cHDHDc is responsible for ensuring a
certain degree of smoothness to the frequency-domain baseline.

Using the notation from (11) and the transformation to real of all the complex elements (subscripted here with an r),
this minimization can be written as

min
a�0,x∈�,cr∈R2n

1

m

∥∥∥∥[y
0

]
−
[
�(x)a + Arcr√

m	Drcr

]∥∥∥∥2

2
, (15)

where Ar ∈ R2m×2n is obtained from A by unfolding all elements into real and imaginary parts and shuffling them
such that each odd/even row corresponds to the real/imaginary part of an element of y(t), and each odd/even column
corresponds to the real/imaginary part of an element of the spline coefficient vector c, which is also unfolded into the
vector of real elements cr ∈ R2n. The matrix Dr is obtained from D, shuffled in the same manner.

The problem (15) is also a separable nonlinear least squares problem, where the linear variables are a and cr , and the
nonlinear ones are grouped in the vector x. However, the linear amplitudes in a are non-negatively constrained, while
the spline parameters cr are free. Moreover, the coefficient matrices that multiply cr are independent of x. This allows
us to use an explicit optimal solution for cr , while still using an NNLS solver to optimize a at each new x.

Solving the optimization problem (15) is done using a nonlinear least squares minimization over x, where for each
fixed x (thus, at every function evaluation), the linear parameters are the optimal solutions of a minimization problem
of the type

min
a�0,cr∈R2n

1

m

∥∥∥∥[y
0

]
−
[

Ar �√
m	Dr 0

] [
cr

a

]∥∥∥∥2

2
. (16)

Using a QR factorization of the matrix
[

Ar√
m	Dr

]
= ST = [S1 S2]

[
T1
0

]
, with T1 ∈ C2n×2n, and S1, S2 of appropriate

sizes, the optimal cr is expressed as

cls
r = T †S


([
y
0

]
−
[
�
0

]
a
)

= T −1
1 S


1

([
y
0

]
−
[
�
0

]
a
)

,

which can be plugged in into (16) such that an NNLS problem in the variable a only remains to be solved:

min
a�0

1

m

∥∥∥∥S(I − T T †)S

([

y
0

]
−
[
�
0

]
a
)∥∥∥∥2

2
⇐⇒ min

a�0

1

m

∥∥∥∥S

2

([
y
0

]
−
[
�
0

]
a
)∥∥∥∥2

2
,

where we used the fact that (I − T T †)ST =
[

0
0

0
I

]
S
 =

[
0

S

2

]
, and we ignored the multiplication with the orthogonal

matrix S (since the norm is invariant to such an operation).

4.3.2. Function and pseudo-Jacobian evaluation
To evaluate the residual needed in the nonlinear least squares algorithm, it is thus possible to ignore the orthogonal

matrix S and to compute instead of

f (x) =
[

y
0

]
−
[

Ar �(x)√
m	Dr 0

] [
cls
r

annls

]
,
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directly the residual

f̃ (x) = S

2

([
y
0

]
−
[
�
0

]
annls

)
.

The Jacobian that we need to compute is

∇xf̃ = −S

2 ∇x

([
�(x)

0

]
annls(x)

)
= −S


2

[∇x(�(x)annls(x))

0

]
.

For its approximate evaluation, we need the same tricks as in the case when there is no baseline. One difference is that
the new Jacobian is extended with a zero block, which comes from the fact that we augmented �(x) with some blocks
that do not depend on the nonlinear parameters.

5. Numerical experiments

In this section, we focus on illustrating the fact that the pseudo-Jacobian introduced in Section 4.2.2 performs
as good in our optimization problems as the alternative approach of using an approximate Jacobian with numerical
differentiation. The latter Jacobian combines an analytical formula with the numerical differentiation of the part that
does not have a closed-form expression; this is the part involving the vector annls(x). For numerical differentiation, we
choose a simple forward difference approximation, which involves computing the NNLS solution in as many vectors
(neighboring the current x) as there are elements in the vector x.

The computation of ∇annls(x) using numerical differentiation and its use within the analytical formula of the full
Jacobian (see (13)) is more efficient than using numerical differentiation for the full Jacobian itself. However, the
pseudo-Jacobian from Section 4.2.2 is much more computationally efficient, since the NNLS solution is computed
only once (at x).

We use five data sets, each consisting of 100 simulated MRS signals. (These sets are described in more detail in
[25] (sets 1, 3–6), where they were used to validate—in a clinically relevant way—the performance of the optimization
method with non-equal phases from Section 3, implemented in the software package AQSES.)

• Set 1 consists of signals obtained from a metabolite database of eight components. The model (2) has random values
(but extracted from meaningful intervals) for the parameters of interest (amplitudes, damping corrections, frequency
shifts, and equal phase correction �0). No baseline term and no noise are added to the simulation signals in this set.
This set corresponds to a zero-residual nonlinear least squares problem.

• Set 2 from [25] is omitted as irrelevant for the comparisons herein.
• Set 3 is obtained from Set 1 by adding noise terms with a signal-to-noise ratio of 25.
• Set 4 is obtained from Set 1 by adding noise terms with a signal-to-noise ratio of 7.
• Set 5 is obtained from Set 1 by adding simulated (smooth in the frequency domain) baseline terms. This set cor-

responds to a zero-residual nonlinear least squares problem only in the case when the simulated baseline can be
perfectly reconstructed by penalized splines.

• Set 6 is obtained from Set 5 by adding also noise terms.

In Fig. 3, we show in a condensed manner the relative errors for all the simulation scenarios described above.
The errors were computed with respect to the true values used for building up the simulation sets. The relative error
formula is ‖Xestimated − Xtrue‖F/‖Xtrue‖F, where we stacked in the matrix Xtrue (respectively, Xestimated) all the 100
vectors of true (respectively, estimated) parameters for the 100 simulation examples in each set. The norm ‖ · ‖F is the
Frobenius norm.

Moreover, Fig. 4 views the same results under a different error measure: the averaged relative error, computed as
the mean (over all variables in each set of 100 simulations) of individual relative square errors of the form (xestimated

k −
xtrue
k )2/(xtrue

k )2.
Obviously, there is no loss of accuracy related to the pseudo-Jacobian approach compared with the numerical

differentiation scheme.
We plot the relative errors |xestimated

k − xtrue
k |/|xtrue

k | for two individual variables (the amplitude a1 and the phase �0)
in Figs. 5 and 6. The scale is logarithmic and the relative errors (in percentages) are sorted for each of the five simulation
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Fig. 3. Comparison of total estimation errors for the two Jacobian variants and the five sets of simulations.
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Fig. 4. Comparison of averaged relative estimation errors for the two Jacobian variants and the five sets of simulations.
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Fig. 5. Relative errors for the variable a1 in 100 simulations for each of the five testing scenarios. The two proposed approximate Jacobians perform
equally good.
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Fig. 6. Absolute errors for the variable �0 in 100 simulations for each of the five testing scenarios. The two proposed approximate Jacobians perform
equally good.

sets and the two methods under investigation. The solid lines pertain to the relative errors obtained with the pseudo-
Jacobian, and the lines with different markers are the corresponding errors for the numerical differentiation-based
Jacobian. The two related curves for each set are very similar. Note also that the estimation errors for the zero-residual
problems in Set 1 are under 0.001% for 95% of the simulations. The errors deteriorate when the noise level is increased
or when the baseline term is added. However, the errors stay under a reasonable threshold of about 1–5%.

These numerical results show that the optimization approaches proposed in Section 4 are performing well, and that
we can safely make use of the easily computable pseudo-Jacobian.

6. Conclusions

We have described computational details related to the implementation of several variants of non-standard VARPRO
algorithms for separable nonlinear least squares. The main issues that we encountered are related to the introduction
of constraints on the linear or nonlinear variables. In order to take into account the separability of the minimization
criterion, the constrained (or unconstrained) linear subproblem must be solved efficiently and independently at each
function evaluation of the outer nonlinear (constrained or unconstrained) minimization.

The described extensions were motivated by optimization problem formulations needed in the quantification of
metabolites from short echo-time magnetic resonance spectroscopic signals. All the methods are implemented in the
AQSES processing module of the AqsesGUI software package [1], which is a toolbox for analysis and visualization of
short echo-time magnetic resonance spectroscopic signals. Quantification results emphasizing the clinical performance
of AQSES are presented in [25].
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